Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures. Informally, we will consider a set as a (well-defined, unordered) collection of mathematical objects, called the elements (or members) of the set.
Set membership

The symbol ‘∈’ known as the set membership predicate is central to the theory of sets, and its purpose is to build statements of the form

\[x \in A \]

that are true whenever it is the case that the object \(x \) is an element of the set \(A \), and false otherwise.
Defining sets

| The set of even primes of booleans $[-2..3]$ | is | \{2\} \\ \{true, false\} \\ \{-2, -1, 0, 1, 2, 3\} |
Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

\[\{ x \in A \mid P(x) \} , \{ x \in A : P(x) \} \]
Greatest common divisor

Given a natural number n, the set of its *divisors* is defined by set comprehension as follows

$$D(n) = \{ d \in \mathbb{N} : d \mid n \}.$$

Example 52

1. $D(0) = \mathbb{N}$
2. $D(1224) = \{1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72, 102, 136, 153, 204, 306, 408, 612, 1224\}$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)
Going a step further, what about the *common divisors* of pairs of natural numbers? That is, the set

$$CD(m, n) = \{ d \in \mathbb{N} : d \mid m \land d \mid n \}$$

for $m, n \in \mathbb{N}$.

Example 53

$$CD(1224, 660) = \{ 1, 2, 3, 4, 6, 12 \}$$

Since $CD(n, n) = D(n)$, the computation of common divisors is as hard as that of divisors. But, what about the computation of the *greatest common divisor*?
Lemma 55 (Key Lemma) Let \(m \) and \(m' \) be natural numbers and let \(n \) be a positive integer such that \(m \equiv m' \pmod{n} \). Then,

\[
\text{CD}(m, n) = \text{CD}(m', n)
\]

Proof:
Lemma 57 For all positive integers m and n,

$$CD(m, n) = \begin{cases}
D(n) & \text{, if } n \mid m \\
CD(n, \text{rem}(m, n)) & \text{, otherwise}
\end{cases}$$
Lemma 57 For all positive integers m and n,

$$
CD(m, n) = \begin{cases}
D(n), & \text{if } n \mid m \\
CD(n, \text{rem}(m, n)), & \text{otherwise}
\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
gcd(m, n) = \begin{cases}
n, & \text{if } n \mid m \\
gcd(n, \text{rem}(m, n)), & \text{otherwise}
\end{cases}
$$

for computing the greatest common divisor, of two positive integers m and n. This is

Euclid’s Algorithm
fun gcd(m , n)
 = let
 val (q , r) = divalg(m , n)
 in
 if r = 0 then n
 else gcd(n , r)
 end
Example 58 ($\gcd(13, 34) = 1$)

\[
\begin{align*}
\gcd(13, 34) &= \gcd(34, 13) \\
&= \gcd(13, 8) \\
&= \gcd(8, 5) \\
&= \gcd(5, 3) \\
&= \gcd(3, 2) \\
&= \gcd(2, 1) \\
&= 1
\end{align*}
\]
Theorem 59 Euclid’s Algorithm \(\gcd \) terminates on all pairs of positive integers and, for such \(m \) and \(n \), \(\gcd(m, n) \) is the greatest common divisor of \(m \) and \(n \) in the sense that the following two properties hold:

(i) both \(\gcd(m, n) \mid m \) and \(\gcd(m, n) \mid n \), and

(ii) for all positive integers \(d \) such that \(d \mid m \) and \(d \mid n \) it necessarily follows that \(d \mid \gcd(m, n) \).

Proof:
\begin{align*}
gcd(m, n) & = q \cdot n + r \\
p > 0, \ 0 < r < n \\
0 < m < n
\end{align*}

\begin{align*}
gcd(n, r) & = q' \cdot r + r' \\
q' > 0, \ 0 < r' < r
\end{align*}

\begin{align*}
gcd(r, r')
\end{align*}
Fractions in lowest terms

fun lowterms(m , n) = let

 val gcdval = gcd(m , n)

in

 (m div gcdval , n div gcdval)

end
Some fundamental properties of gcds

Lemma 61 For all positive integers l, m, and n,

1. *(Commutativity)* $\gcd(m, n) = \gcd(n, m)$,

2. *(Associativity)* $\gcd(l, \gcd(m, n)) = \gcd(\gcd(l, m), n)$,

3. *(Linearity)* $\gcd(l \cdot m, l \cdot n) = l \cdot \gcd(m, n)$.

Proof:

Aka (Distributivity).