Complexity Theory Lecture 4

Anuj Dawar

University of Cambridge Computer Laboratory Easter Term 2015

http://www.cl.cam.ac.uk/teaching/1415/Complexity/

Consider the decision problem (or *language*) Composite defined by:

 $\{x \mid x \text{ is not prime}\}$

This is the complement of the language Prime.

Is Composite $\in P$?

Clearly, the answer is yes if, and only if, $\mathsf{Prime} \in \mathsf{P}$.

Satisfiability

For Boolean expressions ϕ that contain variables, we can ask

Is there an assignment of truth values to the variables which would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT of *satisfiable* expressions.

This can be decided by a deterministic Turing machine in time $O(n^2 2^n)$.

An expression of length n can contain at most n variables.

For each of the 2^n possible truth assignments to these variables, we check whether it results in a Boolean expression that evaluates to **true**.

Is $SAT \in P$?

Hamiltonian Graphs

Given a graph G = (V, E), a *Hamiltonian cycle* in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle *exactly once*.

A graph is called *Hamiltonian* if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is $HAM \in P$?

Polynomial Verification

The problems **Composite**, **SAT** and **HAM** have something in common.

In each case, there is a *search space* of possible solutions.

the numbers less than x; truth assignments to the variables of ϕ ; lists of the vertices of G.

The size of the search is *exponential* in the length of the input.

Given a potential solution in the search space, it is *easy* to check whether or not it is a solution.

Verifiers

A verifier V for a language L is an algorithm such that

 $L = \{x \mid (x, c) \text{ is accepted by } V \text{ for some } c\}$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a *nondeterministic Turing machine*.

 $\delta \subseteq (Q \times \Sigma) \times (Q \cup \{\text{acc}, \text{rej}\} \times \Sigma \times \{R, L, S\}).$

The yields relation \rightarrow_M is also no longer functional.

We still define the language accepted by M by:

 $\{x \mid (s, \triangleright, x) \to^{\star}_{M} (acc, w, u) \text{ for some } w \text{ and } u\}$

though, for some x, there may be computations leading to accepting as well as rejecting states.

Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.

Nondeterministic Complexity Classes

We have already defined $\mathsf{TIME}(f)$ and $\mathsf{SPACE}(f)$.

 $\mathsf{NTIME}(f)$ is defined as the class of those languages L which are accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most f(n), where n is the length of x.

$$\mathsf{NP} = \bigcup_{k=1}^\infty \mathsf{NTIME}(n^k)$$

Anuj Dawar

Nondeterminism

For a language in $\mathsf{NTIME}(f)$, the height of the tree can be bounded by f(n) when the input is of length n. A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time p(n).

The following describes a *nondeterministic algorithm* that accepts L

- 1. input x of length n
- 2. nondeterministically guess c of length $\leq p(n)$
- 3. run V on (x, c)

NP

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k .

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x.

At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Generate and Test

We can think of nondeterministic algorithms in the generate-and test paradigm:

Where the *generate* component is nondeterministic and the *verify* component is deterministic.

Reductions

Given two languages $L_1 \subseteq \Sigma_1^{\star}$, and $L_2 \subseteq \Sigma_2^{\star}$,

A *reduction* of L_1 to L_2 is a *computable* function

 $f: \Sigma_1^\star \to \Sigma_2^\star$

such that for every string $x \in \Sigma_1^{\star}$,

 $f(x) \in L_2$ if, and only if, $x \in L_1$

Anuj Dawar

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is *polynomial time reducible* to L_2 .

$L_1 \leq_P L_2$

If f is also computable in $SPACE(\log n)$, we write

 $L_1 \leq_L L_2$

Reductions 2

If $L_1 \leq_P L_2$ we understand that L_1 is no more difficult to solve than L_2 , at least as far as polynomial time computation is concerned.

That is to say,

If $L_1 \leq_P L_2$ and $L_2 \in \mathsf{P}$, then $L_1 \in \mathsf{P}$

We can get an algorithm to decide L_1 by first computing f, and then using the polynomial time algorithm for L_2 .

Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language $A \in NP$, $A \leq_P L$.

A language L is NP-complete if it is in NP and it is NP-hard.