The use of disjunction:

To use a disjunctive assumption

\[P_1 \lor P_2 \]

to establish a goal \(Q \), consider the following two cases in turn: (i) assume \(P_1 \) to establish \(Q \), and (ii) assume \(P_2 \) to establish \(Q \).
Scratch work:

Before using the strategy

Assumptions \hspace{1cm} \text{Goal}

\vdots

P_1 \lor P_2

After using the strategy

Assumptions \hspace{1cm} \text{Goal} \hspace{1cm} \text{Assumptions} \hspace{1cm} \text{Goal}

\vdots

P_1

\vdots

P_2
Proof pattern:
In order to prove Q from some assumptions amongst which there is

$$P_1 \lor P_2$$

write: We prove the following two cases in turn: (i) that assuming P_1, we have Q; and (ii) that assuming P_2, we have Q. Case (i): Assume P_1. and provide a proof of Q from it and the other assumptions. Case (ii): Assume P_2. and provide a proof of Q from it and the other assumptions.
A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if $m = 0$ or $m = p$ then $\binom{p}{m} \equiv 1 \pmod{p}$.

Proof:
Lemma 28 For all integers p and m, if p is prime and $0 < m < p$ then $\binom{p}{m} \equiv 0 \pmod{p}$.

Proof:
Proposition 29 For all prime numbers p and integers $0 \leq m \leq p$, either $\binom{p}{m} \equiv 0 \pmod{p}$ or $\binom{p}{m} \equiv 1 \pmod{p}$.

PROOF:

— 72 —
Corollary 33 (The Freshman’s Dream)

For all natural numbers m, n and primes p,

$$(m + n)^p \equiv m^p + n^p \pmod{p}.$$

Proof:
Corollary 34 (The Dropout Lemma) \textit{For all natural numbers } \(m\text{ and primes } p\),

\[(m + 1)^p \equiv m^p + 1 \pmod{p} \, .\]

Proposition 35 (The Many Dropout Lemma) \textit{For all natural numbers } \(m\text{ and } i\text{, and primes } p\),

\[(m + i)^p \equiv m^p + i \pmod{p} \, .\]

\textbf{Proof}:

The Many Dropout Lemma (Proposition 35) gives the first part of the following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) *For all natural numbers* i *and primes* p,

1. $i^p \equiv i \pmod{p}$, *and*

2. $i^{p-1} \equiv 1 \pmod{p}$ *whenever* i *is not a multiple of* p.

The fact that the first part of Fermat’s Little Theorem implies the second one will be proved later on.
Btw

1. Fermat’s Little Theorem has applications to:

 (a) primality testing\(^a\),

 (b) the verification of floating-point algorithms, and

 (c) cryptographic security.

\(^a\)For instance, to establish that a positive integer \(m\) is not prime one may proceed to find an integer \(i\) such that \(i^m \not\equiv i \pmod{m}\).
Negation

Negations are statements of the form

\[\neg P \]

or, in other words,

\[P \text{ is not the case} \]

or

\[P \text{ is absurd} \]

or

\[P \text{ leads to contradiction} \]

or, in symbols,

\[\neg P \]
A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an *equivalent* form and use instead this other statement.

Logical equivalences

\[-(P \implies Q) \iff P \land \neg Q\]
\[-(P \iff Q) \iff P \iff \neg Q\]
\[-(\forall x. P(x)) \iff \exists x. \neg P(x)\]
\[-(P \land Q) \iff (\neg P) \lor (\neg Q)\]
\[-(\exists x. P(x)) \iff \forall x. \neg P(x)\]
\[-(P \lor Q) \iff (\neg P) \land (\neg Q)\]
\[-(\neg P) \iff P\]
\[-P \iff (P \Rightarrow \text{false})\]