CST 2015 Part IB
Computation Theory
Exercise Sheet
Exercise 1. Show that the following arithmetic functions are all register machine computable.
(a) First projection function p € N—IN, where p(x,y) = x
(b) Constant function with value n € N, ¢ € N—IN, where c(x) £ n

x—y ify<x

(c) Truncated subtraction function, _ ~ _ € IN>-IN, where x -~ y = )
0 ify >x

(d) Integer division function, _div_ € IN?>~IN, where

int t if
xdivy £ {;” eger part of x/y ;328

(e) Integer remainder function, _mod_ € IN?>~IN, where x mody £ x ~ y(x divy)
(f) Exponentiation base 2, e € N—IN, where e(x) £ ox,

greatest y such that 2¥ < x if x >0

(g) Logarithm base 2,log, € N—IN, where log,(x) £ {0 0
if x =

Exercise 2. Let ¢ € IN~IN denote the unary partial function from numbers to numbers
computed by the register machine with code e. Show that for any given register machine
computable unary partial function f € IN—IN, there are infinitely many numbers e such that
¢. = f. (Two partial functions are equal if they are equal as sets of ordered pairs; which is
equivalent to saying that for all numbers x € IN, ¢.(x) is defined if and only if f(x) is, and
in that case they are equal numbers.)

Exercise 3. In the following register machine program, assume that register Z holds 0 ini-

tially. What is its effect? ()
START A S” EXIT
S Z- —HALT
A" Z" St

Exercise 4. Show that there is a register machine computable partial function f : IN~IN
such that both {x € IN | f(x))} and {y € N | (3x € N) f(x) = y} are register machine
undecidable.

Exercise 5. Suppose S; and S are subsets of IN. Suppose f € IN=IN is register machine
computable function satisfying: for all x in IN, x is an element of S; if and only if f(x) is an
element of Sy. Show that S; is register machine decidable if S, is.



Exercise 6. Show that the set of codes (e, ¢’) of pairs of numbers e and ¢’ satisfying ¢, = ¢,/
is undecidable.

Exercise 7. For the example Turing machine given on slide 64, give the register machine
program implementing (S, T, D) := (S, T), as described on slide 70. [Tedious!—maybe just
do a bit.]

Exercise 8. Show that the following functions are all primitive recursive.

(a) Exponentiation, exp € N?~IN, where exp(x,y) = x.

—y ifx>
(b) Truncated subtraction, minus € IN>~IN, where minus(x, y) 2 ¥y 1 x=Y
0 ifx <y
(c) Conditional branch on zero, ifzero € IN3~IN, where ifzero(x,y,z) = {y 1£ * : 8
z ifx

(d) Bounded summation: if f € IN"*!-IN is primitive recursive, then so is g € N"t1=IN
where
0 ifx=20
g(%,x) £ ¢ f(%,0) ifx=1
f(X0)+---+f(Xx—1) ifx>1.

Exercise 9. Recall the definition of Ackermann’s function ack (slide 102). Sketch how to build
a register machine M that computes ack(x3, x2) in RO when started with x; in R1 and x; in
R2 and all other registers zero. [Hint: here’s one way; the next question steers you another
way to the computability of ack. Call a finite list L = [(x1,y1,21), (%2, ¥2,22), . ..] of triples of
numbers suitable if it satisfies

x,0
x,0

(i) if (0,y,z) € L,thenz =y +1
(ii) if (x+1,0,2z) € L, then (x,1,2) € L
(iii) if (x +1,y+1,z) € L, then there is some u with (x+1,y,u) € Land (x,u,z) € L.

The ideais thatif (x,y,z) € L and L is suitable then z = ack(x, y) and L contains all the triples
(x',y',ack(x,,y’)) needed to calculate ack(x,y). Show how to code lists of triples of numbers
as numbers in such a way that we can (in principle, no need to do it explicitly!) build a
register machine that recognises whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x, y) by searching
for the code of a suitable list containing a triple with x and y in it’s first two components. ]

Exercise 10. For each n € IN, let g, be the function mapping mapping each y € IN to the
value ack(n, y) of Ackermann’s function at (1,y) € IN2.

(a) Show for all (n,y) € IN? that g, 1(y) = (g.)¥*Y (1), where h%)(z) is the result of k
repeated applications of the function / to initial argument z.

(b) Deduce that each g, is a primitive recursive function.

(c) Deduce that Ackermann’s function is total recursive.



Exercise 11. If you are still not fed up with Ackermann’s function ack € IN?>-IN, show that
the A-term ack = Ax.x (Afy.y f (f 1)) Succ represents ack (where Succ is as on slide 123).

Exercise 12. Let | be the A-term Ax. x. Show that nl =g | holds for every Church numeral 7.
Now consider

B=Afgx.gxl(f(gx))

Assuming the fact about normal order reduction mentioned on slide 115, show that if partial
functions f,g¢ € IN—~IN are represented by closed A-terms F and G respectively, then their
composition (f o g)(x) = f(g(x)) is represented by B F G.



