Directed graphs

Definition 104 A directed graph (A, R) consists of a set A and a relation R on A (i.e. a relation from A to A).

-184 ----

Definition 107 For $R \in \text{Rel}(A)$ and $n \in \mathbb{N}$, we let $R^{\circ n} = \underbrace{R \circ \cdots \circ R}_{n \text{ times}} \in \text{Rel}(A)$

be defined as id_A for n = 0, and as $R \circ R^{\circ m}$ for n = m + 1.

— 185 —

Paths

Proposition 109 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A$, $s \mathbb{R}^{\circ n}$ t iff there exists a path of length n in R with source s and target t. $\mathcal{R}^{\circ D} = \mathcal{R}^{A}$

-186 --

Corollary 111 Let (A, R) be a directed graph. For all $s, t \in A$, s $R^{\circ*}$ t iff there exists a path with sour**G** s and target t in R.

$$-187$$
 $--$

$mat(RoS) = mat(R) \cdot mat(S)$ mat(RuS) = mat(R) + mat(S)

The $(n \times n)$ -matrix M = mat(R) of a finite directed graph ([n], R) for n a positive integer is called its *adjacency matrix*.

The adjacency matrix $M^* = mat(R^{\circ*})$ can be computed by matrix multiplication and addition as M_n where

$$\begin{cases} M_0 &= I_n \\ M_{k+1} &= I_n + (M \cdot M_k) \end{cases}$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

— 188 —

Preorders ASBEC DAEC

Definition 112 A preorder (P, \subseteq) consists of a set P and a relation \sqsubseteq on P (i.e. $\sqsubseteq \in \mathcal{P}(P \times P)$) satisfying the following two axioms.

► Reflexivity.

-189 -

$$\begin{array}{c} \label{eq:propulsion} & \mbox{freenders with an additional propulsy} \\ & \end{tabular} \\ & \end$$

— 190 —

Theorem 114 For $\mathbb{R} \subseteq \mathbb{A} \times \mathbb{A}$, let

 $\mathcal{F}_{R} = \left\{ Q \subseteq A \times A \ | \ R \subseteq Q \land Q \text{ is a preorder} \right\} .$ Then, (i) $\mathbb{R}^{\circ*} \in \mathfrak{F}_{\mathbb{R}}$ and (ii) $\mathbb{R}^{\circ*} \subseteq \bigcap \mathfrak{F}_{\mathbb{R}}$. Hence, $\mathbb{R}^{\circ*} = \bigcap \mathfrak{F}_{\mathbb{R}}$. Then, (1) $\mathcal{R}^{\circ} \in \mathcal{S}_{\mathcal{R}}$ and (1) PROOF: $\mathcal{R} \subseteq \mathcal{R}^{\circ \mathcal{X}}$ reflexinty. $\mathcal{R}^{\circ \mathcal{Y}}$ is a prender from a histy. $\mathcal{R}^{\circ \mathcal{Y}} \rightleftharpoons$ There is a path, ray of length \mathcal{R} , $\mathcal{R}^{\circ \mathcal{Y}} \rightleftharpoons$ There is a path, ray of length \mathcal{R} , $\mathcal{R}^{\circ \mathcal{X}} \not{=}$ there is a path, say of length \mathcal{L} , $\mathcal{R}^{\circ \mathcal{X}} \not{=}$ there is a path, say of length \mathcal{L} , $\mathcal{R}^{\circ \mathcal{X}} \not{=}$ there is a path, say of length \mathcal{L} ,

- 191 -

Unew Ron E JR W Hnew. Ron E N FR W H Knew. Ron E N FR W H Refr. Hnew. Ron E Q hy induction

Hence There is a poth from n to 2, of length ktl (obtained by concatinating the paths from n to g and from y to z) and so XRox 2.

Partial functions

Definition 115 A relation $R : A \rightarrow B$ is said to be functional, and called a partial function, whenever it is such that

 $\forall a \in A. \forall b_1, b_2 \in B. \ a R b_1 \land a R b_2 \implies b_1 = b_2$

Since every a CA if seloted then it is so to a migne b CB, he prie it a nome R(a)

Theorem 117 The identity relation is a partial function, and the composition of partial functions yields a partial function.

NB

 $f = g : A \rightarrow B$ iff $\forall a \in A. (f(a) \downarrow \iff g(a) \downarrow) \land f(a) = g(a)$ $Note that F_n a partial function f: A \rightarrow B$ $f(a) \uparrow \sim f in mode fined for a.$ $f(a) \land \sim f in defined for a.$

— 193 —

Proposition 118 For all finite sets A and B,

