
Complexity Theory 1

Complexity Theory

Lecture 4

Anuj Dawar

University of Cambridge Computer Laboratory

Easter Term 2015

http://www.cl.cam.ac.uk/teaching/1415/Complexity/

Anuj Dawar May 1, 2015



Complexity Theory 2

Composites

Consider the decision problem (or language) Composite defined by:

{x | x is not prime}

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.

Anuj Dawar May 1, 2015



Complexity Theory 3

Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables

which would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language

SAT of satisfiable expressions.

This can be decided by a deterministic Turing machine in time

O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we

check whether it results in a Boolean expression that evaluates to

true.

Is SAT ∈ P?

Anuj Dawar May 1, 2015



Complexity Theory 4

Hamiltonian Graphs

Given a graph G = (V,E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?

Anuj Dawar May 1, 2015



Complexity Theory 5

Polynomial Verification

The problems Composite, SAT and HAM have something in

common.

In each case, there is a search space of possible solutions.

the numbers less than x; truth assignments to the variables

of φ; lists of the vertices of G.

The size of the search is exponential in the length of the input.

Given a potential solution in the search space, it is easy to check

whether or not it is a solution.

Anuj Dawar May 1, 2015



Complexity Theory 6

Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x, c) is accepted by V for some c}

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a

solution to some design constraints or specifications.

Anuj Dawar May 1, 2015



Complexity Theory 7

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on

δ being a function and instead allow an arbitrary relation, we

obtain a nondeterministic Turing machine.

δ ⊆ (Q× Σ)× (Q ∪ {acc, rej} × Σ× {R,L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ⊲, x) →⋆

M (acc, w, u) for some w and u}

though, for some x, there may be computations leading to

accepting as well as rejecting states.

Anuj Dawar May 1, 2015



Complexity Theory 8

Computation Trees

With a nondeterministic machine, each configuration gives rise to a

tree of successive configurations.

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)
(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

Anuj Dawar May 1, 2015



Complexity Theory 9

Nondeterministic Complexity Classes

We have already defined TIME(f) and SPACE(f).

NTIME(f) is defined as the class of those languages L which are

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most f(n), where n is the length of x.

NP =
∞⋃

k=1

NTIME(nk)

Anuj Dawar May 1, 2015



Complexity Theory 10

Nondeterminism

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)
(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

For a language in NTIME(f), the height of the tree can be bounded

by f(n) when the input is of length n.

Anuj Dawar May 1, 2015



Complexity Theory 11

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V ,

which runs in time p(n).

The following describes a nondeterministic algorithm that accepts

L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x, c)

Anuj Dawar May 1, 2015



Complexity Theory 12

NP

In the other direction, suppose M is a nondeterministic machine

that accepts a language L in time nk.

We define the deterministic algorithm V which on input (x, c)

simulates M on input x.

At the ith nondeterministic choice point, V looks at the ith

character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Anuj Dawar May 1, 2015



Complexity Theory 13

Generate and Test

We can think of nondeterministic algorithms in the generate-and

test paradigm:

yes

no
generatex c verify

Where the generate component is nondeterministic and the verify

component is deterministic.

Anuj Dawar May 1, 2015



Complexity Theory 14

Reductions

Given two languages L1 ⊆ Σ⋆
1, and L2 ⊆ Σ⋆

2,

A reduction of L1 to L2 is a computable function

f : Σ⋆

1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1,

f(x) ∈ L2 if, and only if, x ∈ L1

Anuj Dawar May 1, 2015



Complexity Theory 15

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(logn), we write

L1 ≤L L2

Anuj Dawar May 1, 2015



Complexity Theory 16

Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve

than L2, at least as far as polynomial time computation is

concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and

then using the polynomial time algorithm for L2.

Anuj Dawar May 1, 2015



Complexity Theory 17

Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are

maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP,

A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar May 1, 2015


