
Euclid ′s infinitude of primes

Theorem 78 The set of primes is infinite.

PROOF:
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Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,

?> =<

89 :;
•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-

siderations, but what is apparently the same set may be pictured

as

?> =<
89 :;•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as

?> =<
89 :;• • • • • • • • • •

for other considerations.
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,

we will be naively looking at ubiquituous structures that are

available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ ( ∀ x. x ∈ A ⇐⇒ x ∈ B ) .

Example:

{0} 6= {0, 1} = {1, 0} 6= {2} = {2, 2}
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Subsets and supersets
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Separation principle

For any set A and any definable property P, there is a

set containing precisely those elements of A for which

the property P holds.

{ x ∈ A | P(x) }
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Russell ′s paradox
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Empty set

∅ or { }

defined by

∀ x. x 6∈ ∅

or, equivalently, by

¬(∃ x. x ∈ ∅)
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,

then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0
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Powerset axiom

For any set, there is a set consisting of all its subsets.

P(U)

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .
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Hasse diagrams
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Proposition 81 For all finite sets U,

#P(U) = 2#U .

PROOF IDEA :
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