
Coding programs as numbers

L3 34



Turing/Church solution of the Entscheidungsproblem uses
the idea that (formal descriptions of) algorithms can be the
data on which algorithms act.

To realize this idea with Register Machines we have to be
able to code RM programs as numbers. (In general, such
codings are often called Gödel numberings.)

To do that, first we have to code pairs of numbers and lists
of numbers as numbers. There are many ways to do that.
We fix upon one. . .

L3 35







Numerical coding of pairs

For x, y ∈ N, define

{

⟨⟨x, y⟩⟩ ! 2x(2y + 1)
⟨x, y⟩ ! 2x(2y + 1)− 1

So
0b⟨⟨x, y⟩⟩ = 0by 1 0 · · · 0

0b⟨x, y⟩ = 0by 0 1 · · · 1

(Notation: 0bx ! x in binary.)

E.g. 27 = 0b11011 = ⟨⟨0, 13⟩⟩ = ⟨2, 3⟩

L3 36



Numerical coding of pairs

For x, y ∈ N, define

{

⟨⟨x, y⟩⟩ ! 2x(2y + 1)
⟨x, y⟩ ! 2x(2y + 1)− 1

So
0b⟨⟨x, y⟩⟩ = 0by 1 0 · · · 0

0b⟨x, y⟩ = 0by 0 1 · · · 1

(Notation: 0bx ! x in binary.)

E.g. 27 = 0b11011 = ⟨⟨0, 13⟩⟩ = ⟨2, 3⟩

L3 36



Numerical coding of pairs

For x, y ∈ N, define

{

⟨⟨x, y⟩⟩ ! 2x(2y + 1)
⟨x, y⟩ ! 2x(2y + 1)− 1

So
0b⟨⟨x, y⟩⟩ = 0by 1 0 · · · 0

0b⟨x, y⟩ = 0by 0 1 · · · 1

⟨−,−⟩ gives a bijection (one-one correspondence)
between N×N and N.

⟨⟨−,−⟩⟩ gives a bijection between N×N and
{n ∈ N | n ̸= 0}.

L3 36



Numerical coding of lists

list N ! set of all finite lists of natural numbers, using ML
notation for lists:

" empty list: []

" list-cons: x :: ℓ ∈ list N (given x ∈ N and ℓ ∈ list N)

" [x1, x2, . . . , xn] ! x1 :: (x2 :: (· · · xn :: [] · · · ))

L3 37



Numerical coding of lists

list N ! set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define "ℓ# ∈ N by induction on the
length of the list ℓ:

{

"[]# ! 0

"x :: ℓ# ! ⟨⟨x, "ℓ#⟩⟩ = 2x(2 · "ℓ#+ 1)

Thus "[x1, x2, . . . , xn]# = ⟨⟨x1, ⟨⟨x2, · · · ⟨⟨xn, 0⟩⟩ · · · ⟩⟩⟩⟩

L3 37



Numerical coding of lists

list N ! set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define "ℓ# ∈ N by induction on the
length of the list ℓ:

{

"[]# ! 0

"x :: ℓ# ! ⟨⟨x, "ℓ#⟩⟩ = 2x(2 · "ℓ#+ 1)

For example:
"[3]# = "3 :: []# = ⟨⟨3, 0⟩⟩ = 23(2 · 0 + 1) = 8 = 0b1000

"[1, 3]# = ⟨⟨1, "[3]#⟩⟩ = ⟨⟨1, 8⟩⟩ = 34 = 0b100010

"[2, 1, 3]# = ⟨⟨2, "[1, 3]#⟩⟩ = ⟨⟨2, 34⟩⟩ = 276 = 0b100010100

L3 37



Numerical coding of lists

list N ! set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define "ℓ# ∈ N by induction on the
length of the list ℓ:

{

"[]# ! 0

"x :: ℓ# ! ⟨⟨x, "ℓ#⟩⟩ = 2x(2 · "ℓ#+ 1)

For example:
"[3]# = "3 :: []# = ⟨⟨3, 0⟩⟩ = 23(2 · 0 + 1) = 8 = 0b1000

"[1, 3]# = ⟨⟨1, "[3]#⟩⟩ = ⟨⟨1, 8⟩⟩ = 34 = 0b100010

"[2, 1, 3]# = ⟨⟨2, "[1, 3]#⟩⟩ = ⟨⟨2, 34⟩⟩ = 276 = 0b100010100

L3 37



Numerical coding of lists

list N ! set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define "ℓ# ∈ N by induction on the
length of the list ℓ:

{

"[]# ! 0

"x :: ℓ# ! ⟨⟨x, "ℓ#⟩⟩ = 2x(2 · "ℓ#+ 1)

0b"[x1, x2, . . . , xn]# = 1 0· · ·0 1 0· · ·0 ··· 1 0· · ·0

L3 37



Numerical coding of lists

list N ! set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define "ℓ# ∈ N by induction on the
length of the list ℓ:

{

"[]# ! 0

"x :: ℓ# ! ⟨⟨x, "ℓ#⟩⟩ = 2x(2 · "ℓ#+ 1)

0b"[x1, x2, . . . , xn]# = 1 0· · ·0 1 0· · ·0 ··· 1 0· · ·0

Hence ℓ $→ "ℓ# gives a bijection from list N to N.
L3 37



Numerical coding of programs

If P is the RM program

L0 : body0
L1 : body1

...
Ln : bodyn

then its numerical code is

!P" # ![!body0", . . . , !bodyn"]"

where the numerical code !body" of an instruction body is

defined by:

⎧

⎨

⎩

!R+
i ! Lj" # ⟨⟨2i, j⟩⟩

!R−i ! Lj, Lk" # ⟨⟨2i + 1, ⟨j, k⟩⟩⟩
!HALT" # 0

L3 38



Any x ∈ N decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = ⟨⟨y, z⟩⟩ in

if y = 2i is even, then
body(x) is R+

i ! Lz,
else y = 2i + 1 is odd, let z = ⟨j, k⟩ in

body(x) is R−i ! Lj, Lk

So any e ∈ N decodes to a unique program prog(e),
called the register machine program with index e:

prog(e) !
L0 : body(x0)

...
Ln : body(xn)

where e = "[x0, . . . , xn]#

L3 39



Example of prog(e)

! 786432 = 219 + 218 = 0b110 . . . 0
︸ ︷︷ ︸

18 ”0”s

= "[18, 0]#

! 18 = 0b10010 = ⟨⟨1, 4⟩⟩ = ⟨⟨1, ⟨0, 2⟩⟩⟩ = "R−0 ! L0, L2#

! 0 = "HALT#

So prog(786432) =
L0 : R−0 ! L0, L2

L1 : HALT

L3 40



Example of prog(e)

! 786432 = 219 + 218 = 0b110 . . . 0
︸ ︷︷ ︸

18 ”0”s

= "[18, 0]#

! 18 = 0b10010 = ⟨⟨1, 4⟩⟩ = ⟨⟨1, ⟨0, 2⟩⟩⟩ = "R−0 ! L0, L2#

! 0 = "HALT#

So prog(786432) =
L0 : R−0 ! L0, L2

L1 : HALT

N.B. jump to label with no
body (erroneous halt)

L3 40



Example of prog(e)

! 786432 = 219 + 218 = 0b110 . . . 0
︸ ︷︷ ︸

18 ”0”s

= "[18, 0]#

! 18 = 0b10010 = ⟨⟨1, 4⟩⟩ = ⟨⟨1, ⟨0, 2⟩⟩⟩ = "R−0 ! L0, L2#

! 0 = "HALT#

So prog(786432) =
L0 : R−0 ! L0, L2

L1 : HALT

N.B. In case e = 0 we have 0 = "[]#, so prog(0) is the program with
an empty list of instructions, which by convention we regard as a RM
that does nothing (i.e. that halts immediately).

L3 40







Universal register machine, U

L4 41



High-level specification

Universal RM U carries out the following computation,
starting with R0 = 0, R1 = e (code of a program), R2 = a
(code of a list of arguments) and all other registers zeroed:

! decode e as a RM program P
! decode a as a list of register values a1, . . . , an

! carry out the computation of the RM program P
starting with R0 = 0, R1 = a1, . . . , Rn = an (and any
other registers occurring in P set to 0).

L4 42



Mnemonics for the registers of U and the role they play in
its program:

R1 ≡ P code of the RM to be simulated

R2 ≡ A code of current register contents of simulated RM

R3 ≡ PC program counter—number of the current instruction
(counting from 0)

R4 ≡ N code of the current instruction body

R5 ≡ C type of the current instruction body

R6 ≡ R current value of the register to be incremented or
decremented by current instruction (if not HALT)

R7 ≡ S, R8 ≡ T and R9 ≡ Z are auxiliary registers.

R0 result of the simulated RM computation (if any).

L4 43



Overall structure of U’s program

1 copy PCth item of list in P to N (halting if PC > length
of list); goto 2

2 if N = 0 then halt, else decode N as ⟨⟨y, z⟩⟩; C ::= y;
N ::= z; goto 3

{at this point either C = 2i is even and current instruction is R
+
i ! Lz,

or C = 2i + 1 is odd and current instruction is R
−
i ! Lj, Lk where z = ⟨j, k⟩}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

L4 44



Overall structure of U’s program

1 copy PCth item of list in P to N (halting if PC > length
of list); goto 2

2 if N = 0 then halt, else decode N as ⟨⟨y, z⟩⟩; C ::= y;
N ::= z; goto 3

{at this point either C = 2i is even and current instruction is R
+
i ! Lz,

or C = 2i + 1 is odd and current instruction is R
−
i ! Lj, Lk where z = ⟨j, k⟩}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .

L4 44


