
27/10/2014

1

1

Classical concurrency control (Low-Level): Overview

Controlling access by concurrent processes to shared writeable data has been studied
as part of OS design since the earliest OSs (1960s onwards).

Concurrent programming languages brought the same problems
to application programming.
For example, web servers have to handle large numbers of concurrent requests.

Our starting point – how to think about the problem:

critical regions (CRs): regions of code in concurrent processes
that read or write shared data
and have to be executed sequentially, under mutual exclusion

How to implement CRs (using flags or semaphores)
- without blocking: processes “spin-lock” or “busy-wait” on a flag

for their turn to execute the CR
- with blocking: processes that must then wait for their turn, on semaphores

Classical shared memory concurrency control

2

Classical, shared memory, concurrency control: Overview 2

We then look at how semaphores can be used:
1. a single semaphore used to achieve mutual exclusion
2. a single semaphore used to achieve condition synchronisation
3. a single semaphore used for N-resource allocation

Then, how semaphores are implemented.
This may be within the OS, or at application level, in the runtime system

of a concurrent programming language

Programming with semaphores, using several semaphores to achieve both
mutual exclusion and condition synchronisation

1. single producer, single consumer processes communicating via a shared buffer
2. many producers and consumers
3. readers and writers: multiple readers, single writer concurrency control

Discussion of semaphore programming: problems/difficulties

Classical shared memory concurrency control

27/10/2014

2

3

Critical regions

shared
data

CR CR

A B
Processes A and B contain critical regions (CRs)
(code that reads or writes this shared data)

CRs are needed only if the data is writeable

A CR is associated with some specific shared data

How can CRs be implemented? – first attempt: associate a boolean flag with this shared data

shared
data

CR

A B

flag: free/busy

entry protocol:
test flag

If busy then test again
(called “busy-wait”)

If free
then set to busy

enter CR

exit protocol:
set flag to free

Classical shared memory concurrency control

CR

entry protocol:
test flag

If busy then test again
(called “busy-wait”)

If free
then set to busy

enter CR

exit protocol:
set flag to free

4

Indivisible test-and-set
The entry protocol is correct only if test and set of flag are atomic/indivisible – HOW?

• forbid interrupts? – NO – this would only work on a uniprocessor, and even then would be
inappropriate for general use.

• machine instruction? - YES

• program only – no hardware exclusion - ?NO

CISC machines had many read-memory, test result, store-to-memory types of instruction

RISC (load/store) architectures can only use a single memory access per instruction

read-and-clear will work:

flag=0 //shared data is busy

flag=1 //shared data is free (initial value)

entry protocol:
read-and-clear, register flag

// if value in register is 0, shared data was busy so retry

// if value in register is 1, shared data was free and you claimed it

We can assume modern computers have such instructions

Classical shared memory concurrency control

27/10/2014

3

5

Mutual exclusion without hardware support

This was a hot topic in the 1970s and 80s.
Examples for N-process mutual exclusion are:

Eisenberg M. A. and McGuire M. R.,
Further comments on Dijkstra’s concurrent programming control problem
CACM 15(11), 1972

Lamport L
A new solution to Dijkstra’s concurrent programming problem
CACM, 17(8), 1974
(his N-process bakery algorithm)

For uniprocessors and multiprocessors these algorithms impose huge overhead.
In practice, OSs built mutual exclusion on atomic hardware instructions.

It is not proven that these programs are correct for multicore

Classical shared memory concurrency control

6

Dijkstra THE 1968
The entry protocols above involve busy-waiting (retry in a loop if flag is busy), wasting CPU time

It is usually better to block a waiting process

Define a new type of variable – semaphore

Operations for the type are:

wait (aSem)

if aSem > 0 then aSem = aSem – 1

else suspend the executing process, waiting on aSem

signal (aSem)

if there are no processes waiting on aSem

then aSem = aSem + 1

else free one waiting process – continues after its wait instruction

Implementation: an integer and a queue

Classical shared memory concurrency control

27/10/2014

4

7

Mutual exclusion using a semaphore

aSem

CR

A B

concurrent processes: serialisation of critical regions

wait (aSem)

wait (aSem)

CR

1

0

1

0 B

C

wait (aSem)0 B, C

0 C

0 signal (aSem)

signal (aSem)

B blocked

C blocked

CR

signal (aSem)

Classical shared memory concurrency control

time

8

Two-process synchronisation

aSem A B

wait before signal signal before wait

0

wait (aSem)

1
0 A

0

0 signal (aSem)
0

A B

wait (aSem)

signal (aSem)

A blocked “wake-up waiting”

Classical shared memory concurrency control

27/10/2014

5

9

N-resource allocation using a semaphore

Suppose there are N instances of a resource.

Control its allocation using a semaphore resSem initialised to N.

Each time a process executes wait (resSem) the semaphore’s value is decremented.

When the value is 0 (after N waits without any signals),

all subsequent processes executing wait (resSem) are queued on resSem

until freed by a current user of the resource executing signal (resSem).

Classical shared memory concurrency control

10

Implementation of semaphores - 1

A B N

user threads

Here we show a snapshot where A has claimed exclusive access to the shared data via wait(aSem)
and B and N have executed wait(aSem) and have been blocked (queued on aSem).
But note that aSem is shared writeable data and wait is a composite operation
(check value of aSem, decrement and return or queue process on aSem).
Errors could occur!

runtime system – user thread implementation

per thread data
stack and
control block

with kernel threads, wait (aSem) will call OS_block_thread (tID)
signal (aSem) will call OS_unblock_thread (tID)

shared
data

wait (aSem)
(signal (aSem))

wait (aSem)

implementation of wait and signal on semaphores

0 B, N
wait (aSem)

signal (aSem)

aSem

protected by
aSem

Classical shared memory concurrency control

address space of a process

wait (aSem)

CR

27/10/2014

6

11

Implementation of semaphores - 2

A B

user threads

Suppose A executes wait(aSem) then immediately (in parallel) B executes wait(aSem).
Note that aSem is shared writeable data and wait is a composite operation. Race conditions are possible……

runtime system – user thread implementation

per thread data
stack and
control block

…. problems can occur from parallel execution or interrupt-driven scheduling.
In the system implementation, wait and signal are short and trusted
so protect them by a spin-lock (busy wait) on a flag, implemented by a hardware instruction (see slide 4) .

shared
data

wait (aSem) wait (aSem)

implementation of wait and signal on semaphores

1

signal (aSem)

aSem

protected by
aSem

Classical shared memory concurrency control

flagaSem 0/1

address space of a process

wait (aSem):
if aSem>0
then decrement aSem; return
else queue process on aSem
OS_block_thread (tID)

decision point

if we have kernel threads

12

Implementation of semaphores -3

For user-threads only (OS sees a single-threaded process) the runtime system does all

semaphore and user thread management – no problem from concurrency of wait and signal,

We have single-threaded execution of the runtime.

When user threads are mapped to kernel threads, wait and signal must themselves be made

atomic operations. This is clearly the case for a multiprocessor (parallel execution),

and also for a uniprocessor with preemptive scheduling.

Solution: Associate a flag (boolean) with each semaphore, and use an atomic hardware

instruction such as read-and-clear, see slide 5.

The flag must be claimed before a wait or signal can be executed for that semaphore.

This also applies to kernel threads executing the OS and using OS- managed semaphores

for mutual exclusion and condition synchronisation for shared OS data .

The need for concurrency control first came from OS design. We now have concurrent

programming languages for OSs and applications and OSs supporting multi-threaded processes.

Classical shared memory concurrency control

27/10/2014

7

13

Semaphore programming

We now develop some concurrent programs that use a number of semaphores for
mutual exclusion and condition synchronisation.

1. One producer, one consumer: Two processes communicate through an N-slot cyclic buffer.
One process inserts records of fixed size, the other removes them.
Condition synchronisation is needed for when the buffer is full and empty.
They can run in parallel, accessing different parts of the buffer
(no need for mutually exclusive access to the buffer).

2. Any number of producer and consumer processes communicating
via the buffer. We now need to ensure mutually exclusive access to the buffer.

3. Readers and writers:
We note that processes that only read shared data can read simultaneously,
whereas a process that writes must have exclusive access to the data.
We develop a solution that gives priority to writers over readers,
on the assumption that writers are keeping the data up-to-date.

Classical shared memory concurrency control

14

N-slot cyclic buffer, single producer and consumer - 1

producer

produce an item
• is there an empty slot in the buffer?
insert item

• is there an item in the buffer?
remove item
consume item

consumer

outptr

inptr• = potential delay • = potential delay

two semaphores are needed
- one for the producer to block on wait, when the buffer is full
- one for the consumer to block on wait, when the buffer is empty
- note: blocked processes must be unblocked via signal on semaphores

Classical shared memory concurrency control

27/10/2014

8

15

N-slot cyclic buffer, single producer and consumer - 2

producer

produce an item
• wait (spaces)
insert item
signal (items)

• wait (items)
remove item
signal (spaces)
consume item

consumer

outptr

inptr
• = potential delay • = potential delay

programming note: insert item must increment inptr to point to the next empty slot
remove item must increment outptr to point to the next item (full slot)
when inptr = outptr the buffer is either full or empty. You may also keep
an integer count of the number of items in the buffer: count = 0 (empty) count = N (full).

programming details are not shown – we focus on condition synchronisation

“wake-up” synchronising signals

Classical shared memory concurrency control

•
•

two semaphores are needed:
spaces = N // initially N spaces in buffer, - for the producer to block on when the buffer is full.
items = 0 // initially no items in buffer - for the consumer to block on when the buffer is empty.

16

N-slot cyclic buffer, many producers and consumers

a producer

produce an item
• wait (spaces)
• wait (guard)
insert item
signal (guard)
signal (items)

• wait (items)
• wait (guard)
remove item
signal (guard)
signal (spaces)
consume item

a consumer

outptr

inptr

• = potential delay • = potential delay

three semaphores are used:
spaces = N // initially N spaces in buffer - for the producer to block on when the buffer is full
items = 0 // initially no items in buffer - for the consumer to block on when the buffer is empty
guard = 1 // initially the buffer is free - to ensure mutually exclusive access to the buffer
programming notes – as in previous slide

“wake-up” synchronising signals – condition synchronisation

variation: – allow one producer and one consumer to access the buffer in parallel – left as an exercise

Classical shared memory concurrency control

•
•

27/10/2014

9

17

Multiple readers, single writer concurrency control -1

Many readers may read simultaneously, a writer must have exclusive access
Assume writers have priority – to keep the data up-to-date.

counts:
ar = active readers
rr = reading readers (active readers who have proceeded to read)
aw = active writers
ww = writing writers (active writers who have proceeded to write)

but they must wait to write one-at-a-time

Semaphores are needed:
for mutual exclusion
1. to test and update the above counts under exclusion
2. to ensure writers write under exclusion
for condition synchronisation
1. readers must wait for aw = 0 and must be woken up after blocking
2. writers must wait for rr = 0 and must be woken up after blocking

Classical shared memory concurrency control

18

Multiple readers, single writer concurrency control -2

Classical shared memory concurrency control

become active reader
(ar = ar+1)

if no active writers
then proceed to read

(rr = rr+1)
else defer to writers

(wait for aw = 0)

become active writer
(aw = aw+1)

if no active readers
then proceed to write

(ww = ww+1)
else wait for no readers

(rr = 0)

READ
wait for turn to write
WRITE
release claim

ar = ar-1
rr = rr-1
if rr = 0

then signal waiting writers
exit

aw = aw-1
ww = ww-1
if aw = 0

then signal waiting readers
exit

Must execute under mutual exclusion using same semaphore
for testing and setting shared counts

condition synchronisation

Outline of components of a possible solution (several have been published – see textbooks)

readers execute: writers execute:

start writestart read

end read end write

Need a different mutex semaphore
for writers’ exclusive access

27/10/2014

10

MRSW-3: Beware a naïve implementation:

Classical shared memory concurrency control 19

become active reader
(ar = ar+1)

if no active writers (aw=0)
then proceed to read

(rr = rr+1)
else defer to writers

(wait for aw = 0)

wait (CountGuardSem)
ar = ar+1
if aw=0 then rr = rr+1

else wait (ReadersSem) deadlock! blocking while holding a semaphore
signal (CountGuardSem)

So the programmer has to program to avoid deadlock.
A process that must delay must exit the region before blocking on the condition.
In this case, wait (ReadersSem) must be executed after signal (CountGuardSem)
but beware concurrency problems between releasing CountGuardSem and blocking on ReadersSem.
Race conditions could occur

wait (CountGuardSem)

signal (CountGuardSem)

Suppose the critical regions that
control access to the counts
are implemented using
a semaphore CountGuardSem
initialised to 1

within a critical region the counts
may indicate that the process must block
until some condition becomes true

20

Multiple readers, single writer concurrency control - 4

Complete the program as an exercise. Solutions are in textbooks.

Note that a signal unblocks only one blocked process. The values of the counts indicate
how many signals to send. The last writing writer must unblock all blocked readers.
The last reading reader must unblock all waiting writers.

Take care not to wait while holding the semaphore that protects the shared counts
- see previous slide.

That would cause deadlock; no other process could ever access the counts, so could never
make the awaited condition true and wake any waiting processes. The deadlocked system
would exhibit queues of processes waiting on the various semaphores.

Classical shared memory concurrency control

27/10/2014

11

21

Semaphores - discussion

Semaphores are a widely used mechanism underlying concurrency control in operating systems
and concurrent programs

Difficult for programmers to use correctly – programs are complex
- can forget to wait and corrupt data
- can forget to signal and cause deadlock

Unconditional commitment to block
- but can fork a new thread before waiting to achieve potential concurrent work.

Unbounded delay on wait.
Priority inversion and convoy effect

- a low priority process with a lock can hold up higher priority processes
- a long lock-hold can hold up a lot of potentially short ones

Some of these problems have been addressed by variations in semaphore implementations
e.g. semaphore queue could be ordered by process priority rather than FCFS
e.g. priority inheritance (lock-holder executes at priority of “head waiter”)

Event Counts and Sequencers are used in some systems at this level of concurrency control.

We now consider hiding the details and problems of semaphore programming by giving the
high-level-language programmer easier-to-use concurrency control primitives.

Classical shared memory concurrency control

22

Summary

Studied problem of protecting writeable shared data when accessible by concurrent processes

Critical regions of code access shared data

Associate a different flag or semaphore with each shared data item

Problem if test and set are not indivisible

– need a hardware instruction to test and set (or similar)

Defined semaphores to incorporate process blocking as well as indivisible test-and-set

Looked at problem of implementing semaphore operations correctly under concurrent execution

Attempted semaphore programming

Discussed difficulties

NEXT

Making concurrent programming easier in high-level languages

Classical shared memory concurrency control

