
Computer Vision

Computer Science Tripos, Part II: 16 Lectures

1. Overview. Goals of computer vision; why they are so difficult.

2. Image sensing, pixel arrays, CCD cameras. Image coding.

3. Biological visual mechanisms, from retina to primary cortex.

4. Mathematical operations for extracting structure from images.

5. Edge detection operators; the Laplacian and its zero-crossings.

6. Multi-resolution. Active Contours. Wavelets as primitives; SIFT.

7. Higher brain visual mechanisms; streaming; reciprocal feedback.

8. Texture, colour, stereo, and motion descriptors. Disambiguation.

9. Lambertian and specular surface properties. Reflectance maps.

10. Shape description. Codons; superquadrics and surface geometry.

11. Perceptual organisation and cognition. Vision as model-building.

12. Lessons from neurological trauma and deficits. Visual illusions.

13. Bayesian inference. Classifiers; probabilistic decision-making.

14. Model estimation. Machine learning and statistical methods.

15. Optical character recognition. Content-based image retrieval.

16. Face detection, face recognition, and facial interpretation.



Aims

The aims of this course are to introduce the principles, models and applications of com-
puter vision, as well as some mechanisms used in biological visual systems that may inspire
design of artificial ones. The course will cover: image formation, structure, and coding; edge
and feature detection; neural operators for image analysis; texture, colour, stereo, motion;
wavelet methods for visual coding and analysis; interpretation of surfaces, solids, and shapes;
data fusion; probabilistic classifiers; visual inference and learning. Issues will be illustrated
using the examples of pattern recognition, image retrieval, and face recognition.

Lectures

• Goals of computer vision; why they are so difficult. How images are formed, and the
ill-posed problem of making 3D inferences from them about objects and their properties.

• Image sensing, pixel arrays, CCD cameras. Image coding and information measures.
Elementary operations on image arrays.

• Biological visual mechanisms from retina to cortex. Photoreceptor sampling; receptive
field profiles; spike trains; channels and pathways. Neural image encoding operators.

• Mathematical operations for extracting image structure. Finite differences and direc-
tional derivatives. Filters; convolution; correlation. 2D Fourier domain theorems.

• Edge detection operators; the information revealed by edges. The Laplacian operator
and its zero-crossings. Logan’s Theorem.

• Multi-scale feature detection and matching. SIFT (scale-invariant feature transform);
pyramids. 2D wavelets as visual primitives. Energy-minimising snakes; active contours.

• Higher level visual operations in brain cortical areas. Multiple parallel mappings; stream-
ing and divisions of labour; reciprocal feedback through the visual system.

• Texture, colour, stereo, and motion descriptors. Disambiguation and the achievement of
invariances. Image and motion segmentation.

• Lambertian and specular surfaces. Reflectance maps, and image formation geometry.
Discounting the illuminant when infering 3D structure and surface properties.

• Shape representation. Inferring 3D shape from shading; surface geometry. Boundary
descriptors; codons. Object-centred coordinates and the “2.5-Dimensional” sketch.

• Perceptual organisation and cognition. Vision as model-building and graphics in the
brain. “Learning to see.”

• Lessons from neurological trauma and visual deficits. Visual agnosias and illusions, and
what they may imply about how vision works.

• Bayesian inference in vision; knowledge-driven interpretations. Classifiers, decision-
making, and pattern recognition.

• Model estimation. Machine learning and statistical methods in vision.

• Applications of machine learning in computer vision. Discriminative and generative
methods. Content based image retrieval.

• Approaches to face detection, recognition, and facial interpretation. Cascaded detectors.
Appearance versus model-based methods (2D and 3D approaches).
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Objectives

At the end of the course students should:

• understand visual processing from both “bottom-up” (data oriented) and “top-down”
(goals oriented) perspectives;

• be able to decompose visual tasks into sequences of image analysis operations, represen-
tations, specific algorithms, and inference principles;

• understand the roles of image transformations and their invariances in pattern recogni-
tion and classification;

• be able to describe and contrast techniques for extracting and representing features,
edges, shapes, and textures;

• be able to describe key aspects of how biological visual systems work; and be able to
think of ways in which biological visual strategies might be implemented in machine
vision, despite the enormous differences in hardware;

• be able to analyse the robustness, brittleness, generalisability, and performance of dif-
ferent approaches in computer vision;

• understand the roles of machine learning in computer vision today, including probabilistic
inference, discriminative and generative methods;

• understand in depth at least one important application domain, such as face recognition,
detection, or interpretation.

Recommended books

Forsyth, D.A. & Ponce, J. (2003). Computer Vision: A Modern Approach. Prentice Hall.
Shapiro, L. & Stockman, G. (2001). Computer Vision. Prentice Hall.
Duda, R.O., Hart, P.E., & Stork, D.G. (2001) Pattern Classification (Second Edition). Wiley.

Online resources

CVonline: “Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer
Vision” (Univ. Edinburgh; updated Nov. 2013; includes links to many Wikipedia pages):
http://homepages.inf.ed.ac.uk/rbf/CVonline/

OpenCV Computer Vision Library: [C++ open source library with interfaces for some
other languages]: http://opencv.willowgarage.com

Matlab Functions for Computer Vision and Image Processing (updated May 2013):
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns

Annotated Computer Vision Bibliography (updated 15 Dec. 2013):
http://iris.usc.edu/Vision-Notes/bibliography/contents.html

A collection ofWritten Exercises for this course (from past Tripos Questions) is provided
on the course website, with weekly assignments: http://www.cl.cam.ac.uk/teaching/

A collection of Practical Exercises for this course developed by C Richardt, T Baltru-

saitis, and L Swirski is provided here: http://www.cl.cam.ac.uk/~ls426/computervision/
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1 Overview. Goals of computer vision; why they are so difficult.

Computer vision seeks to generate intelligent and useful descriptions of visual
scenes and sequences, and of the objects that populate them, by performing
operations on the signals received from video cameras.

Some examples of computer vision applications and goals:

• automatic face recognition, and interpretation of expression

• visual guidance of autonomous vehicles

• automated medical image analysis, interpretation, and diagnosis

• robotic manufacturing: manipulation, grading, and assembly of parts

• OCR: recognition of printed or handwritten characters, words, or numbers

• agricultural robots: visual grading and harvesting of produce

• smart offices: tracking of persons and objects; understanding gestures

• biometric-based visual identification of persons

• visually endowed robotic helpers

• security monitoring and alerting; detection of anomaly

• intelligent interpretive prostheses for the blind

• tracking of moving objects; collision avoidance; stereoscopic depth

• object-based (model-based) compression of video streams

• image search and matching by content; general scene understanding

In many respects, computer vision is an “AI-complete” problem: building
general-purpose vision machines would entail, or require, solutions to most
of the general goals of artificial intelligence. It would require finding ways of
building flexible and robust visual representations of the world, maintaining
and updating them, and interfacing them with attention, goals and plans.

Like other problems in AI, the challenge of vision can be described in terms of
building a signal-to-symbol converter. The external world presents itself only
as physical signals on sensory surfaces (such as videocamera, retina, micro-
phone...), which explicitly express very little of the information required for
intelligent understanding of the environment. These signals must be converted
ultimately into symbolic representations whose manipulation allows the ma-
chine or organism to interact intelligently with the world.

3



Although vision seems like such an effortless and immediate faculty for humans
and other animals, it has proven exceedingly difficult to automate. Some of
the reasons for this include the following:

1. An image is a two-dimensional optical projection, but the world we wish
to make sense of visually is three-dimensional. In this respect, vision is
“inverse optics:” we need to invert the 3D −→ 2D projection in order to
recover world properties (object properties in space); but the 2D −→ 3D
inversion of such a projection is, strictly, mathematically impossible.

In another respect, vision is “inverse graphics:” graphics begins with a 3D
world description (in terms of object and illuminant properties, viewpoint,
etc.), and “merely” computes the resulting 2D image, with its occluded
surfaces, shading and shadows, gradients, perspective, etc. Vision has to
perform exactly the inverse of this process!

A classical and central problem in computer vision is face recognition.
Humans perform this task effortlessly, rapidly, reliably, and unconsciously.
(We don’t even know quite how we do it; like so many tasks for which our
neural resources are so formidable, we have little “cognitive penetrance”
or understanding of how we actually perform face recognition.) Consider
these three facial images (from Pawan Sinha, MIT, 2002):

Which two pictures show the same person?

Most algorithms for computer vision select 1 and 2 as the same person,
since those images are more similar than 1 and 3.
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2. Very few visual tasks can be successfully performed in a purely data-driven
way (“bottom-up” image analysis). Consider the next image example:
the foxes are well camouflaged by their textured backgrounds; the foxes
occlude each other; they appear in several different poses and perspective
angles; etc. How can there possibly exist mathematical operators for such

an image that can:

• perform the figure-ground segmentation of the scene (into its objects
and background)

• infer the 3D arrangements of objects from their mutual occlusions

• infer surface properties (texture, colour) from the 2D image statistics

• infer volumetric object properties from their 2D image projections

• and do all of this in “real time?” (This matters quite a lot in the
natural world “red in tooth and claw,” since survival depends on it.)

Here is a video demo showing that computer vision algorithms can infer
3D world models from mere 2D (single) images, and navigate within them:
http://www.youtube.com/watch?v=VuoljANz4EA .

5



Consider now the actual image data of a face, shown as a pixel array
with luminance plotted as a function of (X,Y) pixel coordinates. Can you
see the face in this image, or even segment the face from its background,
let alone recognize the face? In this form, the image reveals both the
complexity of the problem and the poverty of the data.

This “counsel of despair” can be given a more formal statement:

Most of the problems we need to solve in vision are ill-posed, in Hadamard’s
sense that a well-posed problem must have the following set of properties:

• its solution exists;

• its solution is unique;

• its solution depends continuously on the data.

Clearly, few of the tasks we need to solve in vision are well-posed problems in
Hadamard’s sense. Consider for example the problems of:

• infering depth properties from an image

• infering surface properties from image properties

• infering colours in an illuminant-invariant manner

• infering structure from motion, shading, texture, shadows, ...
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• infering a 3D shape unambiguously from a 2D line drawing:

• interpreting the mutual occlusions of objects, and stereo disparity

• recognising a 3D object regardless of its rotations about its three axes in
space (e.g. a chair seen from many different angles)

• understanding an object that has never been seen before:

For a chess-playing robot, the task of visually identifying an actual chess piece
in 3D (e.g. a knight, with pose-invariance and “design-invariance”) is a much
harder problem than developing algorithms to play chess! (The latter problem
was solved years ago, and chess-playing algorithms today perform at almost
superhuman skill levels; but the former problem remains barely solved.)

...but enough counsel of despair. Let us begin with understanding what an
image array is.
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2 Image sensing, pixel arrays, CCD cameras, image coding.

A CCD video camera contains a dense array of independent sensors, which
convert incident photons focused by the lens onto each point into a charge
proportional to the light energy there. The local charge is “coupled” (hence
CCD) capacitively to allow a voltage (V=Q/C) to be read out in a sequence
scanning the array. The number of pixels (picture elements) ranges from a
few 100,000 to many millions (e.g. 6 MegaPixel) in an imaging array that is
about 1 cm2 in size, so each pixel sensing element is only about 3 microns in
width. The photon flux into such small catchment areas is a factor limiting
further increases in resolution by simply building denser imaging arrays. Note
also that 3 microns is only 6 times larger than the wavelength of a photon of
light in the visible spectrum (yellow ∼ 500 nanometers or nm).

Spatial resolution of the image is thus determined both by the density of el-
ements in the CCD array, and by the properties of the lens which is forming
the image. Luminance resolution (the number of distinguishable grey levels)
is determined by the number of bits per pixel resolved by the digitizer, and by
the inherent signal-to-noise ratio of the CCD array.

Colour information arises (conceptually if not literally) from three separate
CCD arrays preceded by different colour filters, or mutually embedded as sub-
populations within a single CCD array. In the case of composite (analog)
video, colour is encoded either as a high-frequency “chrominance burst” (to
be separately demodulated and decoded); or else put on a separate channel
(“luma” and “chroma” portions of an S signal); or else provided as three sep-
arate RGB colour channels (red, green, blue). Colour information requires
much less resolution than luminance, and some coding schemes exploit this.

A framegrabber or a strobed sampling block in a digital camera contains a
high-speed analogue-to-digital converter which discretizes this video signal into
a byte stream. Conventional video formats include NTSC (North American
standard): 640×480 pixels, at 30 frames/second (actually there is an interlace
of alternate lines scanned out at 60 “fields” per second); and PAL (European,
UK standard): 768×576 pixels, at 25 frames/second.

Note what a vast flood of data is a video stream: 768×576 pixels/frame ×
25 frames/sec = 11 million pixels/sec. Each pixel may be resolved to 8 bits in
each of the three colour planes, hence 24×11 million = 264 million bits/sec.
How can we possibly cope with this data flux, let alone understand the objects
and events creating such an image stream?
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2.1 Image formats and sampling theory

Images are represented as rectangular arrays of numbers representing image
intensities at particular locations. Each element of such an array is called a
pixel, for picture element. A colour image may be represented in three separate
such arrays called “colour planes,” containing red, green, and blue components
as monochromatic images. An image with an oblique edge might look like:

0 0 0 1 1 0

0 0 1 2 10 0

0 1 2 17 23 5

0 3 36 70 50 10

1 10 50 90 47 12

17 23 80 98 85 30

There are many different image formats used for storing and transmitting
images in compressed form, since raw images are large data structures that
contain much redundancy (e.g. correlations between nearby pixels) and thus
are highly compressible. Different formats are specialized for compressibility,
manipulability, or the properties of printers and browsers. Some examples:

• .jpeg - good for compression of continuous-tone and colour images, with
a “quality factor” that can be specified. Based on the Discrete Cosine
Transform (DCT) using small chopped tiles of sinusoids and a quantisation
table resolving the DCT coefficients in a frequency-dependent way.

• .jpeg2000 - a highly superior version of .jpeg implemented with smooth
Daubechies wavelets to avoid the block quantisation artifacts when com-
pression is severe. (.jpeg = joint photographic experts group.)

• .mpeg - a stream-oriented, compressive encoding scheme used mainly for
video (but also multimedia). Individual image frames are .jpeg com-
pressed, but an equal amount of redundancy is removed temporally by
inter-frame predictive coding and interpolation.

• .gif - ideal for sparse binarized images. Only 8-bit colour. Very com-
pressive and favoured for websites and other bandwidth-limited media.

• .png - using lossless compression, the portable network graphic format
is ideal for image data that is combined with text fonts or line graphics.
Supports 24-bit RGB.

• .tiff - A complex umbrella class of tagged image file formats with
randomly embedded tags and up to 24-bit colour. Non-compressive.

• .bmp - a non-compressive bit-mapped format in which individual pixel
values can easily be extracted.
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In addition there are varieties of colour coordinates used for “colour separa-
tion,” such as HSI (Hue, Saturation, Intensity), or RGB (Red, Green, Blue),
CMY, etc. But regardless of the sensor properties and coding format used, ul-
timately the image data must be represented numerically pixel by pixel. Note
that for compressed formats, the image payload is actually in a (Fourier-like)
transform domain, and so to retrieve an actual array of numbers representing
image pixel values, essentially an inverse transform must be performed on the
compressive transform coefficients.

The total number of independent pixels in an image array determines the spa-
tial resolution of the image. Independent of this is the grey-scale (or colour)
resolution of the image, which is determined by the number of bits of infor-
mation specified for each pixel.

It is typical for a monochromatic (“black & white”) image to have resolu-
tion of 8 bits/pixel. This creates 256 different possible intensity values for
each pixel, from black (0) to white (255), with all shades of grey in between.
A full-colour image may be quantized to this depth in each of the three colour
planes, requiring a total of 24 bits per pixel. However, it is common to rep-
resent colour more coarsely or even to combine luminance and chrominance
information in such a way that their total information is only 8 or 12 bits/pixel.

Because quantized image information is thus fundamentally discrete, the oper-
ations from calculus which we might want to perform on an image, like differen-
tiation (to find edges) or integration (to perform convolutions or transforms),
must be done in their discrete forms. The discrete form of a derivative is a
finite difference. The discrete form of an integral is a (suitably normalized)
summation. However, for the sake of conceptual familiarity, it is still com-
monplace in computer vision to represent such operations using their usual
notations from continuous mathematics.

The discreteness of image arrays imposes an upper limit on the amount of
information they can contain. One way to describe this is by the total bit
count, but this does not relate to image optical properties. A better way is
through Nyquist’s Theorem, which tells us that the highest spatial frequency
component of information contained within the image is equal to one-half the
sampling density of the pixel array. Thus, a pixel array containing 640 columns
can represent spatial frequency components of image structure no higher than
320 cycles/image. For the same reason, if image frames are sampled in time
at the rate of 30 per second, then the highest temporal frequency component
of information contained in the image sequence is 15 Hertz.
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3 Biological visual mechanisms, from retina to primary cortex.

A strategy that has long inspired researchers in Computer Vision, whether
they work on low-level problems (such as sensor design, image coding, and
feature extraction), or high-level problems (such as pattern recognition, infer-
ence, and visual learning), is:

Neurobiological Visual Principles =⇒ Machine Vision

The structure of biological nervous tissue and the nature of events that occur in it are utterly
different from those found in computing hardware. Yet since the only general-purpose visual
systems that exist today are the biological ones, let us learn what we can from “wetware.”
Neurons are sluggish but richly interconnected devices having both analogue and discrete

aspects. Fundamentally they consist of an enclosing membrane that can separate electrical
charge (hence there is generally a voltage difference between inside and out). The membrane
is a lipid bilayer that has a capacitance of about 10,000 µFarads/cm2, and it also has pores
that are differentially selective to different ions (mainly Na+, K+, and Cl−). These ion species
enter or leave a neuron through protein pores studding its lipid membrane, acting as conduc-
tances (hence as resistors). The resistors for Na+ and K+ have the further crucial property
that their resistance is not constant, but voltage-dependent. Hence as more positive ions
(Na+) flow into the neuron, the voltage becomes more positive on the inside, and this further
reduces the membrane’s resistance to Na+, allowing still more to enter. This catastrophic
breakdown in resistance to Na+ constitutes a nerve impulse. Within about a msec a slower
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but opposite effect involving K+ takes over, eventually restoring the original voltage. Follow-
ing a short refractory period of about 2 msec during which ions are actively pumped back
in opposite directions to reach their original electro-osmotic equilibrium concentrations, the
neuron is ready for action again. Meanwhile, the impulse thus generated propagates down the
axon, at a speed of about 100 m/sec. This signalling pulse can be described as discrete, but
the antecedent summations of current flows into the neuron (from various influences by other
neurons) which caused the catastrophic impulse are fundamentally analogue events.

Overall, the human brain contains about 100 billion neurons (1011). On average each neuron
may have connections with about 1,000 to 10,000 others, and so the total number of synapses
(= junctions between neurons) in the brain is a staggering 1015. Yet balanced against this
massive connectivity, is the surprising sluggishness of neurons: as indicated above, the time
course of nerve impulse generation prevents “clocking” of nerve pulses any faster than about
300 Hz. Neural activity is fundamentally asynchronous: there is no master clock on whose
edges the events occur. A further contrast with computing systems is that it is rarely possible
to distinguish between processing and communications, as we do in computing. In the brain,
there are just impulses implementing both, by exchange of signals amongst neurons. It is not
so much a hierarchical architecture as a parallel one, with reciprocal connections amongst dif-

ferent areas. About 2/3rds of the brain receives visual input; we are quite fundamentally visual
creatures. There are some 30 known different visual areas, of which the primary visual cortex
in the occipital lobe at the back of the brain has been the most extensively studied.

The mammalian eye is formed from a collapsed ventricle of the brain. The retina is about
1 mm thick and contains about 120 million light-sensitive photoreceptors, of which only 6 mil-
lion are cones (in 3 wavelength-selective classes nominally red, blue, and green) and the vast
remainder are rods which do not discriminate in wavelength. The visible spectrum of light
consists of wavelengths in the range of 400nm - 700nm. Rods are specialised for much lower
light intensities than cones; they subserve our “night vision” (hence the absence of perceived
colour at night), and they pool together their responses (hence their much poorer spatial res-
olution). Cones exist primarily near the fovea, in about the central 20◦ (see diagram), where
their responses remain individual and thus they detect with high spatial resolution. But cone
light sensitivity is much less than rods, functioning only at higher light levels, and so we really
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have a dual system with two barely overlapping dynamic ranges. The total dynamic range of
human vision (range of light intensities that can be processed) is a staggering 1011 to 1. At
the low end, we can reliably “see” individual photons (i.e. reliably have a visual sensation
when at most a few photons reach the retina in a burst).

Rods and cones are distributed across the retina in jointly embedded hexagonal lattices but
with varying relative densities, depending on eccentricity (distance from the fovea, measured
in degrees). The hexagonal lattices are imperfect (incoherent rather than crystalline), which
is believed to help prevent aliasing of high resolution information.

The retina is a multi-layered structure, containing 3 nuclear layers (of neurons) plus 2 plexi-
form layers (for interconnections amongst the neurons). Paradoxically, the photoreceptors are
at the back, so light must first travel through all of the rest of the retina before being absorbed
by the pigments in the rods and cones. There are basically two directions of signal flows in
the retina: longitudinal (photoreceptors → bipolar cells → ganglion cells); and lateral (via
horizontal cells in the outer plexiform layer, and amacrine cells in the inner plexiform layer).
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Only in a very crude sense can one describe the retina as an “image capture” device like a
camera, having analogue input phototransducers that convert photons into voltage changes,
and discrete output devices that send pulses down the optic nerve. This simple view is quickly
discarded by recognising that there are 120 million “input channels” (the photoreceptors, sim-
ilar in a sense to pixels), but only 1 million “output channels” (the axons of the ganglion cells
which constitute the optic nerve). Clearly the retina is already doing a lot of processing of the
image, and it sends its coded results to the brain: not merely a raw converted image array.
The retina is a part of the brain.

The nature of retinal signal processing might be summarised as:

• image sampling by photoreceptor transducers, with pooling of signals from rods

• spatial centre-surround comparisons implemented by bipolar cells (direct central input
from photoreceptors, minus surround inhibition via horizontal cells)

• temporal differentiation by amacrine cells, subserving motion sensitivity

• separate coding of “sustained” versus “transient” image information by different classes
of ganglion cells (large receptive fields ⇔ transient; small fields ⇔ sustained)

• initial colour separation by “opponent processing” channels (yellow vs blue; red vs green)
coupled sometimes with spatial opponency (on-centre, off-surround)

• generation of nerve impulse spikes in a parallel temporal modulation code on the 1 million
fibres of the optic nerve from each eye (= 2nd Cranial Nerve)

There is both convergence (fan-in) and divergence (fan-out) of signals through the retina:
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3.1 Receptive field structure in the retina

The spatial structuring of excitatory and inhibitory influences amongst neurons in the retina
gives them their properties as image operators. Similarly for the temporal structure of their
interactions. In both space and time, retinal neurons can thus be described as filters; and
to the extent that they act as linear devices (having the properties of proportionality and
superposition of responses to components of stimuli), their behaviour can be fully understood
(and even predicted for arbitrary images) through Fourier analysis and the other tools of linear
systems analysis. An important aspect of retinal receptive fields – as distinct from those found
in most neurons of the visual cortex – is that their spatial structure is isotropic, or circularly
symmetric, rather than oriented.

• Photoreceptors respond to light by hyperpolarising (the voltage across the cell membrane
becomes more negative inside, for vertebrates; the opposite is true for invertebrates).
Their “receptive field” is just their own cross-section for absorbing light, a small disk
about 3 µ in diameter on the human retina, about a minute of visual arc.

• Horizontal cells pool together the responses from large numbers of photoreceptors within
a local area. With these “surround” signals, they inhibit bipolar cells (hence the name).

• Bipolar cells are the first to have a “centre-surround” receptive field structure: their
response to light in a central disk is opposite from their response to light in the local
surrounding area. Field boundaries are circular and roughly concentric (i.e. annular).

• Amacrine cells are “on-off” in temporal, as opposed to spatial, terms.

• Ganglion cells combine these spatial and temporal response properties and thus serve
as integro-differential image operators with specific scales and time constants. Moreover
they convert their responses to impulses in a spike frequency code, traveling down their
axons which are the fibres of the optic nerve to the thalamus and thence on to the
primary visual cortex in the brain.

3.2 Visual cortical architecture and receptive field structure

The optic nerve from each eye splits into two halves at the optic chiasm, each portion con-
tinuing on to only one of the two cerebral hemispheres of the brain. The optic nerve portion
containing signals from the nasal half of each retina crosses over to project only to the con-
tralateral (opposite) brain hemisphere; whereas the optic nerve portion bearing signals from
the temporal half of each eye projects only to the ipsilateral (same side) brain hemisphere.
Since the optical image on each retina is inverted, this means that the left-half of the visual
world (relative to the point of gaze fixation) is directly “seen” only by the right brain; and
the right-half of the visual world only by the left brain. It is almost interesting to ask why we
don’t see some kind of seam going down the middle... (Ultimately the two brain hemispheres
share all of their information via a massive connecting bundle of 500 million commissural
fibres called the corpus callosum.)

The optic nerve projections to each visual cortex pass first to a 6-layered structure called
the lateral geniculate nucleus (LGN), in a polysensory organ of the midbrain called the tha-
lamus. It is an intriguing fact that this so-called “relay station” actually receives 3 times
more descending (efferent) fibres projecting back down from the cortex, as it does ascending
(afferent) fibres from the eyes. Could it be that this confluence compares cortical feedback
representing hypotheses about the visual scene, with the incoming retinal data in a kind of
predictive coding or hypothesis testing operation? Several scientists have proposed that “vi-
sion is graphics” (i.e. what we see is really our own internally generated 3D graphics, modelled
to fit the 2D retinal data, with the model testing and updating occuring here in the thalamus).
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The right-eye and left-eye innervations from each LGN to the primary visual cortex in the
occipital lobe of that hemisphere are inter-woven into “slabs,” or columns, in which neurons
receive input primarily from just one of the eyes. These ocular dominance columns have a
cycle of about 1 mm and resemble fingerprints, as seen in the following figures. Clearly each
hemisphere is trying to integrate together the signals from the two eyes in a way suitable for
stereoscopic vision, by computing the relative retinal disparities of corresponding points in
the two images. The disparities reflect the relative positions of the points in depth, as we will
study later with stereoscopic visual algorithms.
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Orthogonal to the ocular dominance columns in the cortical architecture, there runs a finer
scale sequence of orientation columns. Neurons in each such column respond only to image
structures that have a certain preferred orientation (such as bars or edges). The columns form
a regular sequence of systematically changing preferred orientations. This is one of the most
crystalline properties seen in visual cortical architecture:

When individual neurons in the visual cortex are probed with microelectrodes during light
stimulation of the retina, their functional properties are revealed by demarcating the region
of visual space over which they respond (as indicated by a change in their firing rate). Areas
where they are excited by light are indicated by + marks; areas where light inhibits them
are indicated by − marks. Their plotted receptive fields then seem to reveal 5 main spatial
“degrees of freedom:”

1. Position of their receptive field in visual space, both horizontally...

2. ...and vertically;

3. Size of their receptive field;

4. Orientation of the boundaries between excitatory and inhibitory regions;

5. Phase, or symmetry of the receptive field (bipartite or tripartite types).
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The phase variable is particularly revealing. By recording from adjacent pairs of neurons
simultaneously, with a kind of “double-barrelled” micro-electrode, it was found that neurons
having the same receptive field location, the same field size and the same orientation prefer-
ence, actually had a quadrature phase relationship. Adjacent neurons would form pairs whose
modulated receptive field structure showed a 90◦ spatial phase offset. Several examples of
such quadrature pairs of cortical visual neurons are shown in the following spike histograms
recorded in response to a drifting sinusoidal luminance grating.

Finally, by plotting the actual amount by which a neuron is excited or inhibited by light,
as a function of the coordinates of the stimulus within its receptive field, we obtain a 2D
function called its receptive field profile. These turn out, for about 97% of the neurons, to
be very closely described as 2D Gabor wavelets (or phasors). Some examples of empirically
measured profiles are shown in the top row of the lower figure; the ideal theoretical form of
such a wavelet (which we will define later) is shown in the middle row; and the difference
between these two functions in the bottom row; the differences are nearly nil and statistically
insignificant. So, it appears that the visual cortex of the brain evolved a knowledge of the
valuable properties of such wavelets for purposes of image coding and analysis!
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Above: quadrature phase (90 deg) relationship between adjacent pairs of identically-tuned cortical
simple cells, in response to drifting sinusoidal gratings, suggesting complex phasor processing.

Below: detailed receptive field structure of such neurones (top row); theoretical 2D Gabor phasor
components (middle row); and residual differences between the data and models (bottom row).
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4 Mathematical operations for extracting structure from images.

Most image processing and feature encoding operations can be interpreted, at
least indirectly, in terms of two-dimensional Fourier Analysis.

Even if the operations never actually require computing a Fourier transform,
their underlying principles and concepts (such as scale; edge or motion energy;
filtering; directional derivative; textural signature; statistical structure; etc.)
should be understood at least partially in “spectral” (i.e. Fourier) terms.

In addition to this explanatory role, Fourier analysis can sometimes be used to
construct visual pattern representations that are invariant under translation
(change in position), rotation, and dilation (change in size). Achieving such
invariances is crucial for certain pattern classification and recognition applica-
tions, such as optical character recognition (OCR).

Finally, even many operations in pattern recognition that might not seem
related in any way to Fourier analysis, such as computing correlations, convo-
lutions, derivatives, differential equations, and diffusions, are much more easily
implemented by Fourier transforms. (Powerful algorithms like the FFT make
it easy to go back and forth rapidly between the image and Fourier domains).

For these reasons, we will review some principles of two-dimensional Fourier
analysis with a view to understanding some basic operations of computer vi-
sion in those terms. Applications include edge detection operators, analysis of
motion, texture descriptors, and wavelet-based feature detectors.

Consider an image as a greyscale luminance distribution over the (x, y) plane:
a real-valued (indeed, a positive-valued) two-dimensional function f(x, y).

Any image can be represented by a linear combination of basis functions:

f(x, y) =
∑

k

akΨk(x, y) (1)

where many possible choices are available for the expansion basis functions
Ψk(x, y). In the case of Fourier expansions in two dimensions, the basis func-
tions are the bivariate complex exponentials:

Ψk(x, y) = exp(i(µkx+ νky)) (2)

where the complex constant i =
√
−1. A complex exponential contains both

a real part and an imaginary part, both of which are simple (real-valued)
harmonic functions:

exp(iθ) = cos(θ) + i sin(θ) (3)
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which you can easily confirm by the power-series that define the transcendental
functions such as exp, cos, and sin:

exp(θ) = 1 +
θ

1!
+

θ2

2!
+

θ3

3!
+ · · ·+ θn

n!
+ · · · , (4)

cos(θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · · , (5)

sin(θ) = θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · · , (6)

(It has been said that the most remarkable and far-reaching relationship in
all of mathematics is the simple yet counterintuitive “Euler Relation” implied
by Eqt (3) above: eiπ + 1 = 0, which also contains the five most important
mathematical constants, and symbolizes the subject of harmonic analysis.)

Fourier Analysis computes the coefficients ak that yield an expansion of the
image f(x, y) in terms of complex exponentials:

f(x, y) =
∑

k

ak exp(i(µkx+ νky)) (7)

where the parameters µk and νk define the coordinates of the 2D Fourier do-
main. These (µk, νk) coordinates are called vector spatial frequencies, and the
array of them must span the (µ, ν) Fourier plane in a uniform cartesian lattice.

It is often useful to think of the (µ, ν) Fourier plane as resolved into polar coor-
dinates, where ω =

√
µ2 + ν2 is (scalar) spatial frequency and φ = tan−1(ν/µ)

is (scalar) orientation.

Each Fourier coefficient ak is computed as the orthonormal projection of the
entire image f(x, y) onto the conjugate Fourier component exp(−i(µkx+νky))
associated with that coefficient:

ak =
∫

X

∫

Y
f(x, y) exp(−i(µkx+ νky))dxdy (8)

Note that these computed Fourier coefficients ak are complex-valued. To get
a complete representation in the 2D Fourier domain for an image with n x n

pixels, the number of (µk, νk) vector frequency components whose associated
coefficients ak must be computed is also n x n.

4.1 Some Useful Theorems of 2D Fourier Analysis (background material)

Many important steps in computer vision such as feature extraction and in-
variant pattern recognition depend at least partly on a small set of Fourier
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theorems. We will review some main ones here, together with their direct con-
sequences for practical computer vision applications. In every case, the input
image is denoted f(x, y), and its 2D Fourier transform (given by the set of
computed coefficients ak spanning the Fourier plane) is denoted by F (µ, ν).

Shift Theorem : Shifting the original pattern in (x, y) by some 2D displace-
ment (α, β) merely multiplies its 2DFT by exp(−i(αµ + βν)). Thus the
2DFT of the shifted pattern f(x−α, y−β) is: F (µ, ν) exp(−i(αµ+βν)).

Practical Application: The power spectrum of any isolated pattern is thus
translation-invariant: it does not depend on where the pattern is located
within the image, and so you don’t have to find it first. The power spec-
trum is defined as the product of the pattern’s 2DFT, F (µ, ν), times its
complex conjugate, F ∗(µ, ν), which just requires that the sign (–) of the
imaginary part of F (µ, ν) gets reversed. You can easily see that the power
spectrum of the shifted pattern f(x− α, y − β), namely:

exp(−i(αµ+ βν))F (µ, ν) exp(i(αµ+ βν))F ∗(µ, ν)

is equal to the power spectrum of the original unshifted pattern, namely:
F (µ, ν)F ∗(µ, ν). Thus the power spectrum is translation-invariant.

Similarity Theorem : If the size of the original pattern f(x, y) changes
(shrinks/expands), say by a factor α in the x-direction, and by a factor
β in the y-direction, becoming f(αx, βy), then the 2DFT of the pattern,
F (µ, ν), also changes (expands/shrinks) by the reciprocal of those factors
and with similarly scaled amplitude. It becomes: 1

|αβ|F (µα ,
ν
β ).

Rotation Theorem : If the original pattern f(x, y) rotates through some
angle θ, becoming f(x cos(θ)+y sin(θ),−x sin(θ)+y cos(θ)), then its 2DFT
F (µ, ν) also just rotates through the same angle. It becomes: F (µ cos(θ)+
ν sin(θ),−µ sin(θ) + ν cos(θ)).

Practical Application: Size- and orientation-invariant pattern represen-
tations can be constructed by these relationships. Specifically, if the
Fourier domain (µ, ν) is now mapped into log-polar coordinates (r, θ)
where r = log(

√
µ2 + ν2) and θ = tan−1(ν/µ), then any dilation (size

change) in the original pattern becomes simply a translation along the
r-coordinate; and any rotation of the original pattern becomes simply a
translation along the orthogonal θ-coordinate in this log-polar Fourier do-
main. But we saw earlier that translations are made immaterial by taking
a power spectrum, and so these effects of dilation and rotation of the pat-
tern are eliminated in such a representation.
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Combined with the translation-invariant property of the power spectrum,
we now see how it becomes possible to represent patterns in a manner
that is independent of their position in the image, their orientation, and
their size (i.e. the Poincaré group of transformations) These principles are
routinely exploited in machine optical character recognition; in military
recognition of aircraft profiles; and in “optical computing” generally.

Convolution Theorem : Let function f(x, y) have 2DFT F (µ, ν), and let
function g(x, y) have 2DFT G(µ, ν). The convolution of f(x, y) with
g(x, y), which is denoted f ∗ g, combines these two functions to gener-
ate a third function h(x, y), whose value at location (x, y) is equal to
the integral of the product of functions f and g after one is flipped and
undergoes a relative shift by amount (x, y):

h(x, y) =
∫

α

∫

β
f(α, β)g(x− α, y − β)dαdβ (9)

Thus, convolution is a way of combining two functions, in a sense using
each one to blur the other, making all possible relative shifts between the
two functions when computing the integral of their product to obtain the
output as a 2D function of these amounts of shift.

Convolution is extremely important in vision because it is the basis for
filtering. It is also the essential neural operation in the brain’s visual
cortex, where each neuron’s receptive field profile is convolved with the
retinal image. In the above integral definition, if the minus (–) signs
were simply replaced with (+) signs, the new expression would be the
correlation integral.

The Convolution Theorem states that convolving two functions f(x, y)
and g(x, y) together in the image domain, simply multiplies their two
2DFT’s together in the 2D Fourier domain:

H(µ, ν) = F (µ, ν)G(µ, ν) (10)

where H(µ, ν) is the 2DFT of the desired result h(x, y).

This is extremely useful as it is much easier just to multiply two func-
tions F (µ, ν) and G(µ, ν) together, to obtain H(µ, ν), than to have to
convolve f(x, y) and g(x, y) together (if the kernel is larger than tiny,
say larger than about 5 x 5) to obtain h(x, y). Of course, exploiting the
Convolution Theorem means going into the 2D Fourier Domain and com-
puting the 2DFT’s of f(x, y) and g(x, y), and then performing yet another
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(inverse) FFT in order to recover h(x, y) from the resulting H(µ, ν). But
with available powerful and fast 2D-FFT algorithms, this is very efficient.

Practical Application: Filtering. The starting-point of all feature extrac-
tion and image understanding operations is the filtering of an image f(x, y)
with some set of filters gk(x, y). Filtering is a linear operation implemented
by the convolution of an image f(x, y) with filter kernel(s) gk(x, y). The
resulting output “image” hk(x, y) then normally undergoes non-linear op-
erations of various kinds for image segmentation, motion detection, tex-
ture analysis, pattern recognition, and object classification.

The 2D discrete convolution of an image array with a 2D filter kernel
can be represented algebraically in the following form, where the earlier
continuous integrals have now been replaced by discrete summations:

result(i, j) =
∑

m

∑

n
kernel(m,n)· image(i−m, j − n)

Simple pseudo-code for performing image convolutions

In the following simple example, the array image is being convolved with
the (typically much smaller) array kernel, in order to generate a new im-
age array result as the output of the convolution. (Problems with array
boundaries have been ignored here for simplicity.) Discrete convolution
such as illustrated here is the key operation for all image processing and
front-end stages of computer vision.

int i, j, m, n, sum, image[iend][jend],

kernel[mend][nend], result [iend][jend];

for (i = mend; i < iend; i++) {

for (j = nend; j < jend; j++) {

sum = 0;

for ( m = 0; m < mend; m++) {

for ( n = 0; n < nend; n++ ) {

sum += kernel[m][n] * image[i-m][j-n];

}

}

result[i][j] = sum/(mend*nend);

}

}

If we chose to implement the convolution in the Fourier domain because
the kernel array was large, then of the four nested for loops in the C code
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above, the inner two loops would be entirely eliminated. Instead, the only
operation inside the outer two for loops would be a multiplication:

Result[i][j] = Kernel[i][j] * Image[i][j];

but the program would have to be preceded by FFTs of kernel[i][j]
(trivial) and of image[i][j], and followed by an FFT of Result[i][j].
Since the complexity of a 2D FFT is on the order of n2 log2(n) where n2

is the number of pixels, plus n2 multiplications in the nested two loops,
the total complexity of the Fourier approach is n2(2 log2(n) + 1). In con-
trast, the number of multiplications in the explicit convolution above (not
including all the array-addressing) is iend*jend*mend*nend (note that
iend*jend= n2). Hence you can calculate that the trade-off point occurs
when the convolution kernel size mend*nend is about ≈ 2(log2(n) + 1): a
very small convolution kernel indeed, roughly 5 x 5 for a 512 x 512 image.
For convolutions larger than this tiny one, the Fourier approach is faster.

Differentiation Theorem : Computing the derivatives of an image f(x, y)
is equivalent to multiplying its 2DFT, F (µ, ν), by the corresponding fre-
quency coordinate raised to a power equal to the order of differentiation:

(

∂

∂x

)m (

∂

∂y

)n

f(x, y)
2DFT
=⇒ (iµ)m(iν)nF (µ, ν) (11)

A particularly useful implication of this theorem is that isotropic differen-
tiation, which treats all directions equally (for which the lowest possible
order of differentiation is 2nd-order, known as the Laplacian operator ∇2)
is equivalent simply to multiplying the 2DFT of the image by a paraboloid:

∇2f(x, y) ≡




∂2

∂x2
+

∂2

∂y2



 f(x, y)
2DFT
=⇒ −(µ2 + ν2)F (µ, ν) (12)

Practical Application: Multi-Resolution Edge Detection.

5 Edge detection operators; the information revealed by edges.

Computer vision applications invariably begin with edge detection, be the edges
straight, curvilinear, or closed boundary contours. There are several reasons
why edges are important, and why detecting the edges in a scene can be
regarded as an elementary form of constructing a signal-to-symbol converter:

• Edges demarcate the boundaries of objects, or of material properties.

• Objects have parts, and these are typically joined with edges.
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• The three-dimensional distribution of objects in a scene usually generates
occlusions of some objects by other objects, and these form occlusion edges
which reveal the geometry of the scene.

• Edges can be generated in more abstract domains than luminance. For
example, if some image property such as colour, or a textural signature,
or stereoscopic depth, suddenly changes, it forms a highly informative
“edge” in that domain.

• Velocity fields, containing information about the trajectories of objects,
can be organized and understood by the movements of edges. (The mo-
tions of objects in space generates velocity discontinuities at their edges.)

• The central problem of stereoscopic 3D depth vision is the “correspon-
dence problem:” matching up corresponding regions of two images from
spatially displaced cameras. Aligning edges is a very effective way to
solve the correspondence problem. The same principle applies to measur-
ing velocities (for image frames displaced in time, rather than displaced in
space) by tracking edges to align corresponding regions and infer velocity
(ratio of object displacement to temporal interval).

In summary, DISCONTINUITIES = INFORMATION.

An intuitive way to find edges is to compute the derivative of a (1D) signal, as
this will be large where the luminance is changing rapidly. Since image arrays
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are discrete, we must use the finite difference representation of a derivative,
and this is implemented by a convolution: If our (1D) luminance array is L[n]
(sequence of pixels, index n), then the first-order finite difference operator
(h[0],h[1])=(-1, 1) when convolved with L[n] would generate an output which
is large in amplitude only where L[n] has edges (see previous figure).

However, note an important disadvantage of this approach: “rightward edges”
(say, from dark to bright) generate the opposite sign from “leftward edges”
(say, from bright to dark). We would prefer to generate the same detection
signal regardless of the polarity of the edge.

A solution is to convolve the discrete luminance data L[n] instead with the
second finite difference operator, defined as (h[-1],h[0],h[1])=(1,-2, 1) and look
for the zero-crossings of this operator. These correspond to peaks or troughs
of the first finite difference operator that we considered above, and thus they
reveal the edges, regardless of their polarity. Similarly for (-1,2,-1).

In the two-dimensional case, we have the choice of using directional derivative
operators, or non-directional ones. An example of a directional operator is one
which integrates (sums) pixels in one direction, but differentiates (differences)
them in the perpendicular direction. Clearly, such an operator will detect
edges only in a specific orientation; - namely the orientation along which the
integration was done. A example of such a directional edge detector is the
following 3 x 3 array:

-1 2 -1

-1 2 -1

-1 2 -1

In comparison, an isotropic operator such as the Laplacian (sum of second
derivatives in two perpendicular orientations) has no preferred direction; that
is the meaning of isotropy. It will detect edges in all orientations. The next
picture illustrates such an effect. A discrete approximation to the Laplacian
operator ∇2 in just a 3 x 3 array is:

-1 -2 -1

-2 12 -2

-1 -2 -1

Notice how each of these simple 3 x 3 operators sums to zero when all of their
elements are combined together. These types of operators (of which there
are obviously numerous other examples, differing in array sizes as well as el-
ement composition) are called filters, because of their spectral consequences
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for favouring some spatial frequency bands and orientations at the expense of
others. Their zero-sum property means that they are insensitive to the overall
brightness value of a scene, as we would desire: they have “no DC term.”
(Their Fourier transform is equal to zero at the origin.) They also may, or
may not, have a certain preferred, or characteristic direction; a certain phase
or symmetry (even or odd); and a certain scale, defined by the spacing between
changes of sign in the elements in (larger) arrays.

Figure: Illustration of edge-detection by convolution with an isotropic Laplacian operator,

and marking the zero-crossings of the result of the convolution.

Edges in images are defined at different scales: some transitions in bright-
ness are gradual, others very crisp. More importantly, at different scales of
analysis, different edge structure emerges.

Example: an image of a leopard that has been low-pass filtered (or analyzed at
a coarse scale) has edge outlines corresponding to the overall form of its body.
At a somewhat finer scale of analysis, image structure may be dominated by
the contours of its “spots.” At a still finer scale, the relevant edge structure
arises from the texture of its fur.

In summary, non-redundant structure exists in images at different scales of
analysis (or if you prefer, in different frequency bands).

The basic recipe for extracting edge information from images is to use a multi-
scale family of image filters (convolution kernels). A wide variety of these are
in standard use, differing in terms such as:
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• isotropic (circularly symmetric), or anisotropic (directional)

• self-similar (dilates of each other), or not self-similar

• separable (expressible as product of two 1D functions), or not

• degree of conjoint uncertainty in the information resolved

• size of support (number of “taps,” or pixels, in the kernel)

• preferred non-linear outputs (zero-crossings; phasor moduli; energy)

• theoretical foundations (e.g. Logan’s Theorem)

5.1 The Laplacian ∇2Gσ(x, y) ∗ I(x, y) and its zero-crossings. Logan’s Theorem.

One highly influential idea due to Marr (1981), that is frequently exploited
for edge detection in machine vision systems, is to convolve the image with a
multi-scale family of isotropic (non-directional) blurred 2nd-derivative filters,
and to retain only their output zero-crossings. These correspond well to the
edges in the image, at each chosen scale.

One primary motivation for doing this comes from Logan’s Theorem (1977)
concerning the “richness” of Laplacian zero-crossings for bandlimited signals.
What Logan proved (albeit only in the 1D case) is that subject to certain
constraints, the zero-crossings alone suffice to represent the signal completely
(i.e. it could be perfectly recovered from just its zeros, up to a scale factor).

One constraint is that the signal must be strictly bandlimited to one octave,
or less. This means that the highest frequency component it contains must
be no more than twice its lowest frequency component. It has been suggested
that the spatial frequency bandwidth of retinal neurones, as feature detectors,
roughly satisfy this constraint. It has even been suggested that caricatures,
and cartoons, “work” visually because of the richness of such zero-crossings!
The edge-only sketches below are very easily interpreted and identified, despite
their extremely austere quantities of data.
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The∇2Gσ(x, y) filter kernel that is convolved with the image serves to bandpass-
filter it. In the 2D Fourier domain, as we have seen, the spectral consequence

of the Laplacian operator ∇2 ≡
(

∂2

∂x2 +
∂2

∂y2

)

is to multiply the image spectrum

by a paraboloid: (µ2 + ν2). Clearly this emphasizes the high frequencies at
the expense of the low frequencies, and eliminates the DC component entirely
(hence the output is centered around a mean of zero).

Blurring the Laplacian by a Gaussian Gσ(x, y) of scale σ, simply limits the
high-frequency components. The 2DFT of a Gaussian is also a Gaussian, with
reciprocal dimension (by the Similarity Theorem discussed earlier). The scale
parameter σ determines where the high-frequency cut-off occurs.

The resulting bandwidth of a ∇2Gσ(x, y) filter is about 1.3 octaves, regardless
of what value for scale parameter σ is used. Note that this doesn’t quite satisfy
the first constraint of Logan’s Theorem.

Note also that by commutativity of linear operators, the order in which these
steps are applied to the image I(x, y) doesn’t matter. First computing the
Laplacian of the image, and then blurring the result with the Gaussian, is
equivalent to first convolving the image with the Gaussian and then comput-
ing the Laplacian of the result:

∇2 [Gσ(x, y) ∗ I(x, y)] = Gσ(x, y) ∗ ∇2I(x, y) (13)

Moreover, both of these sequences are equivalent to just convolving the image
with a single filter kernel, namely the Laplacian of a Gaussian:

[

∇2Gσ(x, y)
]

∗
I(x, y). Clearly this is the preferred implementation, since it just involves a
single convolution.

Some problems in trying to apply Logan’s Theorem to vision include:

1. It is not clear how to generalize the constraint of one-octave bandlimiting
to the case of 2D signals (images). E.g. should their 2DFT be confined
to an annulus in the Fourier plane, whose outer radius is twice its inner
radius?; or to four squares in the four quadrants of the Fourier plane that
satisfy the one-octave constraint on each frequency axis? The first method
doesn’t work, and clearly the second filter is no longer isotropic!

2. Whereas the zeros of a 1D signal (soundwave) are denumerable [count-
able], those of a 2D signal (image) are not. Rather, they form “snakes”
that are continuous contours in the plane.

3. As a practical matter, the ∇2Gσ(x, y)∗I(x, y) approach to edge extraction
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tends to be very noise-sensitive. Many spurious edge contours appear
that shouldn’t be there. This defect inspired the development of more
sophisticated non-linear edge detectors, such as Canny’s, which estimates
the local image signal-to-noise ratio (SNR) to adaptively optimize its local
bandwidth. This, however, is very computationally expensive.

4. Finally, strong claims were originally made that ∇2Gσ(x, y)∗I(x, y) edge-
detecting filters describe how human vision works. In particular, the re-
ceptive field profiles of retinal ganglion cells were said to have this form.
However, counterexamples reveal several visual tasks that humans are able
to perform, effortlessly and pre-attentively, which we could not perform if
our visual systems functioned in this way.

6 Multi-resolution. Active contours. Wavelets as primitives; SIFT.

Images contain information at multiple scales of analysis, so detecting visual
features (such as edges) must be done across a range of different scales.

• An interesting property of edges as defined by the zero-crossings of multi-
scale operators whose scale is determined by convolution with a Gaussian,
is that as the Gaussian is made coarser (larger), new edges (new zero-
crossings) can never appear. They can only merge and thus become fewer
in number. This property is called causality. It is also sometimes called
‘monotonicity,’ or ‘the evolution property,’ or ‘nice scaling behaviour.’

• One reason why causality is important is that it ensures that features
detected at a coarse scale of analysis were not spuriously created by the
blurring process (convolution with a low-pass filter) which is the normal
way to create a multi-scale image pyramid using a hierarchy of increasing
kernel sizes. One would like to know that image features detected at a
certain scale are “grounded” in image detail at the finest resolution.

• For purposes of edge detection at multiple scales, a plot showing the evolu-
tion of zero-crossings in the image after convolution with a linear operator,
as a function of the scale of the operator which sets the scale (i.e. the
width of the Gaussian), is called scale-space.

• Scale-space has a dimensionality that is one greater than the dimension-
ality of the signal. Thus a 1D waveform projects into a 2D scale-space.
An image projects into a 3D scale space, with its zero-crossings (edges)
forming surfaces that evolve as the scale of the Gaussian changes. The
scale of the Gaussian, usually denoted by σ, creates the added dimension.

• A mapping of the edges in an image (its zero-crossings after such filtering
operations, evolving with operator scale) is called a scale-space fingerprint.
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Several theorems exist called “fingerprint theorems” showing that the
Gaussian blurring operator uniquely possesses the property of causality.
In this respect, it is a preferred edge detector when combined with a
bandpass or differentiating kernel such as the Laplacian.

• However, other non-linear operators have advantageous properties, such as
reduced noise-sensitivity and greater applicability for extracting features
that are more complicated (and more useful) than mere edges.

6.1 Active contours (“snakes”). Fourier boundary descriptors.

Active contours are deformable yet constrained shape models. The “snakes” in the box show
radial edge gradients at the iris boundaries, and active contour approximations (dotted curves).

The detection of edges and object boundaries within images can be com-
bined with constraints that control some parameters of admissibility, such
as the shape of the contour or its “stiffness,” or the scale of analysis that
is being adopted. These ideas have greatly enriched the old subject of edge
detection, whilst also enabling the low-level operators we have considered so
far to be directly integrated with high-level desiderata about shape, such as
geometry, complexity, classification and smoothness, and also with theory of
evidence and data fusion. The image of the eye (illustrating Iris Recognition,
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a technology for biometric automatic identification of persons) contains three
active contours: two defining the inner and outer boundaries of the iris, and
one defining the boundary between the iris and the lower eyelid. All three are
determined by the same general methods. Evidence for local edge structure is
integrated with certain constraints on the boundary’s mathematical form, to
get a “best fit” that minimises some energy function or other “cost” function.

Thus we have the combination of two factors: a data term and a cost term
(the latter sometimes also called a smoothness term or an energy term), which
are in contention, in the following sense: we could fit the available edge data
with arbitrarily high precision, if we used a model with enough complexity;
but simpler models are generally more useful and credible than overly com-
plex models. For example, the basic outline of a person’s hand (which any
child could draw; see page 61) consists of a basic form having 5 semi-parallel
appendages for fingers. How much more detail is needed, in order to detect
and classify such generic shapes as hands? Greater detail might fail to be
satisfied by many valid cases. So the cost term acts to keep the model simple,
e.g. by penalising excessive kinks in it when seeking consistency with the data.

When shape description or pattern recognition is formulated in terms of the
above two factors, the solution is often obtained by regularisation methods.
These are iterative numerical methods for finding a set of model parameters
that minimise (or optimise) a functional that is a linear combination of the
two terms, with some trade-off parameter λ for specifying their relative im-
portance. Effectively these methods convert our problem into one of calculus:

argmin
∫

(

(M − I)2 + λ(Mxx)
2
)

dx

where M is the shape model, and I is the image data (reduced here to
a single dimension x for simplicity). The first term inside the integral seeks
to minimise the squared-deviations between the model and the image data.
If this were the only term, then a closed-form solution could be found when
the model is just some linear combination of functions such as polynomial
or Fourier components, requiring only matrix (linear algebraic) operations to
estimate the “least-squares” parameters of the model. But the constraints
imposed by the second (“smoothness”) term cause the model to be more or
less stiff, i.e. more or less willing to bend itself to fit every detail of the data,
by penalising the sum of squared second derivatives. Parameter λ gives us a
knob to turn for setting how stiff or flexible our active contour snake should be.

The behaviour of these operators for contour detection and description were
illustrated by the white outline graphics in the eye image on the previous page.
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The eyelid boundary is generated by a low-order polynomial spline. The iris
inner and outer boundaries are generated by Fourier series expansions con-
strained to fit the data “snakes” shown in the lower left corner, which would
be perfectly straight and flat if these boundaries of the iris could be described
simply as circles. The IrisCode is iris demodulation using 2D Gabor wavelets.

6.2 2D Gabor “Logons;” Quadrature Pair Wavelets

The family of filters which uniquely achieve the lowest possible conjoint uncer-
tainty (i.e. minimal dispersion, or variance) in both the space domain and the
Fourier domain are the complex exponentials multiplied by Gaussians. These
are sometimes known as Gabor wavelets, or “logons.” In one dimension:

f(x) = exp(−iµ0(x− x0)) exp(−(x− x0)
2/α2)

This is a Gaussian localized at position x0, complex modulated at frequency
µ0, and with size or spread constant α. It is noteworthy that such wavelets
have Fourier Transforms F (µ) with exactly the same functional form, but with
their parameters merely interchanged or inverted:

F (µ) = exp(−ix0(µ− µ0)) exp(−(µ− µ0)
2α2)

Note that for the case of a wavelet f(x) centered on the origin so x0 = 0, its
Fourier Transform F (µ) is simply a Gaussian centered on the modulation fre-
quency µ = µ0, and whose width is 1/α, the reciprocal of the wavelet’s space
constant. This shows that it acts as a bandpass filter, passing only those fre-
quencies that are within about ± 1

α of the wavelet’s modulation frequency µ0.

Dennis Gabor (1946) named these wavelets “logons” from the Greek word
for information, or order: logōs. Because of the optimality of such wavelets
under the Uncertainty Principle, Gabor proposed using them as an expansion
basis to represent signals. In particular, he wanted them to be used in broad-
cast telecommunications for encoding continuous-time information. He called
them the “elementary functions” for a signal. Unfortunately, because such
functions are mutually non-orthogonal, it is very difficult to obtain the actual
coefficients to be used with the elementary functions in order to expand a given
signal in this basis. (Gabor himself could not solve this problem, although he
went on to invent holography and to win the Nobel Prize in Physics in 1974.)

When a family of such Gabor functions are parameterized to be self-similar,
i.e. they are dilates and translates of each other so that they all have a common
template (“mother” and “daughter”), then they constitute a (non-orthogonal)
wavelet basis. Today it is known that infinite classes of wavelets exist which
can be used as the expansion basis for signals. Because of the self-similarity
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property, this amounts to representing or analyzing a signal at different scales.
This general field of investigation is called multi-resolution analysis, and we
have already encountered its importance for extracting edge features.

6.3 Generalisation of Wavelet Logons to 2D for Image Analysis

-0.5

 0

0.5

Positio
n in Degrees

-0.5

 0

0.5

Position in Degrees

 0
0.

5
1

Z

2D Gabor Wavelet:  Real Part

-10

 0

10

Spatial Frequency (C
PD)

-10

 0

10
Spatial Frequency (CPD)

 0
0.

5
1

Z

2D Fourier Transform

Figure 1: The real part of a 2D Gabor wavelet, and its 2D Fourier transform.

An effective method for extracting, representing, and analyzing image struc-
ture is the computation of the 2D Gabor wavelet coefficients for the image.
This family of 2D filters were originally proposed as a framework for un-
derstanding the orientation-selective and spatial-frequency-selective receptive
field properties of neurons in the brain’s visual cortex, as well as being useful
operators for practical image analysis problems. These 2D filters are con-
jointly optimal in extracting the maximum possible information both about
the orientation and modulation of image structure (“what”), simultaneously
with information about 2D position (“where”). The 2D Gabor filter family
uniquely achieves the theoretical lower bound on joint uncertainty over these
four variables in the Uncertainty Principle when it is suitably generalized.

These properties are particularly useful for texture analysis because of the
2D spectral specificity of texture as well as its variation with 2D spatial po-
sition. These wavelets are also used for motion detection, stereoscopic vision,
and many sorts of visual pattern recognition such as face recognition. A large
and growing literature now exists on the efficient use of this non-orthogonal
expansion basis and its applications.

Two-dimensional Gabor wavelets have the functional form:

f(x, y) = e−[(x−x0)
2/α2+(y−y0)

2/β2]e−i[u0(x−x0)+v0(y−y0)]
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where (x0, y0) specify position in the image, (α, β) specify effective width and
length, and (u0, v0) specify modulation, which has spatial frequency ω0 =
√

u20 + v20 and direction θ0 = arctan(v0/u0). (A further degree-of-freedom not
included above is the relative orientation of the elliptic Gaussian envelope,
which creates cross-terms in xy.) The 2D Fourier transform F (u, v) of a 2D
Gabor wavelet has exactly the same functional form, with parameters just
interchanged or inverted:

F (u, v) = e−[(u−u0)
2α2+(v−v0)

2β2]e−i[x0(u−u0)+y0(v−v0)]

The real part of one member of the 2D Gabor filter family, centered at the
origin (x0, y0) = (0, 0) and with unity aspect ratio β/α = 1 is shown in the
Figure, together with its 2D Fourier transform F (u, v).

By appropriately parameterising them for dilation, rotation, and translation,
2D Gabor wavelets can form a complete self-similar (but non-orthogonal) ex-
pansion basis for images. If we take Ψ(x, y) to be some chosen generic 2D
Gabor wavelet, then we can generate from this one member a complete self-
similar family of 2D wavelets through the generating function

Ψmpqθ(x, y) = 2−2mΨ(x′, y′)

where the substituted variables (x′, y′) incorporate dilations in size by 2−m,
translations in position (p, q), and rotations through orientation θ:

x′ = 2−m[x cos(θ) + y sin(θ)]− p

y′ = 2−m[−x sin(θ) + y cos(θ)]− q

It is noteworthy that as consequences of the similarity theorem, shift theorem,
and modulation theorem of 2D Fourier analysis, together with the rotation
isomorphism of the 2D Fourier transform, all of these effects of the generating
function applied to a 2D Gabor mother wavelet Ψ(x, y) = f(x, y) have cor-
responding identical or reciprocal effects on its 2D Fourier transform F (u, v).
These properties of self-similarity can be exploited when constructing efficient,
compact, multi-scale codes for image structure.

The completeness of 2D Gabor wavelets as an expansion basis for any im-
age can be illustrated by reconstruction of a facial image, in stages. (See the
example on the next page of facial image reconstruction in stages.) Note how
efficiently the facial features, such as the eyes and mouth, are represented us-
ing only a handful of the wavelets. Later we will see how this can be exploited
both for automatic feature localisation, and for face recognition.
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Reconstruction of Lena:  25, 100, 500, and 10,000 Two-Dimensional Gabor Wavelets


6.4 Unification of Domains

Until now we have viewed “the image domain” and “the Fourier domain” as
very different domains of visual representation. But now we can see that the
“Gabor domain” of representation actually embraces and unifies both of these
other two domains. How?

In the wavelet equations above, the scale constant α (and β in the 2D case)
actually builds a continuous bridge between the two domains. If the scale
constant is set very large, then the Gaussian term becomes just 1 and so the
expansion basis reduces to the familiar Fourier basis. If instead the scale con-
stant is made very small, then the Gaussian term shrinks to a discrete delta
function (1 only at the location x = x0, and 0 elsewhere), so the expansion
basis implements pure space-domain sampling: a pixel-by-pixel image domain
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representation. This allows us to build a continuous deformation between the
two domains when representing, analyzing, and recognising image structure,
merely by changing a single scaling parameter in this remarkable, unifying,
expansion basis.

A “philosophical” comment about 2D Gabor wavelets.

Aristotle defined vision as “knowing what is where.” We have noted the opti-
mality (conjoint uncertainty minimisation) property of 2D Gabor wavelets in
the two domains for extracting structural (“what”) and positional (“where”)
information. Thus if we share Aristotle’s goal for vision, then we cannot do
better than to base computer vision representations upon these wavelets. Per-
haps this is why mammalian visual systems appear to have evolved their use;
the receptive field profiles of isolated neurons in the brain’s visual cortex, as
determined by the spatial distribution of excitatory and inhibitory inputs to
each so-called “simple cell,” can be well-described as quadrature-paired 2D
Gabor wavelets. At the present time, this is basically the standard model for
how the brain’s visual cortex represents the information in the retinal image.
The 2D Gabor framework for image analysis has also become ubiquitous in
Computer Vision, not only as the standard “front-end” representation but
also as a general toolkit for solving many practical problems. Thus we have
seen the migration of an idea from neurobiology into mainstream engineering,
mathematical computing, and artificial intelligence.

Number of Wavelets

116 216 original16 52

6.5 Detection of Facial Features by Quadrature Gabor Wavelet Energy

One illustration of a practical application of such image operators is in the
automatic localisation of facial features. Interestingly, most facial features
themselves can be described by only a handful of wavelets, since such features
are after all just localized undulations having certain positions, orientations,
spatial frequencies, and phases. By taking the modulus (sum of the squares
of the real and imaginary parts) of a facial image after convolving it with
complex-valued 2D Gabor wavelets, key facial features (eyes and mouth) are
readily detected; we may call this a Quadrature Demodulator Neural Network:

40



Neural Network for Image Analysis. The above neurobiologically-inspired network performs

image demodulation using 2D Gabor wavelets, in order to find salient features in the image that

have a characteristic orientation and scale or frequency composition. The operation of the biphasic

receptive fields (representing even- and odd-symmetric visual cortical neurons) is described by:

g(x, y) =
∫

α

∫

β
e−((x−α)2+(y−β)2)/σ2

cos(ω(x− α)) I(α, β) dα dβ

h(x, y) =
∫

α

∫

β
e−((x−α)2+(y−β)2)/σ2

sin(ω(x− α)) I(α, β) dα dβ

and the demodulated output at the top of the network resembles that of the brain’s “complex cells”

which combine inputs from the quadrature simple cells as:

A2(x, y) = g2(x, y) + h2(x, y)
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Illustration of Facial Feature Detection by Quadrature Filter Energy. Left panel: original image.

Right panel (clockwise from top left): the real part after 2D Gabor wavelet convolution; the imag-

inary part; the modulus; and modulus superimposed on the original (faint) image, illustrating suc-

cessful feature localisation by the Quadrature Demodulator Network in the previous Figure.

Scale-Invariant Feature Transform (SIFT). The relative configuration of
keypoint features extracted by wavelets or other multi-scale feature detectors
can be used for object identification and pose extraction, with invariance to
scale, orientation, affine distortion, and with some robustness to illumination.
SIFT keypoints from different images are indexed, ordered, and statistically
compared via a distance metric to find correspondences between instances of
objects in different poses. The method somewhat resembles the identification
of fingerprints by the relative configurations of groups of minutiae (oriented
ridge terminations, bifurcations, spurs, etc) but is done across many scales of a
Gaussian pyramid. Pose invariance is achieved by clusters of features “voting”
on the most plausible pose, i.e. the object and pose consistent with the most
features, even allowing for projective distortions from rotation in depth.
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To find stable features invariant to scale, SIFT uses a scale-space approach.
Keypoints are detected by first finding scale-space extrema. This is achieved
by convolving the image with Gaussian filters at different scales of analysis
and differencing the resulting blurred images at neighbouring scales to find
local minima and maxima. Once these extrema (which correspond typically
to edges, corner points, and other places where informative changes occur in
image structure) have been extracted, their gradient direction is calculated by
estimating local derivatives in x and y, yielding a local direction of change.
From these estimates, an orientation histogram of directions can be assigned
to each local region, forming “keypoint descriptors.”

SIFT performs interpolation to localise candidate keypoints with sub-pixel
accuracy and discards keypoints with poor contrast or stability. In order to
achieve invariance to rotation, a keypoint descriptor based on local gradient
directions and magnitude is used. The descriptor is invariant to image rota-
tions since the bins of the orientation histograms are normalised relative to
the dominant gradient orientation in the vicinity of the keypoint.
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7 Higher brain visual mechanisms; streaming; reciprocal feedback

Besides the primary visual cortex in the occipital lobe, there are at least 30
further visual areas distributed across the parietal and temporal cortices of the
brain. Many of these are specialised for particular kinds of visual processing,
including colour (V4), motion (MT), stereo (Area 18), and facial and other
form processing areas. There is a pronounced functional streaming, or division
of labour, for form, colour, and motion processing; some neuroscientists have
proposed a fundamental division into “two visual systems” along lines such as
magno and parvo (fast/slow) or even conscious and unconscious vision.

The existence of so many distinct visual areas in the brain almost begs the
question of “how the visual world gets put back together again.” An intriguing
aspect of this architecture is the pattern of reciprocating feedback connections.
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In general there are pairwise reciprocating connections between visual areas
from the deep layers in one area to superficial layers in another area, whose
deep layers in turn project back to the superficial layers of the first. Just as
noted earlier with the massive feedback projections from primary visual cor-
tex back down to the LGN (where it meets afferent signals ascending from
the eyes), these reciprocating projection pathways are perhaps suggestive of a
kind of “hypothesis generation and testing” iterative strategy for understand-
ing the visual environment and the objects that populate it.

The fovea tends to be represented in all visual areas, and the mapping from
the retina is retinotopic (meaning that adjacent points in the retinal image
usually project to adjacent points in a given cortical map); but typically there
is a highly pronounced geometrical distortion. In part this reflects a great
over-representation of the fovea, which is called cortical magnification factor.
In the foveal projection to primary visual cortex, about 6mm of neural tissue
is devoted to 1 degree of visual angle, whereas in the periphery, 1mm of neural
tissue handles about 6 degrees. It has been proposed that the geometrical
distortion in visual mapping actually serves a specific mathematical role, that
of achieving pattern representations that are invariant to rotation and dilation
because of log-polar projection. Crudely speaking, this converts a polar grid
(whose concentric circles have geometrically-increasing radii) into a cartesian
grid with a nearly uniform lattice. Thus changes in object distance (hence
image size) become just translations along one axis, while rotations become
just translations along the other axis, thereby facilitating pattern recognition.
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8 Texture, colour, stereo, and motion descriptors. Disambiguation.

Many seemingly disparate tasks in computer vision actually share a common
formal structure: to convert ill-posed, insoluble problems of inference from
raw data, into well-posed problems in which we can compute object properties
disambiguated from the image-formation processes which confound the raw
luminance data itself.

One obvious aspect of this issue is the fact that images are 2D projections
of 3D data which could, in principle, arise equally well from many different
constellations of worlds and objects. A more subtle aspect is the fact that the
information received as an image is the compound product of several factors
that are difficult to disambiguate: (1) the nature, geometry, and wavelength
composition of the illuminant(s); (2) properties of the objects imaged, such as:
spectral reflectances; surface shape; surface albedo; surface texture; geometry,
motion, and rotation angle; and (3) properties of the camera (or viewer), such
as (i) geometry and viewing angle; (ii) spectral sensitivity; (iii) prior knowl-
edge, assumptions, and expectations. The aim of this lecture is to study how
these many factors can be disambiguated and even exploited, in order to try
to make objective inferences about object and world properties from these
ambiguous and confounded image properties.

8.1 Texture information.

Most surfaces are covered with texture of one sort or another. Texture can
serve not only as a helpful identifying feature, but more importantly as a cue
to surface shape because of the foreshortening it undergoes as it follows the
shape of the object if one can assume that it has some uniform statistics along
the surface itself. The following patterns illustrate the inference of surface
slant and of 3D surface shape from texture cues when they are combined with
the assumption of texture uniformity on the surface itself:
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Texture is also a useful cue to image segmentation by parsing the image into
local regions which are relatively homogeneous in their textural properties.
Here are some illustrations:

How can one measure something as ill-defined as a “textural signature?” What
is texture, anyway?

As implied by the root of the word, which links it to textiles, texture is defined
by the existence of certain statistical correlations across the image. These can
be almost anything, from quasi-periodic undulations as one might see in water
ripples or in woven fabrics, to repetitive but highly punctate features. Many
natural scenes, such as woodlands, grasslands, mountain ranges and other ter-
rains, have such properties which give them a distinctive identifying visual
signature. The unifying notion in all of these examples is quasi-periodicity, or
repetitiveness, of some features.

The detection of quasi-periodicity is best done by Fourier methods. There
are deep and multi-faceted links between many topics in statistics (such as
time-series analysis, correlation, moments) and Fourier analysis. These links
arise from the fact that the eigenfunctions of the Fourier transform, complex
exponentials (sinusoids in quadrature), are of course periodic but also have a
specific scale (frequency) and direction (wavefront). Thus they excel in de-
tecting the existence of a correlation distance and direction, and in estimating
the relative “power” represented in various components of quasi-periodic cor-
related structures.

Unfortunately, these eigenfunctions are globally defined, but we wish to use
local regional information as a basis for texture-based image segmentation.
Hence the ideal solution is to “window” the sinusoids so that they analyze
the image characteristics only within a local region and thus extract the spec-
tral statistics as a function that varies with location. The optimal set of
windowing functions are bivariate Gaussians, since their joint spatial/spectral
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localisation is greater than that of any other function. The product of com-
plex exponentials times bivariate Gaussians are of course 2D Gabor wavelets,
and they form a complete basis for image analysis and representation. The
pictures below illustrate successful segmentation of collages of textured natu-
ral scenes, as well as of textured artificial objects, using such 2D wavelets for
local spectral analysis to infer and measure their textural discriminators.

8.2 Colour information.

Colour is a nearly ubiquitous property of surfaces. Just like texture, it can
serve both in object identification and in scene segmentation. But the fun-
damental difficulty in using the wavelength composition of images to infer
the colour properties (“spectral reflectances”) of objects, is the fact that the
wavelengths received depend as much upon the illuminant as upon the spec-
tral reflectances of the surface that is scattering back the light. When a yellow
banana is illuminated in bluish light, the image that it forms obviously has a
very different wavelength composition than when it is illuminated in reddish
light. The central mystery of human colour perception is the fact that the ba-
nana still appears yellow (“colour constancy”). In computer vision, how can
we possibly achieve this same vital capability of inferring an inherent underly-
ing object property from a confounded (i.e., illuminant-wavelength dependent)
set of image properties?

To give the problem a slightly more formal presentation:
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• Let I(λ) represent the wavelength composition of the illuminant (i.e. the
amount of energy it contains as a function of wavelength λ, across the
visible spectrum from about 400 nanometers to 700 nm).

• Let O(λ) represent the inherent spectral reflectance of the object at a
particular point: the fraction of incident light that is scattered back from
its surface there, as a function of the incident light’s wavelength λ.

• Let R(λ) represent the actual wavelength mixture received by the camera
at the corresponding point in the image of the scene.

Clearly, R(λ) = I(λ)O(λ). The problem is that we wish to infer the “object
colour” (its spectral reflectance as a function of wavelength, O(λ)), but we
only know R(λ), the actual wavelength mixture received by our sensor. So
unless we can measure I(λ) directly, how could this problem of inferring O(λ)
from R(λ) possibly be solved?

One simple idea that has been proposed is to try actually to measure I(λ)
directly, by searching for highly specular (shiny, metallic, glassy) regions in an
image where the reflected light might be a fairly faithful copy of I(λ). This
might be a glint from someone’s glasses or from a shiny doorknob. Then at
all other points in the image we need only to divide the R(λ) we receive there
by our other specular “measurement” of I(λ), and we can then compute the
desired O(λ) across the image.

Clearly, this method has several weakness: (1) there may be no specular sur-
faces in the image; (2) those that there are may themselves affect somewhat
the wavelength composition that they reflect (e.g. metals which have a brassy
colour); and (3) the method is neither robust nor stable, since global inferences
about scene interpretation depend critically upon uncertain measurements at
(what may be just) a single tiny point in the image.

A more stable and interesting approach was developed by Dr E Land, founder
of Polaroid, and is called the Retinex because he regarded it as modelled after
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biological visual systems (RETINa + cortEX). Land’s critical observation was
that (contrary to almost universal popular belief), the colour perceived in an
area of a scene is not determined by the wavelength composition of light re-
ceived from that area (!). A simple experiment proves this: illuminate a scene,
such as a bowl of fruit containing (say) a yellow banana, a red tomato and
a green pepper, with three different narrowband light sources, each of which
contains a different wavelength (say red, green, or blue) and with adjustable
intensities. (No other light sources are present.)

The first observation is that even under drastic changes in the intensities
of each of the three illuminators, the objects maintain exactly their normal
colours. Obviously the wavelength mixture reaching the eye from each object
is drastically changing, in proportion to the illuminators, but there are no
changes in perceived colours. The phenomenon does not depend upon know-
ing the natural colours for objects identifiable by (say) their shape; a collage
of patches of coloured paper cut into random shapes, forming a mondrian,
produces exactly the same effect.

The second observation is that even when the wavelength composition of light
reflected from each object is exactly the same (i.e. the three light sources are
adjusted separately for each object to ensure that the light reflected in the
three wavebands as measured by a spectral photometer is exactly the same for
each of the objects individually), they still retain their natural colours. The
banana still looks yellow, the tomato still looks red, and the pepper still looks
green, even when each one is sending identical wavelength “messages” to your
eyes. This is rather miraculous.

The Retinex algorithm attempts to account for this remarkable biological phe-
nomenon, and to provide a means to achieve similar colour constancy in com-
puter vision systems so that they may “discount the illuminant” and infer the
spectral reflectance properties of objects, independent of the composition of
their illumination. Only a cursory description of Retinex will be given here.

The key idea is that the colours of objects or areas in a scene are determined
by their surrounding spatial context. A complex sequence of ratios computed
across all the boundaries of objects (or areas) enables the illuminant to be
algebraically discounted in the sense shown in the previous Figure, so that
object spectral reflectances O(λ) which is what we perceive as their colour,
can be infered from the available retinal measurements R(λ) without explic-
itly knowing I(λ).
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8.3 Stereo information

Important information about depth can be obtained from the use of two (or
more) cameras, in the same way that humans achieve stereoscopic depth vision
by virtue of having two eyes. Objects in front or behind of the point in space at
which the two optical axes intersect (as determined by the angle between them,
which is controlled by camera movements or eye movements), will project into
different relative parts of the two images. This is called stereoscopic disparity.

This “error signal” becomes greater in proportion to the distance of the object
in front or behind the point of fixation, and so it can be calibrated to obtain
a depth cue. It also becomes greater with increased spacing between the two
eyes or cameras, since that is the “base of triangulation.” (That is why the
German Army in WWI introduced V-shaped binocular “trench periscopes” to
increase stereoscopic visual acuity, for breaking camouflage by increasing the
effective spacing between the viewer’s two eyes to almost a meter.)

The essence of making use of such stereoscopic disparity cues is the need to
solve the Correspondence Problem. In order to infer that the cylinder is in a
different position relative to the background objects in the two frames shown,
it is first necessary to detect the correspondence of the background objects
in the two frames, or at least of their edges. This puts the two frames “into
registration,” so that the disparity of the foreground object can be detected.

Unfortunately, current algorithms for solving the Correspondence Problem
tend to require very large searches for matching features under a large number
of possible permutations. It is difficult to know which set of features in the two
frames to select for comparison in evaluating the degree of alignment, when
trying to find that relative registration which generates maximum correlation
between the two background scenes.
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One helpful approach here is to use a “multi-scale image pyramid,” which
steers the search in a coarse-to-fine fashion to maximize its efficiency. In
initially sparsely sampled (coarsely blurred and under-sampled) images, the
permutation-matching space of possible corresponding points is greatly atten-
uated compared with full-resolution images.

After an adequate alignment match is found for low-resolution (blurred) copies
of the image pair, the process repeats on somewhat higher resolution (less
blurred) copies of the image pair but over a search space that has been greatly
curtailed by having first found the coarse-scale solution. Such “pyramid” pro-
cesses usually increment in one-octave steps (factors of two in improved res-
olution), from coarse to fine, spanning a total of perhaps four or five levels
before the final solution is determined to within single-pixel precision.

Once the Correspondence Problem has thereby been solved, the inference of
depth from object disparity in the two image frames is then just a matter of tri-
angulation and “look-up” from a calibration table which includes information
about the spacing between the two cameras (or eyes) and their focal lengths.
(See the above simplifying diagram, for the case that the two cameras’ opti-
cal axes are parallel and hence converged at infinity.) Specifically, if the two
cameras have focal length f and the optical centres of their lenses (remember
the trench periscopes!) are separated by a distance b, and the disparity in the
projections of some object point onto the two images (in opposite directions
relative to their optical axis) is α in one image and β in the other image, then
the distance d to the object in front of the two lenses is simply:

d = fb/(α + β)
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8.4 Motion information

Only a few vision applications actually involve just static image frames. That
is basically vision “off-line;”– but the essence of an effective visual capability
must be for real-time use in a dynamic environment. This requires the abil-
ity to detect and measure motion, and to be able thereby to draw inferences
quickly (such as time-to-collision).

In a formal sense, the problem of computing motion information from an
image sequence is very similar to that of computing stereo information.

• For stereo vision, we need to solve the Correspondence Problem for two
images simultaneous in time but acquired with a spatial displacement.

• For motion vision, we need to solve the Correspondence Problem for two
images coincident in space but acquired with a temporal displacement.

• The object’s spatial “disparity” that can be measured in the two image
frames once their backgrounds have been aligned, can be calibrated to
reveal motion information when compared with the time interval, or depth
information when compared with the binocular spatial interval.

Among the challenging requirements of motion detection and inference are:

1. Need to infer 3D object trajectories from 2D image motion information.

2. Need to make local measurements of velocity, which may differ in different
image regions in complex scenes with many moving objects. Thus, a
velocity vector field needs to be assigned over an image.

3. It may be necessary to assign more than one velocity vector to any given
local image region (as occurs in “motion transparency”)

4. Need to disambiguate object motion from contour motion, so that we can
measure the velocity of an object regardless of its form.

5. We may need to detect a coherent overall motion pattern across many
small objects or regions separated from each other in space.

6. May need to make complex inferences about form and object identity,
from merely a few moving points. See Johansson demonstration here:
http://www.youtube.com/watch?v=r0kLC-pridI

The major classes of models and approaches to motion detection are largely
inspired by detailed neurobiological studies of motion processing both in the
invertebrate eye and in mammalian retina and cortex. Diverse mathematical
frameworks have been proposed, but the main classes of models are:
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INTENSITY GRADIENT MODELS .
Assume that the local time-derivative in image intensities at a point,
across many image frames, is related to the local spatial gradient in image
intensities because of object velocity ~v:

−∂I(x, y, t)

∂t
= ~v · ~∇I(x, y, t)

Then the ratio of the local image time-derivative to the spatial gradient is
an estimate of the local image velocity (in the direction of the gradient).

DYNAMIC ZERO-CROSSING MODELS .
Measure image velocity by first finding the edges and contours of objects
(using the zero-crossings of a blurred Laplacian operator!), and then take
the time-derivative of the Laplacian-Gaussian-convolved image:

− ∂

∂t

[

∇2Gσ(x, y) ∗ I(x, y, t)
]

in the vicinity of a Laplacian zero-crossing. The amplitude of the result
is an estimate of speed, and the sign of this quantity determines the di-
rection of motion relative to the normal to the contour.
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SPATIO-TEMPORAL CORRELATION MODELS .
Image motion is detected by observing a correlation of the local image
signal I(x, y, t) across an interval of space and and after an interval of
time τ . Finding the pair of these intervals which maximizes the correla-
tion between I(x, y, t) and I(x − vxτ, y − vyτ, t − τ) determines the two
components of image velocity vx and vy which we desire to know.

Detailed studies of fly neural mechanisms (above) for motion detection
and visual tracking led to elaborated correlation-based motion models:

SPATIO-TEMPORAL SPECTRAL MODELS .
It is possible to detect and measure image motion purely by Fourier
means. This approach exploits the fact that motion creates a covariance
in the spatial and temporal spectra of the time-varying image I(x, y, t),
whose three-dimensional (spatio-temporal) Fourier transform is defined:

F (ωx, ωy, ωt) =
∫

X

∫

Y

∫

T
I(x, y, t)e−i(ωxx+ωyy+ωtt)dxdydt
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In other words, rigid image motion has a 3D spectral consequence: the lo-
cal 3D spatio-temporal spectrum, rather than filling up 3-space (ωx, ωy, ωt),
collapses onto a 2D inclined plane which includes the origin. Motion de-
tection then occurs just by filtering the image sequence in space and in
time, and observing that tuned spatio-temporal filters whose center fre-
quencies are co-planar in this 3-space are activated together. This is a
consequence of the SPECTRAL CO-PLANARITY THEOREM:

Theorem: Translational image motion of velocity ~v has a 3D spatio-
temporal Fourier spectrum that is non-zero only on an inclined plane through
the origin of frequency-space. Spherical coordinates of the unit normal to this
spectral plane correspond to the speed and direction of motion.

Let I(x, y, t) be a continuous image in space and time.

Let F (ωx, ωy, ωt) be its 3D spatio-temporal Fourier transform:

F (ωx, ωy, ωt) =
∫

X

∫

Y

∫

T
I(x, y, t)e−i(ωxx+ωyy+ωtt)dxdydt.

Let ~v = (vx, vy) be the local image velocity.

Uniform motion ~v implies that for all time shifts to,

I(x, y, t) = I(x− vxto, y − vyto, t− to).

Taking the 3D spatio-temporal Fourier transform of both sides, and
applying the shift theorem, gives

F (ωx, ωy, ωt) = e−i(ωxvxto + ωyvyto + ωtto)F (ωx, ωy, ωt).

The above equation can only be true if F (ωx, ωy, ωt) = 0 everywhere
the exponential term doesn’t equal 1.

This means F (ωx, ωy, ωt) is non-zero only on the 3D spectral
plane

ωxvx + ωyvy + ωt = 0 Q.E.D.

An inclined plane through the origin of 3-space can be defined either
by its unit normal, or (more usefully in this context) by its elevation

and azimuth. The elevation, or slope relative to the spatial frequency
plane (ωx, ωy), corresponds to the speed of motion:

speed =
√

v2x + v2y

and the azimuth, or direction of tilt (defined as a ray in the spatial
frequency plane orthogonal to the intersection of these two planes)
corresponds to the direction of motion:

direction = tan−1 (vy/vx)
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9 Lambertian and specular surfaces. Reflectance maps.

How can we infer information about the surface reflectance properties of ob-
jects from raw measurements of image brightness? This is a more recondite
matter than it might first appear, because of the many complex factors which
determine how (and where) objects scatter light.
Some definitions of surface type and properties:

• Surface albedo refers to the fraction of the illuminant that is re-emitted
from the surface in all directions, in total. Thus, albedo corresponds more-
or-less to “greyness.”

The amount of light reflected is the product of two factors: the albedo of
the surface, times a geometric factor that depends on angle.

• A Lambertian surface is “pure matte.” It reflects light equally well in all
directions.

Examples of Lambertian surfaces include snow, non-glossy paper, ping-
pong balls, magnesium oxide, projection screens,...

A Lambertian surface looks equally bright from all directions; the amount
of light reflected depends on the angle of incidence but not of emission.
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If you looked inside a “Lambertian bottle” having any convex shape, il-
luminated with a fixed point source of light, you could never infer the
interior shape (except for possible occlusion shadows). It would have uni-
form brightness everywhere regardless of its actual shape.

• A specular surface is locally mirror-like. It obeys Snell’s law (i.e. the angle
of incidence of light is equal to the angle of reflection from the surface),
and does not scatter light. Most metallic surfaces are specular.

• The reflectance map is a function φ(i, e, g) which relates intensities in the
image to surface orientations of objects. It specifies the fraction of incident
light reflected per unit surface area, per unit solid angle, in the direction
of the camera; thus it has units of flux/steradian. It is a function of three
variables (see previous Figure): i is the angle of the illuminant, relative to
the surface normal N ; e is the angle of a ray of light re-emitted from the
surface; and g is the angle between the emitted ray and the illuminant.

There are many types of reflectance functions, each of which is characteristic
of certain surfaces and imaging environments. For a Lambertian surface, the
reflectance function φ(i, e, g) = cos(i) . It looks equally bright viewed from all
directions; the amount of reflected light depends only on angle of illumination.

For surfaces such as the dusty surface of the moon, the reflectance function
φ(i, e, g) depends only upon the ratio of the cosines of the angles of incidence
and emission: cos(i)/ cos(e), but not upon their relative angle g nor upon the
surface normal N . In case you ever wondered, this is why the moon looks like
a penny rather than a sphere. Even though the moon is illuminated by a point
source (the sun), it does not fade in brightness towards its limbs (as N varies).
Surfaces with this property are called lunar surfaces.

For a specular surface, the reflectance function φ(i, e, g) is especially simple:
φ(i, e, g) = 1 when i = e and both are coplanar with the surface normal N , so
g = i+ e (Snell’s law for a pure mirror); and φ(i, e, g) = 0 otherwise.

Typically, surfaces have both specular and matte properties. For example,
facial skin may vary from Lambertian (powdered) to specular (oily). The
main purpose of powdering one’s face is to specify s and n in this expression:

φ(i, e, g) =
s(n+ 1)(2 cos(i) cos(e)− cos(g))n

2
+ (1− s) cos(i) (14)

The first term is the specular component, and the second term is the matte
component. s is the fraction of light emitted specularly, and n represents the
sharpness of the specular peak. For glossy paint, typically the exponent n
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may be about 20. (Obviously as n grows very large, the exponentiated trig
function approaches a delta function representing Snell’s law: a very sharp
power function of angle.)

Typically there is not just one point source of illumination, but rather a multi-
tude of sources (such as the extended light source provided by a bright overcast
sky). In a cluttered scene, much of the light received by objects has been re-
flected from other objects (and coloured by them...) One needs almost to think
of light not in terms of ray-tracing but in terms of thermodynamics: a “gas”
of photons in equilibrium inside a room.

Clearly, the only way to infer the nature and geometry of surface properties
from image properties, given all of these complications in the way that surfaces
reflect and scatter light, is to build in certain assumptions about the nature
of the surfaces from other kinds of evidence. This requires us to consider the
general problem of inference and integration of evidence.

10 Shape description. Codons, superquadrics, surface geometry.

Just as illustrated earlier by the examples of infering surface and object prop-
erties from texture, colour, stereo, and motion information, the shading and
brightness variation within an image is another important cue to surface shape.

As with all of these problems, computing “shape-from-shading” requires the
disambiguation of many confounding factors. These arise from the

1. geometry of the illuminant (e.g. is the light a point source or extended?
If a point source, where is it?) Are there several light sources? How will
these affect the shading and shadowing information?
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2. reflectance properties of the surface. What kind of surface is it – e.g.
Lambertian, or specular, or a combination of both?

3. geometry of the surface (its underlying shape). Are shadows cast?

4. rotations of the surface relative to perspective angle and illuminant.

5. variations in material and surface reflectance properties across space (e.g.
variation from Lambertian to specular where skin becomes more oily).

6. variations in surface albedo (“greyness”)

The inference of a surface shape (a relief map, or an object-centred descrip-
tion of a surface) from shading information is an inherently ill-posed problem
because the data necessary for the computation is simply not known. One has
to introduce ancillary assumptions about the surface material composition,
its albedo and specularity parameters, the illumination of the scene and its
geometry, before such inferences become possible. It is almost as though the
assumptions are more important than the available image data. The computa-
tional nature of the inference task then becomes one of constraint satisfaction.
Often there are rivalrous alternative solutions. In human visual perception
these can be triggered to alternate (e.g. converting a crater into a mound, or
reversing the apparent direction of rotation to force a face to make sense). Here
is a demonstration of such 3D inferences that unnegotiably seize control over
your perception: http://www.michaelbach.de/ot/fcs hollow-face/index.html

10.1 How should shape be represented? Boundary descriptors; codons.

Closed boundary contours can be represented completed by their curvature map
θ(s) (the reciprocal of the local radius of curvature r(s) as a function of posi-
tion s along the contour). This is the Fundamental Theorem of Curves. Local
radius of curvature r(s) is defined as the limiting radius of the circle that best
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“fits” the contour at position s, in the limit as the arc length ∆s shrinks to 0,
and the local curvature of the contour there is:

θ(s) = lim
∆s→0

1

r(s)

Closed boundary contours can be expanded with basis functions (such as
“Fourier descriptors” of the radius of curvature) from their curvature map,
in order to generate a shape description that is invariant to translation, rota-
tion, and dilation. By cataloging a list of all possible combinations of changes
in sign of the curvature map relative to the zeroes of curvature, it is possible to
generate a restricted “grammar” for the shapes of closed contours. A lexicon
of all possible shapes having a certain number of zeroes-of-curvature generates
a list of “codons,” from which shapes can be classified and recognized. Inter-
estingly, Logan’s Theorem (about the richness of zero-crossings for capturing
bandlimited 1D signals completely) arises again in this context: the curvature
map of a closed contour is a bandlimited signal, and it can be described by
its zero-crossings; such a description amounts to a shape classification. This
is one of several approaches proposing an elementary grammar for shape, and
it can be generalised to surfaces.
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The curvature map θ(s) together with a “starting point” tangent t(so) specifies
a shape fully. Some nice properties of curvature-map descriptions are:

1. The description is position-independent (i.e., object-centred).

2. The description is orientation-independent (rotating the shape in the
plane does not affect its curvature map).

3. The description represents mirror-symmetric shapes simply by a change
in sign:

θ(s) → θ(−s)

4. Scaling property: Changing the size of a shape simply scales θ(s) by the
same factor. The zero-crossings are unaffected.

θ(s) → Kθ(s)

10.2 The “2.5-dimensional” sketch

A scheme which David Marr proposed for bridging the gap between 2D image
(appearance-based) descriptions and 3D model-based descriptions is called the
“2.5-dimensional sketch.” Surface normals are computed and assigned to each
point in the image domain, which indicate 3D shape information. Looking at
such “pin-cushion” diagrams does effectively convey three-dimensional shape.

10.3 3D Object-centred coordinates. Superquadrics.

Represent solids by the unions and intersections of generalized superquadric
objects, defined by equations of the form:

Axα +Byβ + Czγ = R
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Examples include “generalized cylinders” and cubes (large exponents); prolate
spheroids (footballs) and oblate spheroids (tomatoes), when α = β = γ = 2
and when only two of (A,B,C) are equal to each other.

These simple, parametric descriptions of solids, when augmented by Boolean
relations for conjoining them, allows one to generate object-centered, “vol-
umetric” descriptions of the objects in a scene (instead of an image-based
description) by just giving a short list of 3D parameters and relations, rather
like the codon descriptors for closed 2D shapes.

10.4 Deformable parametric models

A powerful approach for representing complex shapes in simple and compact
(if only approximate) terms, is the use of deformable parametric models. These
are especially useful for time-varying objects, such as a human face generating
some expression that evolves in time, or a hand gesture. The idea is to find
some model (such as the superquadrics) and a parameter set that are fitted to
describe the object. They thereby constitute a compact code that can be used
for detection and recognition of the object, although fitting such parameters to
a 3D object is an “inverse problem” of high computational complexity. If these
parameters are then made to evolve in time, as (A(t), α(t), β(t), ...) above, one
can encode (compress, generate) an image sequence such as a “talking head”
or avatar. This topic unites both computer vision and graphics. The new
international MPEG-7 standard for motion image encoding specifies provision
for both facial animation and body animation.

11 Perceptual organisation. Vision as model-building.

Opportunities to learn from biological visual systems, for the design of artificial
ones, are not limited to low-level neural mechanisms. Insights from perceptual
and cognitive psychology are also relevant. Consider the illusory contours:

Through Section 8 we investigated various mechanisms for image analysis,
such as filters for spatial forms and edge detectors, and special mechanisms
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for handling texture, colour, stereo, and motion information. But how does
all of this get “put back together again” into a unified visual percept?

This was a motivating question for a school of research in visual percep-
tion called Gestalt Psychology, associated mainly with Koffka, Köhler, and
Wertheimer in Germany in the 1930s. “The whole is greater than the sum of
its parts” might almost be a slogan for the Gestaltists, who sought to under-
stand how meaningful wholes (Gestalten) are constructed in a way that seems
(introspectively) to precede the analysis of parts and properties. Thus was
born the study of perceptual organisation. The Gestaltists enumerated a series
of principles collectively called the Law of Prägnanz (conciseness or salience)
that seemed to underlie our perceptual organisation of form and patterns,
based on sub-laws of grouping by proximity, similarity, “good continuation”
or smoothness, symmetry, and closure (the filling-in of missing parts).

Gestalt theories of perceptual organisation are descriptive rather than ex-
planatory, and therefore don’t provide detailed help in designing artificial vi-
sion systems. But many object recognition systems implicitly need to perform
perceptual grouping to recognise “wholes from their parts” by identifying and
combining relevant features at different scales of analysis and by incorporating
domain specific prior knowledge.

64



Reciprocally, information about “context” that arises only after parts are
grouped into global wholes, feeds back to control how the parts are processed,
as illustrated by the following examples:

11.1 Vision as language processing

We discussed previously that the challenge of vision can be described in terms
of building a signal-to-symbol converter. This gives rise to the view that (high-
level) vision may be regarded as closely related to language processing. Find-
ing symbolic interpretations of underlying signal data needs to incorporate
a notion of the “grammar” (syntax) and “meaning” (semantics) governing a
particular visual task so that the most likely explanation of the observed data
can be found. Processing may then be performed selectively in response to
“queries” formulated in terms of the structure of the domain. More recent
developments include the idea of a process grammar which models objects and
shapes in terms of their morphogenesis (the likely sequence of steps in their
evolution from simpler forms). A common theme is that vision is inference,
going well beyond the given.
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11.2 Vision as perceptual inference

Objects are not always unambiguously describable solely on the basis of their
constituent parts, as the Gestaltists recognised. Object recognition is often
dependent on context. Such ideas have a rich heritage in Artificial Intelli-
gence, although early AI approaches to perceptual inference were often very
“brittle” and limited to toy problems. The advent of machine learning and ro-
bust probabilistic techniques is beginning to change this, although most vision
systems are somewhat piece-meal in that they are limited to very specialised
tasks such as recognising a particular type of object in (usually static) images.
A more ambitious aim would be a dynamic goal-directed vision system capa-
ble of iteratively comparing low-level visual percepts with high-level models
to derive new hypotheses about the world. These can in turn guide the search
for evidence to confirm or reject the hypotheses on the basis of expectations
defined over lower level features. The following schema illustrates this idea:

An aspect of perceiving scenes as meaningful wholes, as opposed to an
atomistic, literal, or elemental description in terms of individual features, is
the grouping of features into a 3D model. A classic illustration of this idea
of “vision as model-building” is the Necker cube: a set of 12 planar line seg-
ments that are always seen as a 3D solid (a cube); yet having two conflicting
(bistable) visual interpretations:

Such bistable percepts are examples of perceptual rivalry: two or more al-
ternative ways to interpret the same visual stimulus. Several more examples
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are given below: Ruben’s vase/faces; girl/witch; man/rat; and paradoxical
smokestacks. The key notion is that percepts are hypotheses: visual solutions
are top-down interpretations that depend greatly on contexts, expectations,
and other extraneous factors that go beyond the actual stimulus.

In the examples on the next page, illusory contours are preceived in places
where no actual contours exist. In the upper examples the illusory contours
even seem to demarcate a region that is “brighter” than its surrounds; and the
illusory contours can even take curvilinear trajectories. But defined by what??
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In the lower pair of examples, the circle and the square appear significantly
deformed in shape by their context. Are such aspects of your visual system
“bugs,” or “features?” Should such inaccuracies in representing patterns also
be designed into machine vision systems, intentionally or epiphenomenally?

12 Lessons from neurological trauma and deficits. Visual illusions.

A further source of some insights about how human vision works at higher
levels comes from traumas to brain visual areas, either from injury, stroke,
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or carcinoma. From neurological studies that began in the 1920’s, largely in
response to massive numbers of brain injured soldiers from WWI, Karl Lashley
formulated two putative principles of brain recovery from injury:

1. The “Law of Mass Action” (all brain areas participate in all tasks)

2. The “Law of Equipotentiality” (any brain area can do any function)

But counter-examples emerged from specific deficits (especially for learning,
memory, visual pattern recognition, and language) that remained after specific
traumas. Many cognitive-neurological deficits have been documented; these
are interesting to study from a computational neuroscience perspective.

Besides numerous aphasias (loss or impaired use of language, including ges-
tural, prosodic, semantic, or syntactic disorders, often highly specific...), there
are many agnosias that can result from specific brain injury. An agnosia is a
failure of recognition. Examples:

• Facial Prosopagnosia: lost ability to recognise faces; yet vision is normal.
Only faces cease to be represented or processed as a special class of object.
(Reference: Oliver Sacks’ The Man Who Mistook His Wife for a Hat)

• Achromatopsia: cortical loss of colour vision; but apparently “normal”
achromatic (black-and-white) vision

• Astereognosia: loss of ability to perceive three-dimensionality

• Simultanagnosia: inability to perceive simultaneously more than one thing
at a time (e.g. multiple elements in a display)

• Neglect and hemi-inattention syndromes: one side of any object is always
neglected. Such patients dress themselves only on (say) their right side,
and always bump into things with their left side; and will draw a clock
face with all the numbers 1 - 12 in the right half only.

• Xanthopsia: perception that all objects are covered with gold paint (!!)

What kind of a “computer” is the brain, that it can display these types of faults
when traumatised? What do these phenomena reveal about the nature of the
brain, its architecture, its data structures, and its “algorithms?”

Similiar questions can be raised about illusions within “normal” vision. We
will examine specific illusions of geometry, size, brightness, and motion. As
always, the question for us to ask in connection with Computer Vision is, what
do these illusions reveal about visual mechanisms? Should we try to design
our algorithms in such a way that they too would “suffer” from such illusions,
at least as an epiphenomenon [side-effect] of the desired functionality?
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The pattern on the left above has a set of long oblique lines which are in fact
parallel, but they appear very non-parallel. Why does the presence of the other
short lines so severely distort our judgment of orientation and parallelism? In
the visual cortex, there are both competitive and cooperative neural processes,
operating over both orientation and proximity; presumably these create the
illusion seen. In the examples on the right above, the net effect is a continuous
bending of the (in fact straight and parallel) lines, bowing them together in
one case and apart in the other.

Competition appears also in the domain of size, as seen in the example above
on the left: the central disk in fact is the same size in both cases. The right
is an illustration of the Müller-Lyer illusion: the vertical segment is in fact
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the same length in both cases, contrary to appearances. But there it is the
presence of the other oblique lines that somehow cause the illusion.

Finally, the presence of extraneous cues plays a large role in many inferences.
The two boxes on the left above are clearly of different sizes; yet when forced
to see them as displaced in depth, we judge them to be in reality the same size.
[URLs for illusions of brightness and motion are linked on the course website.]

13 Bayesian inference in vision. Classifiers; probabilistic methods.

It is virtually impossible to perform most computer vision tasks in a purely
“bottom-up” fashion. Consider the following images, and how impoverished
are the data which must support the task of object recognition!
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An important “AI” perspective on vision is that vision is knowledge-driven.
In this view, all of the front-end image processing is merely a distraction, if
not an irrelevancy. What is really needed for vision is not a lot of theorems
involving the 2D Fourier transform of the Laplacian of a Gaussian filter, but
rather a good interface to an expert system that stores and indexes knowledge
about such things as Dalmatian hounds and the general way that dogs behave
when following a scent...

This section reviews the basic ideas behind Bayesian inference, which is a
method fundamental to probability theory, statistics, and machine learning.
Its purpose is to provide a means for integrating prior information (such as
general knowledge about the sorts of things that populate the world, their
properties and relationships, the metaphysics of objects, etc...) with empirical
information gathered from incoming image data. This principle is expressed
in the form of a basic rule for relating conditional probabilities in which the
“antecedent” and “consequent” are interchanged. The value of this method
for computer vision is that it provides a framework for continually updating
one’s theory of what one is looking at, by integrating continuously incoming
evidence with the best available inference or interpretation so far.

13.1 Decisions under uncertainty.

Most real-world tasks (whose solution requires intelligence) involve degrees of
uncertainty. Decision-making under uncertainty is especially characteristic in
computer vision. The sources of uncertainty may include:

• the nature of the data or signals available

• the inherent problem of classifying or recognising them

• the unpredictability of the future

• the fact that objects and events have probabilities

• the uncertainty of causation
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• the fact that associative knowledge is only probabilistic

• the inherent incompleteness or imperfection of processing

• possible undecidability of a problem, given all available data

• the “ill-posed” nature of many tasks

• inherent trade-offs such as speed versus accuracy

But despite these realities, decisions are required. The framework to adopt is
that, in a sense, the world consists of probabilities, and that visual processing
really amounts to computing probabilities and assigning them.

Examples of decisions-under-uncertainty in vision:

• Medical diagnosis; radiology: Is this a tumor? Does the cost of a possible
False Alarm (taking a biopsy, frightening the patient unnecessarily) exceed
the cost of possibly missing an early diagnosis? What should you do if the
odds are 99% that it is just a benign cyst; but if it is a tumour, missing
it now could be fatal?

• Military decision-making: a plane is seen approaching your aircraft carrier
very low on the horizon and at high speed. Is it friend or foe? How should
the costs of the two possible types of error (shooting down one of your
own planes, vs allowing the whole aircraft carrier to be sunk) be balanced
against their relative probabilities, when making your decision?

Finally, how can decision strategies be updated by the integration of evidence
that arrives gradually over time? How should a-priori knowledge about the
probabilities of events in the world be combined with available incoming data?

Statistical decision theory is the study of how to optimize certain measures of
performance, given the available data and the decision environment as speci-
fied by costs/benefits, a-priori knowledge, speed and confidence requirements.

The Bayesian View

A highly influential formalism for integrating prior knowledge about the world
(beliefs being expressed in terms of probabilities) with new incoming data (e.g.
an image sequence), or of achieving fusion amongst different and possibly in-
commensurable forms of data, is that of Bayesian inference.

Bayesianism interprets probability as “degree-of-belief,” rather than as “fre-
quency of occurence,” and argues for weighing all evidence with all possi-
ble (imaginable) interpretations and their associated (estimated) probabilities.
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Baye’s rule, named after the 17th-century cleric, Thomas Bayes, is a formal-
ism for combining prior knowledge or beliefs with empirical observations. It is
at once a theory of explanation, a procedure for the integration of evidence,
and a protocol for decision-making. Some aspects of Bayesian interpretation
in vision are evident in the way we read the following texts, in which the same
letter stimulus is read in completely different ways depending on local context:

We begin with an informal statement of Bayes’ rule for drawing inferences
from data. If H represents an hypothesis about the “state of the world” (e.g.
the object in an image) and D represents the available image data, then the
explanatory conditional probabilities p(H|D) and p(D|H) are related to each
other and to their unconditional likelihoods p(H) and p(D) as follows:

p(H|D) =
p(D|H)p(H)

p(D)
(15)

For example, a human agricultural expert, or an artificial expert system, has
knowledge of the form p(D|H): Given a plant (or a hypothetical disease state)
H, there is a corresponding conditional probability p(D|H) of observing cer-
tain image data D. However, typically the goal of computer vision and pattern
recognition is to calculate just the inverse of that conditional probability: given
image data D, what is the probability p(H|D) that the hypothesis (of plant
or disease state H) is true?

Bayes’ rule (Eqt. 15) specifies the formal procedure for calculating such in-
ferences p(H|D), given the observations, the unconditional probabilities, and
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the prior expert agricultural knowledge p(D|H). It thereby offers a clean and
simple interface between a knowledge base and visual data. A key feature
of Bayes’ Theorem is that it provides a mechanism for repeatedly updating
our assessment of a visual hypothesis as more data arrives incrementally. We
can apply the rule recursively, using the latest posterior as the new prior for
interpreting the next set of data. In AI, this feature is important because it
allows the systematic and real-time construction of interpretations that can
be updated continuously as more data arrive in a time series, such as a flow
of images or spoken sounds that we wish to understand.

13.2 Statistical Decision Theory

The Bayesian view focuses on the use of priors, which allow vision to be steered
heavily by one’s a priori knowledge about the world and the things which pop-
ulate it. For example, probabilistic priors can express the notion that some
events, objects, or interpretations are vastly more probable than others; that
matter cannot just disappear, but does routinely become occluded; that ob-
jects rarely change their surface colour; that uniform texturing on a complex
surface shape is a more likely interpretation than highly non-uniform textur-
ing on a simple or planar shape; that a rigid rotation in three dimensions is a
“better explanation” for deforming boundaries (if consistent with same) than
actual boundary deformations in the object itself; and so forth. Being able
to integrate formally such learned or even “metaphysical” assumptions about
the world is one way in which Bayesian inference facilitates a “top-down” or
AI-oriented, expert-system-oriented, approach to vision.

However, in many vision tasks, there may be no useful (or strong) priors.
We may need to solve pattern recognition problems purely on the basis of
some vector of acquired features from a given object or image; the task is
to decide whether or not this feature vector is consistent with membership
in a particular class or object category. In this sense, the problem of object
identification amounts to a “same / different” decision between the presenting
feature vector and one (or more) characteristic class feature vectors, even if
we don’t have any useful priors about the relative likelihoods of the possible
object classes or interpretations.

The degree of match between two feature vectors must be computed and for-
mally evaluated to make a decision of “same” or “different.” Almost always,
there is some similarity between “different” patterns, and some dissimilarity
between “same” patterns. This creates a decision environment with four pos-
sible outcomes:
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1. Hit: Actually same; decision “same”.

2. Miss: Actually same; decision “different”.

3. False Alarm: Actually different; decision “same”.

4. Correct Reject: Actually different; decision “different”.

We would like to maximize the probability of outcomes 1 and 4, because these
are correct decisions. We would like to minimize the probability of outcomes
2 and 3, because these are incorrect decisions (“Type II” and “Type I” errors).

Statistical Decision Theory
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Figure 2: Two-choice Decision Environment of Statistical Decision Theory

We can adjust our decision threshold (become more liberal or more con-
servative) to reflect the costs and benefits of the four possible outcomes. But
adjusting the decision threshold has coupled effects on the four outcomes:

• Increasing the “Hit” rate will also increase the “False Alarm” rate.

• Decreasing the “Miss” rate will also decrease the “Correct Reject” rate.

How can we understand these relationships in a theoretical formalism? How
can we optimize the decision-making process?
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During WWII, a theoretical framework was developed for understanding such
decision environments in the context of radar. It was developed at the Uni-
versity of Michigan and became known as Signal Detection Theory, or also
as Statistical Decision Theory. The signals received about the “state of the
world” are modelled as arising from two noisy probability distributions. In
the pattern recognition context, these two correspond to the class-object rela-
tionships of “same” versus “different.” (In the schematic diagram above, the
terms “authentic” and “imposter” were used.)

When a decision of “same” or “different” is made, based upon the observed
similarity and some acceptability threshold, the probabilities of the four pos-
sible outcomes can be computed as the four areas lying under these two dis-
tributions to either side of the decision criterion. These four probabilities
correspond to the shaded areas in the diagram. The computed error proba-
bilities can be directly translated into a confidence level that we can assign
to any decision that is made in this formalism. The result of being “liberal”
or “conservative” in our decision-making is revealed in the ROC curve, for
Receiver Operating Characteristic (the name is derived from radar analysis).
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Figure 3: ROC Curve for Two-Choice Decision Environments (e.g. making Yes-No decisions for
object classification and pattern recognition). ROC curves reveal trade-offs between error rates.

Each point on the ROC curve represents a particular decision strategy. It plots
the relationship between the resulting Hit Rate and False Alarm Rate.

77



Finally, regardless of where our decision threshold is placed, the fundamental
decidability of the decision task (or the detectability of the signal detection
task) is measured by the quantity “d-prime” (d′). It is defined as the difference
between the means of the two distributions, scaled by the square-root of their
average variance (a conjoint standard deviation):

d′ =
|µ2 − µ1|

√

1
2(σ

2
2 + σ2

1)

where the two distributions are characterized by means µ1 and µ2 and standard
deviations σ1 and σ2. An improvement in d′ can result either from pushing the
two distributions further apart, or from making one or both of them narrower.
In the ROC curve, d′ corresponds to how “bowed” the curve is. The bigger d′

is, the better; a pattern recognition problem with high decidability will have a
large d′, so the curve approaches the upper-left corner. Any value higher than
about 3 is great. The Figure below illustrates d′ = 11.36 for iris recognition.

These considerations illustrate what might be called the “Primary Law of
Pattern Recognition”:

The key factor is the relation between within-class variability and
between-class variability. Pattern recognition can be performed re-
liably only when the between-class variability is larger than the
within-class variability.
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Figure 4: A powerful decision environment with d′ = 11.36, illustrating how well-separated
same/different distributions lead to highly decidable classification and pattern recognition.
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13.3 Bayesian pattern classifiers

Consider a two-class pattern classification problem, such as optical character
recognition on the space of just two letters, a and b. We compute some set
of features x from the image data (for now we don’t care what those features
are), and we wish to build a Bayesian classifier that will assign a given pattern
to one of two classes, C1 or C2, corresponding to the two letter instances.

Whatever are the extracted features x (maybe as simple as the height/width
ratio), after collecting these measurements from a large number of samples of
letters a and b, we can plot a histogram of how these measurements are dis-
tributed for each of the two classes. In general, these histograms will overlap,
as illustrated above right. A particular sample of the value of x might come
from either class C1 ≡ a or C2 ≡ b; but the further to the left it is, clearly the
more likely it is to have come from class C1, other things being equal.

What do we mean by “other things being equal?” Suppose that instances
of class C2 are 100 times more frequent (more probable) than class C1. Would
we then still say that, given a slightly smallish sampled value x as indicated
above, the letter class is more likely to have been C1 than C2?

No. Now we need to become Bayesians and take into account baseline rates.
Define the prior probabilities P (C1) and P (C2) as their relative proportions
(summing to 1). If we had to guess which character had appeared without
our even seeing it, we would always just guess the one with the higher prior
probability. Thus since in fact an ‘a’ is about 4 times more frequent than
a ‘b’ in English, and these are the only two cases in this two-class inference
problem, we would set P (a) = 0.8 and P (b) = 0.2.

For each class separately, we can measure how likely any particular feature
sample value x will be, by empirical observation of instances from each class.
This gives us P (x|C1) and P (x|C2).
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Finally, we need to know the unconditional probability P (x) of any measure-
ment value x. We can calculate this by the probability “sum rule:”

P (x) =
2
∑

k=1

P (x|Ck)P (Ck)

Now we have everything we need to apply Bayes’ Rule to calculate the like-
lihood of either class membership, given some observation x, factoring in the
prior probabilities P (Ck), the unconditional probability P (x) of the observed
data, and the likelihood of the data given either of the classes, P (x|Ck). The
likelihood of class Ck given the data x, is the posterior probability P (Ck|x):

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(16)

Thus Bayes’ Rule gives us a principled, formal way to perform pattern classi-
fications on the basis of the available data and our knowledge of class baseline
rates, and how likely the data would be for each of the classes. We may now
plot the likelihoods of each of the classes, as a function of the data x:

We minimise the probability of misclassification if we assign each new input x
to the class with the highest posterior probability. Assign x to class Ck if:

P (Ck|x) > P (Cj|x) ∀j 6= k

Since the denominator in Bayes’ Rule (Eqt. 16) is independent of Ck, we can
rewrite this minimum misclassification criterion simply as:

P (x|Ck)P (Ck) > P (x|Cj)P (Cj) ∀j 6= k

If we now plot the quantities in this inequality relation as a function of x, we
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can see that the minimum misclassification criterion amounts to imposing a
decision boundary where the two curves cross each other (arrow):

Because the costs of the two different types of errors are not always equal, as
illustrated earlier in the medical example of the biopsy, we may not necessarily
want to place our decision criterion at the point where the two curves cross,
even though that would minimise the total error. If the decision boundary
that we choose is as indicated by the vertical line above, then the total error
is equal to the total shaded area. Let R1 and R2 be the regions of x on either
side of our decision boundary. Then the total probability of error is:

P (error) = P (x ∈ R2, C1) + P (x ∈ R1, C2)

= P (x ∈ R2|C1)P (C1) + P (x ∈ R1|C2)P (C2)

=
∫

R2

P (x|C1)P (C1)dx+
∫

R1

P (x|C2)P (C2)dx

Thus the total shaded area is the total probability of error, and obviously we
would minimise this (if that were our goal) by putting the decision boundary
at the arrow where the two curves cross.

13.4 Discriminant functions and decision boundaries

If some set of functions yk(x) of the data x are constructed, one function
for each class Ck, such that classification decisions are made by assigning an
observation x to class Ck if

yk(x) > yj(x) ∀j 6= k,

those functions yk(x) are called discriminant functions. The decision bound-
aries between data regions Rj and Rk are defined by those loci in the (normally
multi-dimensional) data x at which yk(x) = yj(x). A natural choice for dis-
criminant functions would be the posterior probabilities:

yk(x) = P (Ck|x)
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Equivalently since the denominator P (x) in Bayes’ Rule is independent of k,
we could choose

yk(x) = P (x|Ck)P (Ck)

or any monotonic function of this, since the decision boundaries would remain
the same. The following figure illustrates how in even just the case of two-
dimensional data, the decision boundaries separating four Gaussian densities
(corresponding to four classes) can be rather complex.

14 Model estimation; machine learning and statistical methods

Computer vision has recently seen a very strong trend towards using Bayesian
techniques for learning and inference. Classifiers based on this approach can
have many parameters (conditional probabilities and independence assump-
tions between random variables), and there are many techniques for training
factorised graphical probabilistic models, known as belief networks or Bayesian
networks, from labelled data. Such methods provide a natural tool for dealing
with two of the most fundamental problems of engineering and science, namely
complexity and uncertainty.

Probabilistic graphical models incorporate prior information about conditional
independences amongst a set of variables corresponding to observations and
hidden causes that are to be inferred using inference techniques. Dynamic
Bayesian networks embody a stochastic state that is dynamically adapted to
arrive at the most likely model (“belief”) of the world, i.e. the conclusion that
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is best supported by the available data. Recognition can be posed as a joint
inference problem relying on the integration of multiple (weak) cues to disam-
biguate and combine evidence in the most suitable context as defined by the
top level model structure.

Another popular family of machine learning techniques in computer vision
are support vector machines (SVM, introduced by Vladimir Vapnik and others
in the 1990s). These methods are founded on the concept of structural risk
minimisation as a method for learning a parameterised approximation of a
target function by minimising an empirical loss criterion subject to smooth-
ness or complexity constraints. The learned function is represented in terms of
kernel basis functions, which are viewed as computing dot products between
input vectors in an induced feature space. An appropriate choice of the kernel
mapping allows even highly complicated decision problems to be represented
by means of linear classification boundaries (hyperplanes) in the feature space.
Minimising the structural risk can then be reduced to solving geometric con-
straints to find boundaries that maximise the margin between kernel-mapped
input vectors that are assigned different class labels. The representation of
the boundaries through a small set of so-called support vectors allows very
efficient classifiers to be learned from data.

The viewpoint of modern machine learning emphasises how older frameworks
such as artificial neural networks can be formally analysed and generalised
using the Bayesian approach and the formalisms of computational (statisti-
cal) learning theory. Another important class of methods are unsupervised
techniques, which essentially self-organise or cluster unlabelled image data or
derived features based on inherent statistical properties. One example of this
that we will encounter later is principal components analysis (PCA) which
underlies the “Eigenfaces” approach to face recognition.

14.1 Discriminative versus generative methods

The cornucopia of machine learning and data mining techniques that have
become prevalent in computer vision can sometimes seem confusing or rather
ad hoc. One way of categorising this plethora of algorithms and approaches is
on the basis of whether they are primarily generative or discriminative:

• Discriminative methods learn a function yk(x) which maps input features
x to class labels Ck (see section 13.4), something that can also be done
probabilistically according to the posterior probabilities yk(x) = P (Ck|x).
Examples include artificial neural networks, support vector machines,
boosting methods, and linear discriminant analysis.
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• Generative methods learn a likelihood model P (x|Ck) expressing the prob-
ability that data features x would be observed in the case of class Ck, which
can then be used for classification using Bayes’ rule. Generative models
have predictive power as they allow one to generate samples from the joint
distribution P (x, Ck), and they are therefore popular for tasks such as the
analysis and synthesis of facial expressions. Examples include probabilis-
tic mixture models, most types of Bayesian networks, active appearance
models, Hidden Markov models, and Markov random fields.

Generative models often generalise well and may therefore require less train-
ing data, but the models themselves may become more complex than is re-
quired for classification, especially with larger numbers of classes. Construct-
ing such a model often requires specific domain expertise (e.g. for the design
of a Bayesian network). On specific (supervised) learning tasks, discriminative
methods usually perform better and are more efficient, but the training data
needs to be large enough to span the expected modes of variation in the data.

15 Applications of learning and statistical methods in vision

15.1 Optical character recognition (OCR); Convolutional neural networks

OCR systems have been developed for numerous applications including postal
and bank cheque routing, book digitisation, automated number plate recog-
nition, text-to-speech synthesis for the blind, and handwriting recognition for
portable device interfaces. Modern approaches make heavy use of machine
learning to allow recognition of multiple fonts and to cope with distortions,
noise, and variations in size, slant, and line thickness.

One of the most effective approaches to OCR is LeCun’s convolutional neu-
ral network (conv. net) illustrated above. It takes a 32x32 pixel image as its
input. The first stage of the network is a convolutional layer consisting of 6
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feature maps. The neurons in each feature map have 25 adaptable weights cor-
responding to the elements of a 5x5 kernel which is convolved with the input
image, plus an adaptable bias weight. Each feature map therefore has 28x28
(32 − 5 + 1 = 28) neurons, all of which share the same 26 weights. In this
way, the 6 feature maps can be trained to extract a particular visual feature,
independently of its position. As with other types of feed-forward neural net-
work, the outputs oij of each first layer neuron i are the result of applying an
activation function fact (a normalising ogival function such as the hyperbolic
tangent, tanh) to the sum of its inputs (pixels in the input image I) multiplied
by each of its weights wmn after adding an additional bias term w0:

oij = fact(w0 +
∑

m

∑

n
wmnIi−m,j−n)

(note how the double summation is equivalent to a 2D discrete convolution.).
The use of convolutional layers with shared weights was inspired by receptive
field profiles as found in biological visual systems, which we studied earlier.
Shifting the input image results in a corresponding shift in the output of the
feature maps.

There are 10 outputs corresponding to the digits 0-9, and the 10 neurons
of the final layer are fully connected to each of the preceding 100 neuron out-
puts. During the training phase using the “back-propagation” method, the
corresponding target output is manually set to +1 and all other outputs are
set to −1. The training set may contain 10s or 100s of thousands of ex-
amples of each character (differing in style, boldness, slant, size, and with
additive noise or shading to produce robust classifiers). The figure below
illustrates three different handwritten instances of the digit 4 being recog-
nised by a convolutional neural network; the smaller images show outputs of
the convolutional (C) and subsampling (S) feature maps at different layers
of the network. Further examples (including animations) can be found at
http://yann.lecun.com/exdb/lenet/.
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15.2 Content based image retrieval (CBIR: work and lecture by C.P. Town)

Although images and video comprise an ever growing bulk of the world’s digital
content, most information retrieval systems rely entirely on textual metadata
such as captions, annotations, and tags. Metadata based multimedia retrieval
effectively treats images as “black boxes” since all indexing and search is based
on the labels associated with a given image rather than the image itself. Fur-
thermore, manual image annotation is an expensive process which is prone to
errors, inconsistencies, ambiguity, lack of context, and both over- and under-
keywording. A set of textual annotations effectively becomes immutable (not
amenable to modification or re-interpretation) and is tied to the idiosyncrasies
of a particular natural language. Thus, CBIR systems are particularly prone
to the semantic gap between human and computer capabilities for interpreting
image content.

Consequently there is great scope for systems that are able to perform image
search on the basis of an automated analysis of the actual content of images.
However, most systems for content-based image retrieval (CBIR) generally
only provide search using low-level image features such as colour or texture
statistics. CBIR has suffered from too much emphasis being placed on a system
view of the retrieval process in terms of image processing, feature extraction,
content representation, data storage, matching, etc. Indeed, one criticism one
can generally level at CBIR systems is the extent to which they require the
user to model the notions of content representation and similarity employed
by the system, rather than vice versa. Most CBIR systems offer one or more
of the following query mechanisms:
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• Feature range or predicate: Here the user can set target ranges or thresh-
olds for certain (typically low-level) attributes such as colour, shape, or
texture. This kind of interface requires a certain amount of user sophis-
tication and patience and is ill-suited to retrieval based on higher-level
concepts.

• Template, region selection, or sketch: The user can draw (sometimes liter-
ally) the system’s attention to particular image aspects such as the spatial
composition of desired content in terms of particular regions or a set of
pre-defined templates. Clearly this process becomes cumbersome for com-
plex queries.

• Query-by-example: Finding suitable example images can be a challenge
and may require the user to manually search for such images before being
able to query the automated system. It is also difficult for the system to
ascertain which aspects make a given image relevant and how similarity
should be assessed. However, modern image similarity search systems are
becoming popular for tasks such as online shopping, stock photography
search, image clustering, and detection of copyright infringement.

• Query language or concept: Some CBIR query languages are based on
SQL or Boolean query constructs. Knowledge-based approaches utilising
description logics or semantic networks have been proposed as a means
of better representing semantic concepts but tend to entail somewhat
cumbersome query interfaces.

One of the problems of CBIR is the fact that visual information is inher-
ently ambiguous and semantically impoverished. There consequently exists a
wide semantic gap between human interpretations of visual information and
the recognition capabilities of computer vision systems. CBIR has the added
challenge of inferring user retrieval requirements from the query, and efficiently
determining the more relevant images from a collection of potentially billions
of images. A recent approach to bridging this gap is to make use of an on-
tological query language, combined with a set of advanced automated image
analysis and classification modules.

Ontology is the theory of objects in terms of the criteria which allow one to
distinguish between different types of objects and their relationships, depen-
dencies, and properties. Ontologies encode the relational structure of concepts
which one can use to describe and reason about aspects of the world. This
makes them eminently suitable for many problems in computer vision which
require prior knowledge to be modelled and utilised in both a descriptive and
prescriptive capacity.
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Image retrieval can then be carried out by processing sentences in a visual
language defined over the ontology. User queries are parsed into a canonical
representation which is then linked to automatically recognised image content
in accordance with the retrieval need expressed by the query. The underlying
ontology encompasses relational information about concepts and attributes
pertaining to automatically recognised image content, as well as knowledge
about the structure and meaning of natural language queries expressed in En-
glish. The relevance of each image in a collection with respect to a given user
query is assessed probabilistically while taking into account both the relia-
bility and salience (as it pertains to the query) of all information available
for that image. The above figure illustrates a simplified grammar for such a
query language and shows a Bayesian network that can be used to implement
part of the image content inferences used by the indexing and retrieval system.

Query sentences are typically short (e.g. “two people at the beach during
sunset”) and need only represent those aspects of the target image(s) which
the user is trying to retrieve and which distinguish such images from others
in the dataset. The user is therefore not required to translate a description
of an envisaged target image into the language but merely (and crucially) to
express desired properties that are to hold for the retrieved images. Hence
even a fairly short query sentence can suffice to select a small subset of desired
images from a vast collection. This simple idea is the reason why text retrieval
on the internet is so successful: the less frequently a particular constellation
of keywords appears across the entire document set, the more valuable it is as
a means of discriminating relevant from non-relevant content.

As illustrated in the following figure showing the hierarchical segmentation
and identification of different kinds of visual information in the “Mona Lisa,”
the system can make use of an ontology of image content representations ex-
tracted using a range of techniques such as:
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• Image segmentation: In order to identify salient parts of the image corre-
sponding to objects or object parts, the image is automatically segmented
into a covering set of non-overlapping regions and sets of properties such as
size, colour, shape, and texture are computed for each region. The num-
ber of segmented regions depends on image size and visual complexity,
but has the desirable property that most of the image area is usually con-
tained within a few dozen regions which closely correspond to the salient
features of the picture.

• Region classification: SVMs and other classification methods are used to
recognise material and environmental categories, such as “grass,” “sky,”
“wood,” “water.” This may be regarded as an intermediate level semantic
representation which serves as the basis for subsequent stages of visual
inference and composite object recognition.

• Scene classification: A second stage of Bayesian network classifiers is ap-
plied to analyse image content at a higher scene level. Examples of scene
categories include “indoor,” “beach,” “sunset,” “nighttime”, “autumn,”
etc.

• Object detection and recognition: The image analysis also features de-
tectors for common objects such as cars and buildings. Human faces are
automatically detected and classified according to personal attributes such
as gender, age, and facial expression.
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16 Face detection, recognition, and interpretation

The goal of detecting faces and recognising their identity has long been one of
the “Holy Grail” problems in computer vision. It is a hard problem for all of
the reasons we have encountered that generally make computer vision hard:

• Faces are surfaces on 3D objects (heads). Therefore the images they
project depend on the perspective angle between object and camera, the
rotation of the object around its own axes, and the illuminant.

• Facial surfaces have relief, and so parts (e.g. noses) can occlude other
parts. Hair can also create random occlusions and shadows.

• Surface relief causes shading and shadows to depend upon the angle of
the illuminant, and whether it is an extended or a point source.

• Faces have variable specularity (dry skin may be Lambertian, oily or
sweaty skin may be specular). As always, this confounds the interpre-
tation of the reflectance map.

• Parts of faces can move around relative to other parts (eye movements;
lip movements; eyebrows and winks).

• Humans put things on their faces (e.g. glasses, cosmetics, cigarettes) and
change their facial hair (moustaches, eyebrows). They also use their faces
as organs of expression, and so the surface isn’t even rigid. (Ideally one
would like not only to be able to detect and recognize faces, but also to
interpret and classify their expressions.)
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16.1 Issues in detecting, recognising, and interpreting faces

As usual, this domain of computer vision raises questions such as:

1. What is the best representation to use for faces?

2. Must this be treated as a 3D (object-based) or 2D (image-based) problem?

3. How can invariances to size (hence distance), location, pose, and angle of
view be achieved? (A face should acquire the same representation under
such transformations, for matching purposes.)

4. What are the generic (i.e. universal) properties of all faces that we can
rely upon, in order to reliably detect the presence of a face?

5. What are the particular features that we can rely upon to recognize the
identity of any given face?

6. What is the best way to handle “integration of evidence,” and incomplete
information, and to make decisions under uncertainty?

7. How can we handle the transformations that can occur in a given person’s
face, either through natural, or unnatural means?

The above two images show the same person. Likewise the four below, despite
apparent changes in gender, race, and Gattungswesen (species-being).
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16.2 The Fundamental Problem.

The central issue in pattern recognition is the relation between within-class
variability and between-class variability. These are determined by the degrees
of freedom spanned by the pattern classes. Ideally the within-class variability
should be small and the between-class variability large, so that the classes
are well separated. In the case of encoding faces for identity, one would like
different faces to generate face codes that are as different from each other as
possible, while different images of the same face should ideally generate similar
codes across conditions. Several recent investigations of how well this goal is
achieved have studied the invariances in face coding schemes under changes
in illumination, perspective angle or pose, and expression. Their results have
tended to show that there is greater variability in the code for a given face
across these three types of changes, than there is among the codes for different
faces when these three factors are kept constant. Since reports documenting
performance of particular face recognition algorithms have often been based
upon trials in which these factors (pose, illumination, and expression) were
held artificially constant, the performance statistics in real-world settings have
been very disappointing by contrast, with error rates approaching 50%.

The array of images above shows how dramatic are the effects of even only a
change in illumination direction. Facial expression remains exactly the same.
Going across the columns from left to right, the illumination changes from
frontal to side; and going down the rows, it changes in elevation. If you com-
pare the 3 images in the last column on the right, it seems almost inconceivable
that any means could be found to represent these as images of the same person.
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Earlier (on page 4) we saw how dramatically a change in pose angle affects
image appearance, even though the expression and illumination remained the
same. Appearance-based algorithms for face recognition still tend to judge dif-
ferent faces in the same pose as more similar than identical faces in different
poses. Finally now, the images below show how much a given person’s face (in
each row) can change when she is using it socially as an organ of expression.

For comparison now, when we examine images of different faces seen under
fixed illumination and with neutral expressions, their (between-class) variabil-
ity seems tiny compared to the same-person (within-class) variabilities above
associated with changes either in illumination or in expression:
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When there is variability across two or more dimensions (let us say both face
identity and facial expression, as in the images below), then discriminability
might benefit from variability within a class of the other dimension, but not
from variability between classes of the other dimension.

For example, facial expressions are more reliably distinguished if there is large
variation among the different expressions generated by a given face, but small
variation in how a given expression is generated amongst different faces. The
consequences of within-class and between-class variability, for single dimen-
sions and across them, are noted in the following table:

Within-Class Between-Class
Task Variability Variability

Face detection bad good
(classes: face / non-face)

Face identification bad good
(classes: same/different faces)

Facial expression interpretation good bad
(classes: same/different faces)

Facial expression interpretation bad good
(classes: same/different expressions)
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Many of these forms of variation in facial appearances were captured in the
painting by Boilly, Reunion de Têtes Diverses. In characterising the within-
class variability and the between-class variability of faces, it is clear that (at
least over time), the variability of any given face can easily outstrip the vari-
ability among contemporary faces. No one would deny that young babies look
far more similar to each other, than each does to the adult that it grows into.

Even when all other factors such as pose angle, expression, illumination, and
age are held constant, we can distinguish those aspects of facial variation that
are genetically inherited (“genotypic features”), from those that primarily re-
flect development, aging, or environment (“epigenetic features”). Persons who
are genetically identical would share all their genotypic features, such as gen-
der, blood group, race, and DNA sequence, whereas epigenetic features can be
shared among different individuals only by chance, according to their associ-
ated probability distributions.

One source of evidence about the genetic/epigenetic ratio of facial variation
arises from identical (monozygotic) twins. Obviously any pair of twins are al-
ways matched in age. Each twin’s appearance changes over time in the normal
dramatic way, yet the pair usually remain strikingly similar to each other in
appearance at any age. Nobody would deny that identical twins look vastly
more similar to each other than unrelated persons do. Since such twins are
genetically identical, their similarity in appearance serves to calibrate the ex-
tent of genetic penetrance for facial structure.

A further, but secondary, indicator of the genetic penetrance of facial ap-
pearance is provided by persons who share only 50% rather than 100% of
their genes. These include fraternal twins, full siblings, double cousins, and
a given parent and offspring. Occasionally the latter pairings have virtually
indistinguishable appearance at a similar age, such as Robert F. Kennedy and
his son Michael Kennedy in adulthood.

Interestingly, a major part of the computational load of the brain is concerned
with “social computation,” a large part of which involves identifying and in-
terpreting faces. It is generally accepted among ethologists and neuroscientists
that the main evolutionary pressures that led to the large brains of primates
were not “engineering oriented” pressures such as learning to use tools, but
rather the demands of sexual competition. Included in those task demands
are: seduction; betrayal; assessing power hierarchies and your own place within
them [“who is the alpha male here?”]; manipulation of others’ intentions and
desires; and interpreting those within others [i.e. the “other minds” problem].
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Neurones in some 30 distinct visual areas in primate brains have been found
which are selective to faces. Many of these neurones are further tuned not
only for the familiarity of a face, but also for its expression, e.g. friendly ver-
sus threatening. The following sketch of the rhesus monkey brain identifies
numerous areas in the temporal cortex in which face sensitive neurones have
been found. Some of them respond mainly on the basis of whether the eyes in
a face are averted away from the monkey, or looking straight at it, which is a
key threat gesture among many primates. (Try making too much eye contact
with the “alpha male” gorilla in a zoo sometime, and you will see how angry
he gets with you.) Even we humans are exquisitely sensitive to the amount of
eye contact, especially between the genders. Either too much, or too little, is
quickly noted (at least unconsciously) and “interpreted.”

16.3 Algorithmic approaches to two-dimensional face detection

Paradoxically, face detection is a harder problem than face recognition, and
the performance rates of algorithms are poorer. (This seems paradoxical since
detection must precede recognition; but recognition performance is measured
only with images already containing faces.) Approaches to face detection often
use generic templates, spanning multiple scales (for faces of different distances,
hence sizes) and poses. This sliding-window approach to detection suffers from
the drawback that the template may need to be compared with the image at
many different positions and scales. Starting with a detector size of 20x20
pixels and evaluating it at all possible offsets in a 400x400 image would re-
quire (400− 20+ 1)2 = 145, 161 evaluations, just for a single scale of analysis!
Clearly such a detector would have to be very efficient and have an extremely
low false alarm rate to give reasonable performance. In practice one would
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shift the detector window by more than one pixel at a time depending on the
current window size, and the scale would be increased by some constant (say
20%) at each iteration over the image, but the number of evaluations will still
be about 105 per image.

Modern approaches to face detection make use of a number of image pro-
cessing and machine learning techniques to deal with these challenges. The
currently most popular method is due to Viola and Jones (2004), who popu-
larised the use of the AdaBoost (“Adaptive Boosting,” formulated by Freund
and Schapire) machine learning algorithm to train a cascade of feature clas-
sifiers for object detection and recognition. Boosting is a supervised machine
learning framework which works by building a “strong classifier” as a com-
bination of (potentially very simple) “weak classifiers.” As illustrated in the
figure below, a Viola-Jones face detector consists of classifiers based on simple
rectangular features (which can be viewed as approximating Haar wavelets)
and makes use of an image representation known as the integral image (also
called summed area table) to compute such features very efficiently.

The resulting boosted classifier is a weighted combination of thresholded
responses to a set of rectangular features that, like Haar basis functions, differ
in complexity (e.g. the features may consist of 2, 3 or 4 rectangular regions),
scale, position, and orientation (horizontal or vertical, though some implemen-
tations also incorporate diagonal features). Formally, a weak classifier hj(x)
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consists of a feature fj, a threshold θj and a parity pj ∈ ±1 such that

hj(x) =







1 if pjfj < pjθj
−1 otherwise

and the resulting strong classifier using weights aj is

h(x) = sign(
∑

j

ajhj)

By combining such classifiers into a hierarchical cascade made up of increas-
ingly complex classifiers, good detection accuracy can be achieved at relatively
low false positive levels. The cascade is also very efficient, since each stage
(layer) is computationally very simple to apply to an image region and only
those regions which are accepted by a given layer of the cascade (h(x) > 0)
are passed on to the next layer for consideration. Training is done in such
a way that early cascade layers have very high true accept rates (with cor-
respondingly high false positive rates) in order to quickly reject those image
regions that are very unlikely to represent a face. Later stages are trained to
be more discriminating and consequently have increasingly lower target false
positive rates. Each stage is trained by adding rectangle features until the
target detection and false positive rates are met.

A fully trained face detection cascade may have over 30 layers, yet the vast
majority of candidate image regions will only be considered by the first few of
these. To perform face detection, the cascade is evaluated at different scales
and offsets within an image using a sliding window approach. The following
figure illustrates what the sliding window finds in a local group photo:
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Assuming that a detector in the ith layer of the cascade has a “true detect”
probability di and an erroneous detection probability ei, then the overall cor-
rect detection rate D of such a cascaded detector with N “rejection” layers
is

D =
N
∏

i=1

di

since every layer must detect, in order to produce a face detection; and its
overall false positive rate (since again, every layer must falsely detect, in order
to produce a false positive) is:

E =
N
∏

i=1

ei

For simplicity, in the following analysis we assume that detectors in all layers
have the same performance. Since we may need to consider 105 sub-regions in
a given image, we want E to be less than 10−5 in order to expect fewer than
one false positive detection per image. To achieve E = 10−5 for a 30 layer
cascade, each ei would have to be about 68% (10−5/30 = 10−1/6), which looks
rather easier than creating a single monolithic classifier with a false alarm rate
below 0.00001! The meaning of the phrase “cascade of weak classifiers” is now
clear, since each one in the cascade is allowed a 68% chance of a false detection.
However, by the same argument, a decent overall detection rate of D = 0.95
would require di = 0.951/30 which is about 99.83%. Clearly, the optimal choice
of the trade-off between the two error rates depends on the prior probability
of any given image region containing a face (we expect far fewer than 100,000
discernable faces in an image), and the required target error rates of the learn-
ing algorithm can be determined from a data set. The example in the group
photo above shows excellent (but not perfect) detection performance, without
any false positives.

One major drawback of Viola-Jones and practically all approaches to face
detection is the lack of invariance to orientation (in-plane rotation) and pose
(out-of-plane rotation) of faces. Real-world face detectors usually consist of
multiple detectors trained for particular ranges (typically ±15 deg) of pose
and orientation, and these component detectors are either applied in parallel
or based on some rough prior detection and pose estimation step.
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16.4 Two-dimensional (appearance-based) approaches to face recognition

Early attempts at face recognition were based on simple “template-matching”
on a pixel-by-pixel basis. Although primitive, these methods have re-surfaced
now as performing about as well as anything else. Of course, they do require
some mechanism for size-invariance to compensate for distance; the brute force
approach would require storing virtually an infinite number of templates for
different sizes, and so accurate size normalisation is needed instead. Variation
in pose angle is normally handled today by storing not just one template for
each face, but rather a (3 x 3) array or a (4 x 4) array for the different pose
angles. Some older 2D approaches to face recognition also sought to enumerate
a long vector of facial features, such as measurements of the distances between
many points on the face. These include all mutual distances between distinct
points such as the pupils, the boundary of the chin, the cantis (corners) of the
eyes, corners of the lips, etc. However, these methods were generally just not
very robust, despite the combinatorial explosion of possible measurements and
metrics.

One of the most prominent approaches to face recognition as a two-dimensional,
appearance-based problem is the Eigenfaces approach (Kirby and Sirovich;
Turk and Pentland). This involves performing a complete Karhunen-Loeve
Transform of a large database of faces (e.g. 8,000) to extract the principal
components, i.e. the 20 or so main 2D factors along which different faces differ
from each other. These may be expressed as the eigenvalues on the eigenvec-
tors (eigenfaces), which form a new abstract kind of feature vector on which
to base recognition. Performance is often in the 90% to 95% range. However,
a limitation in this method is that many of the principal components simply
extract variations due to shading caused by variations in the angle of illumina-
tion! Other high-order principal components are extracting variations in the
outline of the face due to small errors in size (distance) normalisation. Thus
the method is essentially a 2D representation of faces, and lacks invariances
to illumination or pose angle, or any real size invariance.

The Eigenfaces approach exemplifies a typical strategy in computer vision,
which is projection to a low-dimensional subspace. The critical variation in a
pattern recognition problem is captured in some low dimensional set of basis
vectors, such as the 20 most important “eigenfaces” to emerge from Principal
Components Analysis (PCA) of a dataset that is regarded as representative
of the problem domain. Those are then treated as basis vectors, in terms of
which any face is represented by some linear combination. The weights, or
coefficients, that specify each such linear combination are the eigenvalues; in
effect they indicate the “relative presence” of each of the eigenfaces within
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any given presenting face. They are computed simply by taking the inner
product of the presenting face image with each of the eigenfaces. Because the
eigenfaces which emerge from the PCA are, by construction, orthogonal, this
is a relatively rapid computation. The projection coefficients obtained serve
also as expansion coefficients, since this specified linear combination of roughly
20 eigenfaces will superimpose into a very close approximation to the face in
question. Thus a face is effectively represented by a small set of numbers:
the eigenvalues. Such a “face code” is extremely compact, and databases can
be searched very rapidly since the description of each face is a simple feature
vector of only 20 numbers. The following picture illustrates 15 eigenfaces com-
puted from PCA as basis vectors, and their linear combination to superimpose
into the face in the top left.

16.5 Wavelet approaches to face recognition

Recently much interest has developed in wavelet representations of faces. This
idea can be applied in either a 2D or a 3D fashion, either to represent im-
age structure or to represent the surface of the face as a 3D model. Because
wavelets are localized, they can track changes in facial expression in a local
way. This approach essentially treats a face as a kind of texture, made up of
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various undulations in various positions, sizes, and orientations but without
incorporating explicit models for the individual parts of faces. Remarkably,
the major facial features such as eyes, lips, and noses can be extremely well
represented by just a handful of 2D Gabor wavelets, as can the entire face, as
was noted earlier.

Number of Wavelets

116 216 original16 52

To allow for the deformations associated with changes in pose angle or changes
in expression, these wavelet mappings (called “Gabor jets”) are often placed
on a deformable graph which tolerates distortions relative to fiducial points.
Matching can be performed on such distorted graphs in a way that compen-
sates for a limited range of deformations. Performance of this approach is
comparable to that of the Eigenfaces. The computed feature vectors can be
local Gabor wavelet amplitude or phase information.

Phase-Quadrant Demodulation Code

[0, 0] [1, 0]

[1, 1][0, 1]

Re

Im

Figure 5: An encoding approach for faces (and other patterns) by phase-quadrant quantisation of
complex-valued 2D Gabor wavelet projections of image structure. Bits in the “face code” are set by
the quadrant in which the phasor lies for each aspect of facial structure.
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16.6 Three-dimensional approaches to face recognition

Current efforts in face recognition seek to model faces as three-dimensional
objects, even as dynamic objects, in order to achieve invariance both to pose
angle and illumination geometry. Of course, this requires solving the ill-posed
problems of infering shape from shading, interpreting albedo versus variations
in Lambertian and specular surface properties, structure from motion, etc.
On page 4 we examined how difficult this problem is, and how remarkable it
is that we humans seem to be so competent at it. The synthesis of vision
as model-building and graphics, to perform face recognition in object-based
terms, rather than appearance-based terms, is now a major focus of this field.

In order to construct a 3D representation of a face (so that, for example,
its appearance can be predicted at different pose angles as we saw on page 4),
it is necessary to extract separately both a shape model and a texture model
(texture encompasses albedo, colouration, any 2D surface details, etc).

The 3D shape model (above right) is extracted by various means, which
may include laser range-finding (with millimetre resolution); stereo cameras;
projection of structured light (grid patterns whose distortions reveal shape); or
extrapolation from a multitude of images taken from different angles (often a
4×4 matrix). The size of the data structure can be in the gigabyte range, and
significant time is required for the computation. Since the texture model is
linked to coordinates on the shape model, it is possible to project the texture
(tone, colour, features, etc) onto the shape and thereby generate models of
the face in different poses. Clearly sensors play an important role here for
extracting the shape model, but it is also possible to do this even from a single
photograph if sufficiently strong Bayesian priors are also marshalled, assuming
an illumination geometry and universal aspects of head and face shape.
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Texture Extraction
& Facial Expression

Reconstruction
of Shape & Texture Cast Shadow New Illumination Rotation

InitializationOriginal 3D Reconstruction

Figure 6: A single 2D photograph (top left) can be used to morph a 3D face model after manual
initialisation, to build a 3D representation of the face from the photo that can be manipulated for
differing pose angles, illumation geometries, and even expressions. (Blanz & Vetter)

An impressive demonstration of this process can be seen in this animation:
http://www.youtube.com/watch?v=nice6NYb\_WA . As summarised in Blanz & Vet-
ter’s paper, Face Recognition Based on Fitting a 3D Morphable Model, it is:
“...a method for face recognition across variations in pose, ranging from frontal to profile views,

and across a wide range of illuminations, including cast shadows and specular reflections. To

account for these variations, the algorithm simulates the process of image formation in 3D

space, using computer graphics, and it estimates 3D shape and texture of faces from single

images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to

images. The model is learned from a set of textured 3D scans of heads. Faces are represented

by model parameters for 3D shape and texture.”

16.7 Approaching human performance in face recognition

Organisations such as NIST periodically run competitions for face recognition
algorithms, over a wide range of conditions such as: controlled/uncontrolled
illumination and pose; resolution; capture interval; and 2D versus 3D sensors.
Uncontrolled illumination and pose remain highly challenging for algorithms.
Under some conditions, with very high resolution (> 6 megapixel) image arrays
sufficient to resolve tiny details of skin texture, machine performance equals
and even exceeds human performance (although some might question whether
this is really “face recognition” since it needs only a few square inches of high-
resolution skin texture above the eyebrows, and requires minutes to encode
and match these minutiae). The next figure shows ROC curves reported in
2007 for several algorithms; three of them are consistently above (better than)
the face recognition performance of humans (the black, fourth ROC curve).
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Performance of humans and seven algorithms on the difficult face pairs (Fig. 3a) and easy face pairs (Fig. 3b) shown

algorithms outperform humans on the difficult face pairs at most or all combinations of verification

(cf., [20] NJIT, [21] CMU for details on two of the three algorithms). Humans out-perform the other four

face pairs. All but one algorithm performs more accurately than humans on the easy face pairs. (A color

figure is provided in the Supplemental Material.)
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16.8 Interpreting facial expressions

Finally, much current effort is devoted to recognising facial expressions, not
only as static aspects of pictures but as dynamic sequences, unfolding in time.
Motion energy models are used to extract motion signatures from specific parts
of faces, and to classify these as expressions. This task also entails vision-as-
inverse-graphics to construct models based upon knowledge of the human facial
musculature and behaviour, while Hidden Markov Models (HMMs) capture
articulated expressive state sequences. Future human-machine interaction may
incorporate this interpretive aspect, known as “affective computing.”
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