Distributed systems
Lecture 8: PubSub; Security; NASD/AFS/Coda

Dr Robert N. M. Watson

Last time

Looked at replication in distributed systems

Service replication:

— Stateless (easy!) or Passive (primary/backup) common, Active
(state-machine replication) less so

Strong consistency:
— Approximately as if only one copy of object
— Requires considerable coordination on updates
— Transactional consistency & quorum systems
Weak consistency:
— Allow clients to potentially read stale values

— Some guarantees can be provided (FIFO, eventual, session), but
at additional cost to availability

Google datacenter case studies: MapReduce, BigTable, etc.

Google’s BigTable [2006]

* ‘Three-dimensional® structured key-value store:
— <row key, column key, timestamp> — value

 Effectively a distributed, sorted, sparse map

cell

row
(key: string)

<“larry.page”, “websearch”,/133746428> - “cat pictur(V7
v — L _—— timestamp

> (key: int64)

column
(key: string)

Google’s BigTable [2006]

 Distributed tablets (~1 GB max) hold subsets of map
« Adjacent rows have user-specifiable locality
« E.g., store pages for a particular website in the same tablet

* On top of Collossus, which handles replication and fault
tolerance: only one (active) server per tablet!

 Reads & writes within a row are transactional
— Independently of the number of columns touched
— But: no cross-row transactions possible

« METAO tablet is “root” for name resolution
— Filesystem meta stored in BigTable itself

« Use Chubby to elect master (METAO tablet server), and
to maintain list of tablet servers & schemas

— 5-way replicated Paxos consensus on data in Chubby

Google’s Spanner [2012]

« BigTable insufficient for some consistency needs

« Often have transactions across >1 datacentres
— May buy app on Play Store while travelling in the U.S.
— Hit U.S. server, but customer billing data is in U.K.

« Spanner offers transactional consistency: full RDBMS
power, ACID properties, at global scale!

* Wide-area consistency is hard
— due to long delays and clock skew

« Secret sauce: hardware-assisted clock sync
— Using GPS and atomic clocks in datacentres
— Use global timestamps and Paxos to reach consensus
— Still have a period of uncertainty for write TX: wait it out!

Comparison

Dynamo BigTable Spanner
Consistency eventual weak(ish) strong
high throughput, low throughput,
low latency high latency

Availability <

row transactions full transactions

Expressivity___Simple key-value

Coordination Services

Client App.

A 4

local message
queues

v

Network

Message Servers

queues

Ty

Network

I
I
I
I
I
I
I
I
I
I message
I
I
I
I
I
I
I
I
I

——————————————————

\Ce

—_—
—

Server App.

i

local message
gueues

il

Network

* Earlier looked at middleware support for RPC/RMI

— Imperative and (typically) synchronous interaction

* An alternative is message-oriented middleware
— Communication via asynchronous messages
— Messages stored in message queues

MOM: Pros and Cons

Asynchronous interaction
— Client and server are only loosely coupled
— Messages are queued
— Good for application integration
Support for reliable delivery service
— Keep queues in persistent storage
Processing of messages by message server(s)
— May do filtering, transforming, logging, ...
— Networks of message servers

But pretty low-level (‘packet level’) interactions, and still
just point-to-point messages with no typing...

Examples: IBM MQSeries, Java Message Service (JMS)

Publish-Subscribe (PubSub)

* Get more flexibility with publish-subscribe:

— Publishers advertise and publish events

— Subscribers register interest in topics (i.e. properties of events)

— Event-service notifies subscribers of relevant published events
e Similar to reliable multicast, without ordering focus:

— Asynchronous structure

— Allows one-to-many communication

— Dynamic membership: publishers/subscribers joining/leaving
* Sometimes described as content-centric networking

— Engages not just hosts, but also network routers

— Focus is on data, not network messaging

— Reliability and persistency part of the programming model

Publish-Subscribe: Pros and Cons

e PubSub useful for ‘ad hoc’ systems such as embedded
systems or sensor networks:

— Client(s) can ‘listen’ for occasional events

— Don’t need to define semantics of entire system in advance (e.g.
what to do if get event <X>)

— Promoted in recent research for higher-level applications
* Leads to natural “reactive” programming:
— when <X>, <Y> occur then do <Z>

— event-driven systems like Apama can help understand business
processes in real-time

e But:

— Can be awkward to use if application doesn’t fit
— And difficult to make perform well...

Distributed-system security

e Distributed systems span administrative domains; content from
many users and organizations

* It seems natural to extend authentication, access control, audit, to
distributed system, but can we:

— Distribute local notions of a user over many machines?

— Enforce system-wide properties such as personal data privacy?

— Allow systems operated by different parties to interact safely?

— Not require that networks be safe from monitoring/tampering?

— Tolerate compromise a subset of nodes in the system?

— Provide reliable service to most users even when under attack?

— Accept and tolerate nation-state actors as adversaries?

* For a system to offer secure services, it must (itself) be secure

— Trusted Computing Base (TCB) — the minimum software (or hardware)
required for a system to be secure

11

Access control

* Distributed systems may want to allow access to
resources based on a security policy

* As with local systems, three key concepts:
— ldentification: who you are (e.g. user name)
— Authentication: proving who you are (e.g. password)
— Authorization: determining what you can do

* Can consider authority to cover actions an
authenticated subject may perform on objects

— Access Matrix = set of rows, one per subject, where
each column holds allowed operations on some object

12

Recall: Access-Control Matrix

User, +read

User, +read +write +read

Group, -read +read +write
* Al J)

— Rows represent principals (sometimes groups)
— Columns represent objects
— Cell(i, j) contain access rights of row i on object j

* Access matrix is typically large & sparse:
— Just keep non-NULL entries by column or by row

13

Access Control Lists (ACLs)

* Keep columns: for each object, keep list of
subjects and allowable access

* ACLs stored with objects (e.g. local filesystem)
* Key primitives: get/set
* Like a guest list on the door of a night club

e ACL change should (arguably) immediately
grant/deny further access

— What does this mean for distributed systems?

14

Capabilities

* Capabilities are unforgeable tokens of authority

— Keep rows: for each subject S, keep list of objects /
allowable accesses

— Capabilities stored with subjects (e.g. processes)
— Bit like a key or access card that you carry around
* Key primitive: delegation

— Client can delegate capabilities it holds to other
clients (or servers) in the system to act on its behalf

— Downside: revocation may now be more complex

15

Access control in distributed systems

Single systems often have small number of users (subjects) and
large number of objects:

— e.g. a few hundred users in a Unix system

— Track subjects (e.g. user IDs) and store ACLs with objects (e.g. files)
e Distributed systems are large & dynamic:

— Can have huge (and unknown?) number of users

— Interactions via network — no explicit ‘log in’ or per-user process
e Capability model is a more natural fit:

— Client presents capability with request for operation

— System only performs operation if capability checks out

— Avoid synchronous RPCs to check identities/access-control policies
* Not mutually exclusive: ACLs as a policy for granting capabilities
* Can’t trust nodes or links: rely on cryptography with secret keys

16

Cryptographic Capabilities

* How can we make capabilities unforgeable?

e Capability server could issue capabilities

— User presents credentials (e.g., username, password) and
requests capabilities representing specific rights

— e.g. capability server has secret key k and a one-way function f()
— Issues a capability <ObjID, access, f(k, ObjID, access) >
— Simple example is f(k,0,a) = SHA256(k| o] a)
e Client transmits capability with request
— |If object server knows k, can check operation

* Can use same capability to access many servers

— And one server can use it on your behalf (e.g., web tier can
request objects from storage tier on user’s behalf)

 More mature scheme might use public key crypto (why?)

Distributed capability example: NASD

1. Client exchanges credentials for Eile l\l/lDalnaI;g\ilrlaccounts:
cryptographic capability to object © | U::|02: W
Y oo\ File Manager
e(\Dv
\Js eNe(\D\,
D,°
on ' D'V\\N File Manager
Kk, ©) S
e o erver and Block
Objip Server agree

\ Block
Objip, <. . data.. Server
2. Client encloses capability

with request to authorize it
 Network-Attached Secure Disks (NASD) — Gibson, et al 1997 (CMU);
actual protocol somewhat more complicated than this example

* Improve network file system scalability by allowing clients to
directly access remote disks rather than indirecting through servers

* “File Manager” grants client systems capabilities delegating direct
access to objects on network-attached disks

on secret k

18

Capabilities: pros and cons

* Relatively simple and pretty scalable

* Allow anonymous access (i.e. server does not need to
know identity of client)
— And hence easily allows delegation

 However this also means:
— Capabilities can be stolen (unauthorized users)...

— ... and are difficult to revoke (like someone cutting a copy
of your house key)

* Can address these problems by:
— Having time-limited validity (e.g. 30 seconds)

— Incorporating version into capability, and storing version
with the object: increasing version => revoke all access

19

Combining ACLs and capabilities

* Recall one problem with ACLs was inability to
scale to large number of users (subjects)

e However in practice we may have a small-ish
number of authority levels
— e.g. moderator versus contributor on chat site

* Role-Based Access Control (RBAC):
— Have (small-ish) well-defined number of roles
— Store ACLs at objects based on roles
— Allow subjects to enter roles according to some rules
— Issue capabilities which attest to current role

20

Role-Based Access Control (RBAC)

 General idea is very powerful
— Separates { principal - role }, { role = privilege }

— Developers of individual services only need to focus on the
rights associated with a role

— Easily handles evolution (e.g. an individual moves from
being an undergraduate to an alumnus)

* Possible to have sophisticated rules for role entry:
— e.g. enter different role according to time of day
— or entire role hierarchy (1B student <= CST student)

— or parametric/complex roles (“the doctor who is currently
treating you”)

Single-system sign on

e Distributed systems involve many machines
— Frustrating to have to authenticate to each one!

e Single-system sign on aims to ease user burden while maintaining
good security

— e.g. Kerberos, Microsoft Active Directory let you authenticate to a
single domain controller

— Bootstrap using a password or private key / certificate on smart card
— Get a session key and a ticket (~= a capability)
— Ticket is for access to the ticket-granting server (TGS)

— When wish to e.g. log on to another machine, or access a remote
volume, s/w asks TGS for a ticket for that resource

— Schemes
— Notice: principals might could be users ... or even services

« Some wide-area “federated” schemes too (Multi-realm Kerberos,
OpenlD, Shibboleth)

22

AFS and Coda

 Two CMU distributed file systems that helped create
our understanding of distributed-system scalability

— AFS: Andrew File System “campus-wide” scalability
— Coda: Add write-replication, weakly connected or fully
disconnected operation for mobile clients
e Scale distributed file systems to global scale using a

broad and mature set of concurrent and distributed-
system ideas

* RPC, close-to-open semantics, pure and impure names,
explicit cache management, security, version vectors,
optimistic concurrency, multicast, journaling, ...

The Andrew File System (AFS)

e (Carnegie Mellon University (1980s) address performance,
scalability, security weaknesses of NFS

* Global-scale distributed filesystem
— /afs/cs.cmu.edu/user/rnw, /afs/ibm.com/public
— Cells transparently incorporate dozens or hundreds of servers
— Clients merge namespaces and hide replication/migration of files
— Distributed authentication/access control w/Kerberos, group servers
— (Optional) cryptographic protection of all communications
— Quorum-backed metadata databases for UserDB, VolDB, etc.
— Persistent client caches, servers aware of client cache contents
— Mature non-POSIX filesystem semantics (close-to-open, ACLs)

e Still in use at large institutions today; open sourced as OpenAFS

* Inspiration many aspects of Distributed Computing Environment
(DCE) and Microsoft’s Distributed File System (DFS)

AFS3 per-cell architecture

* Client-server and server-server
communication via ‘rx’ RPC package DB server

* Ubik quorum database for authentication, (DBserver
volume location, and group membership

* Namespace partitioned into volumes; e.g.,
/afs/cmu.edu/user/rnw/public_html
traverses four volumes

e Special symlinks provide volume linkage
* Files ID’d by VicelD: {CellID, VolumelD, FID}

Volume servers trade limited redundancy for [Bashad
higher-performance bulk file 1/0:

— read-write on a single server (~rnw)
— read-only replicas on multiple servers (/bin)

* Efficient inter-server snapshot algorithm
allows volumes to be migrated transparently
while in use by users (with help of AFS client)

DB server

Ubik quorum
databases

File server poo

25

File server

Persistent client-side caching in AFS

Synthesized /afs namespace

S andrew.cmu.edu

afS L

athena.mit.edu

Local cache files

* AFS implements persistent caches on client-side disks

* Vnode operations on remote files are redirected to
local container files for local I/O performance

* Close-to-open semantics allow writes to be sent to the
server only on close()

26

AFS callback promises

Cl
%}

/
X atekal
m \(\\'a\\d File server
m(/o

\(OWN a\'\d"f‘e\a

27
e AFS servers issue callback promises on files held in client caches

 When a file server receives a write-close() from one client, it
initiates callbacks to invalidate cached copies on other clients

e Unlike NFS, no synchronous RPC is required when opening a cached
file: the callback has not been broken so it must be fresh

 However, client write-close() is synchronous: can’t return until
callbacks acknowledged by other clients — why?

* What consistency properties might we want for ACLs?
27

The Coda File System

* Developed at Carnegie Mellon University in the 1990s
by M. Satyanaraynan’s group

e Starting point: open-sourced AFS2 from IBM

* |Improve availability through optimistic replication and
client-side caching/journaling:
— Improve availability through read-write replication
— Improve performance for weakly connected clients
— Support mobile (sometimes) fully disconnected clients

* Exploit new network features to improve performance:
— Multicast RPC to efficiently send RPCs to groups of servers

» Key design challenge: trade off exposing weak
consistency to user in return for availability

28

Coda read-write server reEIication

* Volumes (hence files) are stored on Volume Storage Groups (VSGs) rather
than on a single volume server as in AFS

* Coda associates a version vector with each file
— Like a vector clock only per-object rather than per process
— Each vector entry corresponds to one VSG server’s version of the file
* Reachable VSG subset is the Accessible Volume Storage Group (AVSG)

e Clients read from any server, multicast writes to all: read-one, write-all
— When fully online (AVSG = VSG), close() is synchronous; writes ordered
— On partition/server outage (AVSG C VSG), writes are still permitted
— As servers recover, client access triggers server-server resolution
— |If version vectors allow causal order to be established, resolution is automatic
— Most non-causal directory conflicts can be automatically resolved (why?)
— For files, user-directed or application-specific conflict resolution is required

 What if a user is asked to resolve a conflict on a file they didn’t modify?

29

Coda disconnected operation

* Mid-1990s, mobile computing was becoming available for the first time —
devices often had weak or no connectivity

* Coda allows mobile-client operations to continue against the persistent
cache even when operating disconnected (AVSG = 9)

* Hoarding: prior to going offline, users can provide Coda with policy as to
which files should be preemptively loaded into the cache (e.g., user ™)

* Offline writes are logged in the Client Modification Log (CML)
— When going back online, CML is replayed against AVSG (reintegration)
— CML optimization deletes NOP sequences: e.g., create+delete a temp file
— Client-server conflicts, as with server-server, are detected via version vectors
— User/application must handle conflicts that can’t be resolved automatically
— Is this better than the server-server conflict resolution case?

* Curious: if Ethernet unplugged, my build goes faster — why?

— Clever trick for weakly connected clients: if network is bottleneck, take volume
offline and log changes, trickling them back asynchronously until caught up

* These ideas have influenced systems like Microsoft’s “offline folders”

30

Summary (1)

* Distributed systems are everywhere

* Core problems include:
— Inherently concurrent systems
— Any machine can fail...
— ... as can the network (or parts of it)
— And we have no notion of global time

e Despite this, we can build systems that work
— Basic interactions are request-response
— Can build synchronous RPC/RMI on top of this ...
— Or asynchronous message queues or pub/sub

Summary (2)

* Coordinating actions of larger sets of computers
requires higher-level abstractions

— Process groups and ordered multicast
— Consensus protocols, and
— Replication and Consistency
* Various middleware packages (e.g. CORBA, EJB)
provide implementations of many of these:
— But worth knowing what’s going on “under the hood”

* Recent trends towards even higher-level:
— MapReduce and friends

