
The division theorem and algorithm

Theorem 42 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n+ r.

Definition 43 The natural numbers q and r associated to a given

pair of a natural number m and a positive integer n determined by

the Division Theorem are respectively denoted quo(m,n) and

rem(m,n).
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The Division Algorithm in ML:

fun divalg( m , n )

= let

fun diviter( q , r )

= if r < n then ( q , r )

else diviter( q+1 , r-n )

in

diviter( 0 , m )

end

fun quo( m , n ) = #1( divalg( m , n ) )

fun rem( m , n ) = #2( divalg( m , n ) )
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Theorem 44 For every natural number m and positive natural

number n, the evaluation of divalg(m,n) terminates, outputing a

pair of natural numbers (q0, r0) such that r0 < n and m = q0 ·n+ r0.

PROOF:
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Proposition 45 Let m be a positive integer. For all natural

numbers k and l,

k ≡ l (mod m) ⇐⇒ rem(k,m) = rem(l,m) .

PROOF:
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Corollary 46 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

PROOF:
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Corollary 46 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

2. For every integer k there exists a unique integer [k]m such that

0 ≤ [k]m < m and k ≡ [k]m (mod m) .

PROOF:
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Modular arithmetic

For every positive integer m, the integers modulo m are:

Zm : 0 , 1 , . . . , m− 1 .

with arithmetic operations of addition +m and multiplication ·m
defined as follows

k+m l = [k + l]m = rem(k+ l,m) ,

k ·m l = [k · l]m = rem(k · l,m)

for all 0 ≤ k, l < m.
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Example 48 The addition and multiplication tables for Z4 are:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that the addition table has a cyclic pattern, while there is no

obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 3

2 2

3 1

multiplicative
inverse

0 −

1 1

2 −

3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 49 The addition and multiplication tables for Z5 are:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the

multiplication table restricted to non-zero elements has a

permutation pattern.
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From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 4

2 3

3 2

4 1

multiplicative
inverse

0 −

1 1

2 3

3 2

4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 50 For all natural numbers m > 1, the

modular-arithmetic structure

(Zm, 0,+m, 1, ·m)

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have

further mathematical structure in the form of multiplicative inverses

.
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