Complexity Theory

Lecture 11

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2015

http://www.cl.cam.ac.uk/teaching/1415/Complexity/
Inclusions

We have the following inclusions:

\[
L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq \text{NPSPACE} \subseteq \text{EXP}
\]

where \(\text{EXP} = \bigcup_{k=1}^{\infty} \text{TIME}(2^{n^k}) \)

Moreover,

\[
L \subseteq NL \cap \text{co-NL}
\]

\[
P \subseteq NP \cap \text{co-NP}
\]

\[
PSPACE \subseteq \text{NPSPACE} \cap \text{co-NPSPACE}
\]
Reachability

Recall the Reachability problem: given a directed graph $G = (V, E)$ and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to \{a\};

2. while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;

3. if b is marked, accept else reject.
NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

1. write the index of node a in the work space;
2. if i is the index currently written on the work space:
 (a) if $i = b$ then accept, else guess an index j (log n bits) and write it on the work space.
 (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).
$O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)

if $i = 1$ and $a \neq b$ and (a, b) is not an edge reject
else if (a, b) is an edge or $a = b$ accept
else, for each node x, check:

1. is there a path $a - x$ of length $i/2$; and
2. is there a path $x - b$ of length $i/2$?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.
Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

\[
\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f(n)^2)
\]

for \(f(n) \geq \log n \).

This yields

\[
\text{PSPACE} = \text{NPSPACE} = \text{co-NPSPACE}.
\]
Complementation

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \geq \log n$, then

$$\text{NSPACE}(f(n)) = \text{co-NSPACE}(f(n))$$

In particular

$$\text{NL} = \text{co-NL}.$$
Logarithmic Space Reductions

We write

\[A \leq_L B \]

if there is a reduction \(f \) of \(A \) to \(B \) that is computable by a deterministic Turing machine using \(O(\log n) \) workspace (with a read-only input tape and write-only output tape).

Note: We can compose \(\leq_L \) reductions. So,

if \(A \leq_L B \) and \(B \leq_L C \) then \(A \leq_L C \)
NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if SAT $\leq_L A$ for some problem A in L then not only $P = NP$ but also $L = NP$.
P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P.

There are problems that are complete for P with respect to \emph{logarithmic space} reductions \leq_L.

One example is CVP—the circuit value problem.

• If $CVP \in L$ then $L = P$.

• If $CVP \in NL$ then $NL = P$.
CVP

CVP - the *circuit value problem* is, given a circuit, determine the value of the result node \(n \).

CVP is solvable in polynomial time, by the algorithm which examines the nodes in increasing order, assigning a value \texttt{true} or \texttt{false} to each node.

CVP is complete for \(\mathsf{P} \) under \(\mathsf{L} \) reductions.

That is, for every language \(A \) in \(\mathsf{P} \),

\[A \leq_L \text{CVP} \]
Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete.

For any language $A \in \text{NL}$, we have $A \leq_{L} \text{Reachability}$

$L = \text{NL}$ if, and only if, Reachability $\in L$

Note: it is known that the reachability problem for *undirected* graphs is in L.
Our aim now is to show that there are languages (or, equivalently, decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f, there is a language that is not in $\text{TIME}(f)$.

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.
Constructible Functions

A complexity class such as $\text{TIME}(f)$ can be very unnatural, if f is. We restrict our bounding functions f to be proper functions:

Definition
A function $f : \mathbb{N} \to \mathbb{N}$ is constructible if:

- f is non-decreasing, i.e. $f(n + 1) \geq f(n)$ for all n; and
- there is a deterministic machine M which, on any input of length n, replaces the input with the string $0^{f(n)}$, and M runs in time $O(n + f(n))$ and uses $O(f(n))$ work space.
Inclusions

The inclusions we proved between complexity classes:

- \(\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n)) \);
- \(\text{NSPACE}(f(n)) \subseteq \text{TIME}(k \log n + f(n)) \);
- \(\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f(n)^2) \)

really only work for \textit{constructible} functions \(f \).

The inclusions are established by showing that a deterministic machine can simulate a nondeterministic machine \(M \) for \(f(n) \) steps. For this, we have to be able to compute \(f \) within the required bounds.
Time Hierarchy Theorem

For any constructible function f, with $f(n) \geq n$, define the f-bounded halting language to be:

$$H_f = \{ [M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$$

where $[M]$ is a description of M in some fixed encoding scheme. Then, we can show

$$H_f \in \text{TIME}(f(n^2)) \text{ and } H_f \not\in \text{TIME}(f(\lfloor n/2 \rfloor))$$

Time Hierarchy Theorem

For any constructible function $f(n) \geq n$, $\text{TIME}(f(n))$ is properly contained in $\text{TIME}(f(2n + 1)^2)$.