
Computer Graphics & Image Processing
Peter Robinson

Sixteen lectures for Part IB CST
Four supervisions suggested

Two exam questions on Paper 4

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

1

2
What are Computer Graphics &

Image Processing?

Scene
description

Digital
image

Computer
graphics

Image analysis &
computer vision

Image processing

Image
capture

Image
display

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

3

Why bother with CG & IP?
All visual computer output depends on CG

 printed output (laser/ink jet/phototypesetter)
 monitor (CRT/LCD/plasma/DMD)
 all visual computer output consists of real images generated

by the computer from some internal digital image

Much other visual imagery depends on CG & IP
 TV & movie special effects & post-production
 most books, magazines, catalogues,

flyers, brochures, junk mail,
newspapers, packaging, posters

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

4

What are CG & IP used for?
2D computer graphics

 graphical user interfaces: Mac, Windows, X…
 graphic design: posters, cereal packets…
 typesetting: book publishing, report writing…

 Image processing
 photograph retouching: publishing, posters…
 photocollaging: satellite imagery…
 art: new forms of artwork based on digitised images

3D computer graphics
 visualisation: scientific, medical, architectural…
 Computer Aided Design (CAD)
 entertainment: special effect, games, movies…

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Course Structure
Background [2L]

 images, colour, human vision, resolution

Simple rendering [2L]
 perspective, surface reflection, geometric models, ray tracing

Graphics pipeline [4L]
 polygonal models, transformations, projection (3D2D),

hardware and OpenGL, lighting and shading, texture

Underlying algorithms [4L]
 drawing lines and curves, clipping, filling, depth, anti-aliasing

Colour and displays [2L]
 Image processing [2L]

 filtering, compositing, half-toning, dithering, encoding

5

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

6

Course books
Fundamentals of Computer Graphics

 Shirley & Marschner
CRC Press 2009 (3rd edition)

Computer Graphics: Principles & Practice
 Hughes, van Dam, McGuire, Skalar, Foley, Feiner & Akeley

Addison-Wesley 2013 (3rd edition)
Computer Graphics & Virtual Environments

 Slater, Steed, & Chrysanthou
Addison Wesley 2001

Digital Image Processing
 Gonzalez & Woods

Prentice Hall 2007 (3rd edition)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

7

Computer Graphics & Image Processing

Background
 Digital images
 Lighting and colour
 Human vision

Simple rendering
Graphics pipeline
Underlying algorithms
Colour and displays
Image processing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

8

Background
what is a digital image?

 what are the constraints on digital images?

how does human vision work?
 what are the limits of human vision?
 what can we get away with given these constraints & limits?

what are the implications?

Later on in the course we will ask:
how do we represent colour?
how do displays & printers work?

 how do we fool the human eye into seeing what we want?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

9

What is an image?
two dimensional function
value at any point is an intensity or colour
not digital!

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

10

What is a digital image?
a contradiction in terms

 if you can see it, it’s not digital
 if it’s digital, it’s just a collection of numbers

a sampled and quantised version of a real image
a rectangular array of intensity or colour values

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

11

Image capture
a variety of devices can be used

 scanners
 line CCD (charge coupled device) in a flatbed scanner
 spot detector in a drum scanner

 cameras
 area CCD
 CMOS camera chips

area CCD
www.hll.mpg.de

flatbed scanner
www.nuggetlab.com

Heidelberg
drum scanner

The image of the
Heidelberg drum
scanner and many
other images in this
section come from
“Handbook of Print
Media”,
by Helmutt Kipphan,
Springer-Verlag, 2001

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

12

Image capture example

A real image A digital image

103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213
117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

13

Image display
a digital image is an array of integers, how do you

display it?
reconstruct a real image on some sort of display

device
 LCD — portable computer, video projector
 DMD — video projector
 EPS – electrophoretic display “e-paper”
 printer — ink jet, laser printer, dot matrix, dye

sublimation, commercial typesetter

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

14
Different ways of displaying the same

digital image

the display device has a significant effect on the
appearance of the displayed image

Nearest-neighbour
e.g. LCD

Gaussian
e.g. cathode ray tube

Half-toning
e.g. inkjet printer

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

15

Sampling
a digital image is a rectangular array of intensity

values
each value is called a pixel

 “picture element”

sampling resolution is normally measured in pixels
per inch (ppi) or dots per inch (dpi)
 computer monitors have a resolution around 100 ppi
 laser and ink jet printers have resolutions between 300 and

1200 ppi
 typesetters have resolutions between 1000 and 3000 ppi

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

16

Sampling resolution

22 44 88 1616

256256 128128 6464 3232

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

17

Quantisation
each intensity value is a number
for digital storage the intensity values must be

quantised
 limits the number of different intensities that can be stored
 limits the brightest intensity that can be stored

how many intensity levels are needed for human
consumption

 8 bits often sufficient
 some applications use 10 or 12 or 16 bits
 more detail later in the course

colour is stored as a set of numbers
 usually as 3 numbers of 5–16 bits each
 more detail later in the courseComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

18

Quantisation levels
8 bits

(256 levels)
7 bits

(128 levels)
6 bits

(64 levels)
5 bits

(32 levels)

1 bit
(2 levels)

2 bits
(4 levels)

3 bits
(8 levels)

4 bits
(16 levels)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

19

What is required for vision?
illumination

 some source of light

objects
 which reflect (or transmit) the light

eyes
 to capture the light as an image

direct viewing transmission reflection

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

20

Light: wavelengths & spectra
light is electromagnetic radiation

 visible light is a tiny part of the electromagnetic spectrum
 visible light ranges in wavelength from 700nm (red end of

spectrum) to 400nm (violet end)

every light has a spectrum of wavelengths that it emits
every object has a spectrum of wavelengths that it

reflects (or transmits)
the combination of the two gives the spectrum of

wavelengths that arrive at the eye

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

21

The spectrum

the short wavelength
end of the spectrum

is violet

the long wavelength
end of the spectrum
is red

violet blue green yellow red

visible light is only a tiny
part of the whole
electromagnetic spectrum

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

22
Illuminants have different characteristics

different lights emit
different intensities of
each wavelength
 sunlight is reasonably

uniform
 incandescent light

bulbs are very red
 sodium street lights

emit almost pure
yellow

www.gelighting.com/na/business_lighting/education_resources/learn_about_light/

Incandescent Light Bulbs

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

23

Illuminant × reflection = reflected light

intensity

wavelength

reflectivity

wavelength

intensity received
by the eye

wavelength

× =

intensity

wavelength

reflectivity

wavelength

intensity received
by the eye

wavelength

× =

incandescent light bulb

daylight

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

24
incandescent light bulb camera flash bulb

halogen light bulbs (overhead)winter sunlight

compare these things:

 colour of the
monkey’s nose and
paws: more red under
certain lights

 oranges & yellows
(similar in all)

 blues & violets
(considerably
different)

Comparison
of

illuminants

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

25

The workings of the human visual system
to understand the requirements of displays

(resolution, quantisation and colour) we need to
know how the human eye works...

The lens of the eye forms an
image of the world on the
retina: the back surface of
the eye

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

26

Structure of the human eye
 the retina is an array of light

detection cells
 the fovea is the high

resolution area of the retina
 the optic nerve takes signals

from the retina to the visual
cortex in the brain

Fig. 2.1 from Gonzalez & Woods
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

27

The retina
consists of about 150 million light receptors
retina outputs information to the brain along the

optic nerve
 there are about one million nerve fibres in the optic nerve
 the retina performs significant pre-processing to reduce

the number of signals from 150M to 1M
 pre-processing includes:

 averaging multiple inputs together
 colour signal processing
 local edge detection

www.stlukeseye.com
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

28

Detailed structure of retinal processing
a lot of pre-processing

occurs in the retina
before signals are
passed to the brain

many light receptors
have their signals
combined into a single
signal to the brain

www.phys.ufl.edu/~avery/course/3400/vision/retina_schema.jpg

light comes in
from this direction

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

29

Light detectors in the retina
two classes

 rods
 cones

cones come in three types
 sensitive to short, medium and long wavelengths
 allow you to see in colour

the cones are concentrated in the macula, at the
centre of the retina

the fovea is a densely packed region in the centre of
the macula
 contains the highest density of cones
 provides the highest resolution vision

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

30

Foveal vision
150,000 cones per square millimetre in the fovea

 high resolution
 colour

outside fovea: mostly rods
 lower resolution

 many rods’ inputs are combined to produce one signal to the visual
cortex in the brain

 principally monochromatic
 there are very few cones, so little input available to provide colour

information to the brain
 provides peripheral vision

 allows you to keep the high resolution region in context
 without peripheral vision you would walk into things, be unable to find

things easily, and generally find life much more difficult

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

31
Distribution of rods & cones

Fig. 2.2 from Gonzalez & Woods
www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

cones in the fovea

rods & cones outside the fovea

(1) cones in the fovea are squished together more tightly than
outside the fovea: higher resolution vision;
(2) as the density of cones drops the gaps between them are filled
with rods

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

32

Colour vision
 there are three types of cone
 each responds to a different

spectrum
 very roughly long, medium,

and short wavelengths
 each has a response function:

l(), m(), s()

 different numbers of the different types
 far fewer of the short wavelength receptors
 so cannot see fine detail in blue

 overall intensity response of the cones can be calculated
 y() = l() + m() + s()
 y = k P() y() d is the perceived luminance in the fovea
 y = k P() r() d is the perceived luminance outside the fovea r() is the response

function of the rodsComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

33

Distribution of different cone types

 this is about 1° of visual angle
 distribution is:

 7% short, 37% medium, 56% long

 short wavelength receptors
 regularly distributed
 not in the central 1/3°
 outside the fovea, only 1% of cones

are short

 long & medium
 about 3:2 ratio long:medium

www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

simulated cone distribution at
the centre of the fovea

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

34

Colour signals sent to the brain
 the signal that is sent to the brain is pre-processed by the retina

 this theory explains:
 colour-blindness effects
 why red, yellow, green and blue are

perceptually important colours
 why you can see e.g. a yellowish red

but not a greenish red

+ + =long medium short luminance

– =long medium

+ – =long medium short yellow-blue

red-green

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

35

Chromatic metamerism
 many different spectra will induce the same response in our

cones
 the values of the three perceived values can be calculated as:

 l = k P() l() d
 m = k P() m() d
 s = k P() s() d

 k is some constant, P() is the spectrum of the light incident on the retina
 two different spectra (e.g. P1() and P2()) can give the same values

of l, m, s
 we can thus fool the eye into seeing (almost) any colour by mixing correct

proportions of some small number of lights

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

36

Mixing coloured lights
by mixing different amounts of red, green,

and blue lights we can generate a wide
range of responses in the human eye

not all colours can be created in this way

red

green

blue

green

blue
light
off

red
light

fully on

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

37

Some of the processing in the eye
discrimination

 discriminates between different intensities and colours

adaptation
 adapts to changes in illumination level and colour
 can see about 1:100 contrast at any given time
 but can adapt to see light over a range of 1010

persistence
 integrates light over a period of about 1/30 second

edge detection and edge enhancement
 visible in e.g. Mach banding effects

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

38

Intensity adaptation
 at any one time the eye can handle intensities

over a range of ~100:1
 this is the curve BbBa

 anything darker is seen as black
 if everything is black, the eye adjusts down

 anything brighter causes pain
 and stimulates the eye to adjust up

 the eye can adjust over a range of 107:1 in colour
vision
 the curve BbBa slides up or down the photopic

curve

 at very low light levels only rods are effective
 this is the scotopic curve
 no colour, because the cones are not able to pick

up any light

Fig. 2.4 from Gonzalez & Woods
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

39

Intensity differentiation
the eye can obviously differentiate between different

colours and different intensities
Weber’s Law tells us how good the eye is at

distinguishing different intensities using just noticeable
differences

background at
intensity I

foreground at intensity I+I

for a range of values of I

• start with I=0
increase I until human observer can
just see a difference

• start with I large
decrease I until human observer can
just not see a difference

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

40

Intensity differentiation
results for a “normal” viewer

 a human can distinguish about a 2% change in intensity for
much of the range of intensities

 discrimination becomes rapidly worse as you get close to
the darkest or brightest intensities that you can currently
see

I

I/I

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

41

Simultaneous contrast
the eye performs a range of non-linear operations
for example, as well as responding to changes in

overall light, the eye responds to local changes

The centre square is the same intensity in all four cases but does not appear to be
because your visual system is taking the local contrast into account

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

42

Mach bands
show the effect of edge enhancement in the retina’s

pre-processing

Each of the nine rectangles is a constant colour but you will see each rectangle
being slightly brighter at the end which is near a darker rectangle and slightly

darker at the end which is near a lighter rectangle

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

43
Ghost squares

another effect caused by retinal pre-processing
 the edge detectors outside the fovea cause you to see grey

squares at the corners where four black squares join
 the fovea has sufficient resolution to avoid this “error”

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

44

Summary of what human eyes do...
sample the image that is projected onto the retina
adapt to changing conditions
perform non-linear pre-processing

 makes it very hard to model and predict behaviour

combine a large number of basic inputs into a much
smaller set of signals
 which encode more complex data

 e.g. presence of an edge at a particular location with a particular
orientation rather than intensity at a set of locations

pass pre-processed information to the visual cortex
 which performs extremely complex processing
 discussed in the Computer Vision courseComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

45

Implications of vision on resolution
The acuity of the eye is measured as the ability to see

a white gap,1 minute wide, between two black lines
 about 300dpi at 30cm
 the corresponds to about 2 cone widths on the fovea

Resolution decreases as contrast decreases
Colour resolution is lower than intensity resolution

 this is exploited in video encoding
 the colour information in analogue television has half the spatial

resolution of the intensity information
 the colour information in digital television has less spatial resolution

and fewer quantisation levels than the intensity information

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

46

Implications of vision on quantisation
Humans can distinguish, at best, about a 2% change in

intensity
 not so good at distinguishing colour differences

We need to know what the brightest white and
darkest black are
 most modern display technologies (LCD or DLP) have

static contrast ratios quoted in the thousands
 actually in the hundreds other in a completely dark room

 movie film has a contrast ratio of about 1000:1

12–16 bits of intensity information
 assuming intensities are distributed linearly

 this allows for easy computation

 8 bits are often acceptable, except in the dark regionsComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

47

Storing images in memory
8 bits became a de facto standard for greyscale images

 8 bits = 1 byte
 16 bits is now being used more widely, 16 bits = 2 bytes
 an 8 bit image of size W H can be stored in a block of

W H bytes
 one way to do this is to store pixel[x][y] at memory

location base + x + W y
 memory is 1D, images are 2D

base

base + 1 + 5 2

5

5

4
3
2
1
0

0 1 2 3 4

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

48

Colour images
 tend to be 24 bits per pixel

 3 bytes: one red, one green, one blue
 increasing use of 48 bits per pixel, 2 bytes per colour plane

 can be stored as a contiguous block of memory
 of size W H 3

 more common to store each colour in a separate “plane”
 each plane contains just W H values

 the idea of planes can be extended to other attributes associated
with each pixel
 alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a data

structure containing depth and coverage information), overlay planes (e.g. for
displaying pop-up menus) — see later in the course for details

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

49

The frame buffer
most computers have a special piece of memory

reserved for storage of the current image being
displayed

the frame buffer normally consists of dual-ported
Dynamic RAM (DRAM)
 sometimes referred to as Video RAM (VRAM)

output
stage

(e.g. DAC)
display

frame
buffer

B
U
S

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

50

Double buffering
 if we allow the currently displayed image to be updated then we

may see bits of the image being displayed halfway through the
update
 this can be visually disturbing, especially if we want the illusion of smooth

animation

 double buffering solves this problem: we draw into one frame
buffer and display from the other
 when drawing is complete we flip buffers

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

51

Modern graphics cards
 most graphics processing is now done on a separate graphics card
 the CPU communicates primitive data over the bus to the special

purpose Geometry Processing Unit (GPU)
 there is additional video memory on the graphics card, mostly used

for storing textures, which are mostly used in 3D games

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B
GPU

Texture
memory

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Graphics card architecture
52

based on nVIDIA’s GeForce 6 architecture

Vertex Shader
(programmable)

Rasterizer
(z-buffer)

Fragment Shader
(programmable)

Raster
Operations

Unit

Texture Unit

3D triangles

textures frame buffers

Geometry stage Rasterization stage

Memory
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

55

Computer Graphics & Image Processing

Background
Simple rendering

 Projection, depth and perspective
 Reflection from surfaces
 Ray tracing

Graphics pipeline
Underlying algorithms
Colour and displays
Image processing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

56

3D 2D projection
to make a picture

 3D world is projected to a 2D image
 like a camera taking a photograph
 the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

57

Types of projection
parallel

 e.g.
 useful in CAD, architecture, etc
 looks unrealistic

perspective
 e.g.
 things get smaller as they get farther away
 looks realistic

 this is how cameras work

(, ,) (,)x y z x y

(, ,) (,)x y z x
z

y
z

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Depth cues
58

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Rendering depth
59

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Wrong perspective
Adoring saints
Lorenzo Monaco

1407-09
National Gallery

London

60

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Perspective
Holy Trinity fresco
Masaccio (Tommaso di Ser Giovanni

di Simone) 1425
Santa Maria Novella

Florence

61

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

More perspective
The Annunciation

with Saint Emidius
Carlo Crivelli 1486
National Gallery London

62

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

63

Perspective projection examples

Gates Building – the rounded version
(Stanford)

Gates Building – the rectilinear version
(Cambridge)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

False perspective
64

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Calculating
perspective

65

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Illumination and shading
Dürer’s method allows us to calculate what part of

the scene is visible in any pixel
But what colour should it be?
Depends on:

 lighting
 shadows
 properties of surface material

66

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Different materials have different reflectances
67

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

BRDF

Bidirectional Reflectance
Distribution Function

68

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

BRDF

Bidirectional Reflectance
Distribution Function
 ρ(θi ,i ; θo, o)

69

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

BRDF

Bidirectional Reflectance
Distribution Function
 ρ(θi ,i ; θo, o)

 Isotropic material
 Invariant when material is rotated
 BRDF is 3D
 ρ(θi ,θo,diff)

We can lookup the ρ value for a
point (e.g., a vertex) if we know:
 the light’s position
 the camera’s position
 position and normal at the point

70

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Capturing an anisotropic BRDF
71

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Equations for lighting
Rather than using a BRDF look-up table, we might

prefer a simple equation

 This is the sort of trade-off that has occurred often in the
history of computing

 Early years: memory is expensive, so use a calculated
approximation to the truth

 More recently: memory is cheap, so use a large look-up
table captured from the real world to give an accurate
answer

 Examples include: surface properties in graphics, sounds for
electric pianos/organs, definitions of 3D shape

72

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

73

How do surfaces reflect light?

perfect specular
reflection
(mirror)

Imperfect specular
reflection

diffuse reflection
(Lambertian reflection)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

74

Comments on reflection

 the surface can absorb some wavelengths of light
 e.g. shiny gold or shiny copper

 specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one another

 plastics are good examples of surfaces with:
 specular reflection in the light’s colour
 diffuse reflection in the plastic’s colour

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

75

Calculating the shading of a surface
 gross assumptions:

 there is only diffuse (Lambertian) reflection
 all light falling on a surface comes directly from a light source

 there is no interaction between objects
 no object casts shadows on any other

 so can treat each surface as if it were the only object in the scene
 light sources are considered to be infinitely distant from the object

 the vector to the light is the same across the whole surface

 observation:
 the colour of a flat surface will be uniform across it, dependent only on the

colour & position of the object and the colour & position of the light sources

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

76

Diffuse shading calculation

L is a normalised vector pointing in
the direction of the light source

N is the normal to the surface

Il is the intensity of the light source

kd is the proportion of light which is
diffusely reflected by the surface

I is the intensity of the light reflected
by the surface

L
N

I I k
I k N L

l d

l d

cos
()

use this equation to calculate the colour of a pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

77

Diffuse shading: comments
 can have different Il and different kd for different wavelengths

(colours)
 watch out for cos < 0

 implies that the light is behind the polygon and so it cannot illuminate this
side of the polygon

 do you use one-sided or two-sided surfaces?
 one sided: only the side in the direction of the normal vector can be

illuminated
 if cos < 0 then both sides are black

 two sided: the sign of cos determines which side of the polygon is
illuminated
 need to invert the sign of the intensity for the back side

 this is essentially a simple one-parameter (BRDF

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

78
Specular reflection

 Phong developed an easy-to-
calculate approximation to
specular reflection

N
R

V

L

L is a normalised vector pointing in the
direction of the light source

R is the vector of perfect reflection
N is the normal to the surface
V is a normalised vector pointing at the

viewer
Il is the intensity of the light source
ks is the proportion of light which is

specularly reflected by the surface
n is Phong’s ad hoc “roughness” coefficient
I is the intensity of the specularly reflected

light

I I k
I k R V

l s
n

l s
n

cos
()

Phong Bui-Tuong, “Illumination for computer
generated pictures”, CACM, 18(6), 1975, 311–7

n=1 n=3 n=7 n=20 n=40Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

79

Examples

diffuse reflection

specular
reflection

100% 75% 50% 25% 0%

100%

75%

50%

25%

0%

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

80

The gross assumptions revisited
 only diffuse reflection

 now have a method of approximating specular reflection

 no shadows
 need to do ray tracing or shadow mapping to get shadows

 lights at infinity
 can add local lights at the expense of more calculation

 need to interpolate the L vector

 no interaction between surfaces
 cheat!

 assume that all light reflected off all other surfaces onto a given surface
can be amalgamated into a single constant term: “ambient illumination”,
add this onto the diffuse and specular illumination

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

81

Shading: overall equation
 the overall shading equation can thus be considered to be the

ambient illumination plus the diffuse and specular reflections
from each light source

 the more lights there are in the scene, the longer this calculation will take

N
Ri

V

Li

I I k I k L N I k R Va a i d i i s i
n

ii

 () ()

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

82

Illumination & shading: comments
 how good is this shading equation?

 gives reasonable results but most objects tend to look as if they are made
out of plastic

 Cook & Torrance have developed a more realistic (and more expensive)
shading model which takes into account:
 micro-facet geometry (which models, amongst other things, the

roughness of the surface)
 Fresnel’s formulas for reflectance off a surface

 there are other, even more complex, models

 is there a better way to handle inter-object interaction?
 “ambient illumination” is a gross approximation
 distributed ray tracing can handle specular inter-reflection
 radiosity can handle diffuse inter-reflection

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Ray tracing
Identify point on surface and calculate illumination
Given a set of 3D objects, shoot a ray from the eye

through the centre of every pixel and see what
surfaces it hits

83

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

84Ray tracing: examples

ray tracing easily handles reflection, refraction,
shadows and blur

ray tracing is computationally expensive

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

85

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye

record intersection point and object
END IF ;

END IF ;
END FOR ;
set pixel’s colour to that of the object at the closest intersection point

END FOR ;

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

86

Intersection of a ray with an object 1
 plane

 polygon or disc
 intersection the ray with the plane of the polygon

 as above
 then check to see whether the intersection point lies inside the polygon

 a 2D geometry problem (which is simple for a disc)

O
D

ray
plane

: ,
:

P O sD s
P N d

0
0

N

s d N O
N D

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

87

Intersection of a ray with an object 2
 sphere

 cylinder, cone, torus
 all similar to sphere
 try them as an exercise

O
D C

r

a
dbs

a
dbs

acbd

rCOCOc
CODb

DDa

2

2

4

2

2

1

2

2

d real d imaginary

0)()(:sphere
0,:ray

2

rCPCP
ssDOP

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

88

Ray tracing: shading
 once you have the intersection of a

ray with the nearest object you can
also:
 calculate the normal to the object at

that intersection point
 shoot rays from that point to all of the

light sources, and calculate the diffuse
and specular reflections off the object
at that point
 this (plus ambient illumination)

gives the colour of the object (at
that point)

O
D C

r

N

light 1

light 2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

89

Ray tracing: shadows
 because you are tracing

rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light
and is hence casting a
shadow
 also need to watch for self-

shadowing
O

D C
r

N

light 1

light 2

light 3

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

90

Ray tracing: reflection
 if a surface is totally or

partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by
the reflection
 this is perfect (mirror)

reflection

O

N1

light
N2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

91

Ray tracing: transparency & refraction
 objects can be totally or

partially transparent
 this allows objects behind the

current one to be seen through
it

 transparent objects can have
refractive indices
 bending the rays as they pass

through the objects

 transparency + reflection
means that a ray can split into
two parts

O

light

D0

D1

D'1

D'2

D2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

92

Sampling
 we have assumed so far that each ray

passes through the centre of a pixel
 i.e. the value for each pixel is the colour of

the object which happens to lie exactly
under the centre of the pixel

 this leads to:
 stair step (jagged) edges to objects
 small objects being missed completely
 thin objects being missed completely or

split into small pieces

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

93

Anti-aliasing
 these artefacts (and others) are jointly known as aliasing
 methods of ameliorating the effects of aliasing are known as

anti-aliasing

 in signal processing aliasing is a precisely defined technical term for a
particular kind of artefact

 in computer graphics its meaning has expanded to include most
undesirable effects that can occur in the image
 this is because the same anti-aliasing techniques which ameliorate

true aliasing artefacts also ameliorate most of the other artefacts

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

94

Sampling in ray tracing
 single point

 shoot a single ray through the pixel’s
centre

 super-sampling for anti-aliasing
 shoot multiple rays through the pixel

and average the result
 regular grid, random, jittered, Poisson

disc

 adaptive super-sampling
 shoot a few rays through the pixel,

check the variance of the resulting
values, if similar enough stop, otherwise
shoot some more rays

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

95

Types of super-sampling 1
 regular grid

 divide the pixel into a number of sub-pixels and
shoot a ray through the centre of each

 problem: can still lead to noticable aliasing unless
a very high resolution sub-pixel grid is used

 random
 shoot N rays at random points in the pixel
 replaces aliasing artefacts with noise artefacts

 the eye is far less sensitive to noise than to
aliasing

12 8 4

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

96

Types of super-sampling 2
 Poisson disc

 shoot N rays at random points in
the pixel with the proviso that no
two rays shall pass through the
pixel closer than to one another

 for N rays this produces a better
looking image than pure random
sampling

 very hard to implement properly

Poisson disc pure random

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

97

Types of super-sampling 3
 jittered

 divide pixel into N sub-pixels and
shoot one ray at a random point in
each sub-pixel

 an approximation to Poisson disc
sampling

 for N rays it is better than pure
random sampling

 easy to implement

jittered pure randomPoisson disc

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

98More reasons for wanting to take
multiple samples per pixel

 super-sampling is only one reason why we might want to take
multiple samples per pixel

 many effects can be achieved by distributing the multiple samples
over some range
 called distributed ray tracing

 N.B. distributed means distributed over a range of values

 can work in two ways
each of the multiple rays shot through a pixel is allocated a random value from

the relevant distribution(s)
 all effects can be achieved this way with sufficient rays per pixel

each ray spawns multiple rays when it hits an object
 this alternative can be used, for example, for area lights

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

99

Examples of distributed ray tracing
 distribute the samples for a pixel over the pixel area

 get random (or jittered) super-sampling
 used for anti-aliasing

 distribute the rays going to a light source over some area
 allows area light sources in addition to point and directional light sources
 produces soft shadows with penumbrae

 distribute the camera position over some area
 allows simulation of a camera with a finite aperture lens
 produces depth of field effects

 distribute the samples in time
 produces motion blur effects on any moving objects

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

100

Anti-aliasing

one sample per pixel multiple samples per pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

101

Area vs point light source

an area light source produces soft shadows a point light source produces hard shadows

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

102Finite aperture

1, 120

left, a pinhole camera

below, a finite aperture camera

below left, 12 samples per pixel

below right, 120 samples per pixel

note the depth of field blur: only objects
at the correct distance are in focus

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

103
Distributed ray tracing for

specular reflection
 previously we could only

calculate the effect of perfect
reflection

 we can now distribute the
reflected rays over the range of
directions from which specularly
reflected light could come

 provides a method of handling
some of the inter-reflections
between objects in the scene

 requires a very large number of
rays per pixel

O

light

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

104

Handling direct illumination

light

light

 diffuse reflection
 handled by ray tracing and

polygon scan conversion
 assumes that the object is a

perfect Lambertian reflector

 specular reflection
 also handled by ray tracing and

polygon scan conversion
 use Phong’s approximation to

true specular reflection

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

105

Handing indirect illumination: 1

light

light

 diffuse to specular
 handled by distributed ray

tracing

 specular to specular
 also handled by

distributed ray tracing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

106

Handing indirect illumination: 2

light

light

 diffuse to diffuse
 handled by radiosity

 covered in the Part II
Advanced Graphics
course

 specular to diffuse
 handled by no usable

algorithm
 some research work has

been done on this but
uses enormous amounts
of CPU time

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

107

Multiple inter-reflection
 light may reflect off many surfaces on its way

from the light to the camera
 standard ray tracing and polygon scan

conversion can handle a single diffuse or
specular bounce

 distributed ray tracing can handle multiple
specular bounces

 radiosity can handle multiple diffuse bounces
 the general case cannot be handled by any

efficient algorithm

(diffuse | specular)*

diffuse | specular

(diffuse | specular) (specular)*

(diffuse)*

(diffuse | specular)*

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

109

Computer Graphics & Image Processing

Background
Simple rendering
Graphics pipeline

 Polyhedral models
 Perspective, shading and texture
 OpenGL

Underlying algorithms
Colour and displays
Image processing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Unfortunately…
Ray tracing is computationally expensive

 used by hobbyists and for super-high visual quality

Video games and user interfaces need something faster
So:

 Model surfaces as polyhedra – meshes of polygons
 Use composition to build scenes
 Apply perspective transformation

and project into plane of screen
 Work out which surface was closest
 Fill pixels with colour of nearest visible polygon

Modern graphics cards have hardware to support this

110

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Three-dimensional objects
 Polyhedral surfaces are made up from

meshes of multiple connected polygons

 Polygonal meshes
 open or closed
 manifold or non-manifold

 Curved surfaces
 must be converted to polygons to be drawn

111

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

112

Surfaces in 3D: polygons
Easier to consider planar polygons

 3 vertices (triangle) must be planar
 > 3 vertices, not necessarily planar

this vertex is in
front of the other

three, which are all
in the same plane

a non-planar
“polygon” rotate the polygon

about the vertical axis

should the result be this
or this?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

113

Splitting polygons into triangles
 Most Graphics Processing Units (GPUs) are optimised to

draw triangles
 Split polygons with more than three vertices into triangles

which is preferable?

?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

114

2D transformations
 scale

 rotate

 translate

 (shear)

why?
 it is extremely useful to be

able to transform predefined
objects to an arbitrary
location, orientation, and size

 any reasonable graphics
package will include
transforms
 2D Postscript
 3D OpenGL

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

115

Basic 2D transformations
 scale

 about origin
 by factor m

 rotate
 about origin
 by angle

 translate
 along vector (xo,yo)

 shear
 parallel to x axis
 by factor a

x mx
y my
'
'

x x y
y x y
' cos sin
' sin cos

x x x
y y y

o

o

'
'

x x ay
y y
'
'

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

116

Matrix representation of transformations
 scale

 about origin, factor m

 do nothing
 identity

x
y

m
m

x
y

'
'

0

0

x
y

x
y

'
'

1 0
0 1

x
y

a x
y

'
'

1
0 1

 rotate
 about origin, angle

 shear
 parallel to x axis, factor a

x
y

x
y

'
'

cos sin
sin cos

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

117

Homogeneous 2D co-ordinates
 translations cannot be represented using simple 2D matrix

multiplication on 2D vectors, so we switch to
homogeneous co-ordinates

 an infinite number of homogeneous co-ordinates map to
every 2D point

 w=0 represents a point at infinity
 usually take the inverse transform to be:

 (, ,) ,x y w x
w

y
w

(,) (, ,)x y x y 1

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

118

Matrices in homogeneous co-ordinates
 scale

 about origin, factor m

 do nothing
 identity

x
y
w

m
m

x
y
w

'
'
'

0 0
0 0
0 0 1

 rotate
 about origin, angle

 shear
 parallel to x axis, factor a

x
y
w

x
y
w

'
'
'

cos sin
sin cos

0
0

0 0 1

x
y
w

a x
y
w

'
'
'

1 0
0 1 0
0 0 1

x
y
w

x
y
w

'
'
'

1 0 0
0 1 0
0 0 1

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

119

Translation by matrix algebra

x
y
w

x
y

x
y
w

o'
'
'

1 0
0 1
0 0 1

0

w w'y y wyo' x x wxo'

x
w

x
w

x'
'
 0 0'

' y
w
y

w
y

In conventional coordinates

In homogeneous coordinates

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

120

Concatenating transformations
 often necessary to perform more than one transformation on the

same object
 can concatenate transformations by multiplying their matrices

e.g. a shear followed by a scaling:

x
y
w

m
m

x
y
w

x
y
w

a x
y
w

' '
' '
' '

'
'
'

'
'
'

0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

x
y
w

m
m

a x
y
w

m ma
m

x
y
w

' '
' '
' '

0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

0
0 0
0 0 1

shearscale

shearscale both

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

121

Transformation are not commutative
be careful of the order in which you concatenate

transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

2
2

2
2

1
2

1
2

2
2

1
2

2
2

1
2

1
2

1
2

1
2

1
2

0
0

0 0 1

2 0 0
0 1 0
0 0 1

0
0

0 0 1

0
0

0 0 1

scale

rotatescale then rotate

rotate then scale

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

122

Scaling about an arbitrary point
 scale by a factor m about point (xo,yo)

translate point (xo,yo) to the origin
scale by a factor m about the origin
translate the origin to (xo,yo)

(xo,yo)

(0,0)

x
y
w

x
y

x
y
w

o

o

'
'
'

1 0
0 1
0 0 1

x
y
w

m
m

x
y
w

' '
' '
' '

'
'
'

0 0
0 0
0 0 1

x
y
w

x
y

x
y
w

o

o

' ' '
' ' '
' ' '

' '
' '
' '

1 0
0 1
0 0 1

x
y
w

x
y

m
m

x
y

x
y
w

o

o

o

o

' ' '
' ' '
' ' '

1 0
0 1
0 0 1

0 0
0 0
0 0 1

1 0
0 1
0 0 1

Exercise: show how to
perform rotation about
an arbitrary point

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

123

3D transformations
 3D homogeneous co-ordinates

 3D transformation matrices

(, , ,) (, ,)x y z w x
w

y
w

z
w

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

m
m

m

x

y

z

0 0 0
0 0 0
0 0 0
0 0 0 1

1 0 0
0 1 0
0 0 1
0 0 0 1

t
t
t

x

y

z

cos sin
sin cos

0 0
0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 0
0 0
0 0 0 1

cos sin
sin cos

cos sin

sin cos

0 0
0 1 0 0

0 0
0 0 0 1

translation identity

scale

rotation about x-axis

rotation about y-axisrotation about z-axis

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

124

3D transformations are not commutative

x

y
z

x

x
z

z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

125

Model transformation 1
 the graphics package Open Inventor defines a cylinder to be:

 centre at the origin, (0,0,0)
 radius 1 unit
 height 2 units, aligned along the y-axis

 this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

 we want to draw a cylinder of:
 radius 2 units
 the centres of its two ends located at (1,2,3) and (2,4,5)

 its length is thus 3 units
 what transforms are required?

and in what order should they be applied?

x

y

2

2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Model transformation 2
order is important:

 scale first
 rotate
 translate last

scaling and translation are straightforward

126

x

y

2

2

x

y

3

4

1000
0200
005.10
0002

S

1000
4100
3010
5.1001

T

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

S

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Model transformation 3
rotation is a multi-step process

 break the rotation into steps, each of which is rotation
about a principal axis

 work these out by taking the desired orientation back to
the original axis-aligned position

 the centres of its two ends located at (1,2,3) and (2,4,5)

 desired axis: (2,4,5)–(1,2,3) = (1,2,2)

 original axis: y-axis = (0,1,0)

127

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Model transformation 4
 desired axis: (2,4,5)–(1,2,3) = (1,2,2)
 original axis: y-axis = (0,1,0)

 zero the z-coordinate by rotating about the x-axis

128

22

1

22
2arcsinθ

1000
0θcosθsin0
0θsinθcos0
0001

R

y

z

)2,2,1(

)0,8,1(

0,22,1 22

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Model transformation 5

 then zero the x-coordinate by rotating about the z-axis
 we now have the object’s axis pointing along the y-axis

129

22

2

81

1arcsinφ

1000
0100
00φcosφsin
00φsinφcos

R

x

y
)0,8,1(

)0,3,0(

0,81,0
22

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Model transformation 6
the overall transformation is:

 first scale
 then take the inverse of the rotation we just calculated
 finally translate to the correct position

130

w
z
y
x

w
z
y
x

SRRT 1
2

1
1

'
'
'
'

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Application: display multiple instances
 transformations allow you to define an object at one

location and then place multiple instances in your scene

131

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

132

Geometry of perspective projection

y

z

d

(, ,)x y z
(' , ' ,)x y d

x x d
z

y y d
z

'

'

(, ,)0 0 0

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

133

Projection as a matrix operation

x x d
z

y y d
z

'

'

10/100
/1000
0010
0001

/
/1 z

y
x

d
d

dz
d

y
x

z
z 1'

This is useful in the z-buffer
algorithm where we need to
interpolate 1/z values rather
than z values.

wz
wy
wx

w
z
y
x

/
/
/

 remember

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

134
Perspective projection

with an arbitrary camera
 we have assumed that:

 screen centre at (0,0,d)
 screen parallel to xy-plane
 z-axis into screen
 y-axis up and x-axis to the right
 eye (camera) at origin (0,0,0)

 for an arbitrary camera we can either:
 work out equations for projecting objects about an arbitrary point

onto an arbitrary plane
 transform all objects into our standard co-ordinate system (viewing

co-ordinates) and use the above assumptions

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

135

A variety of transformations

 the modelling transform and viewing transform can be multiplied together to
produce a single matrix taking an object directly from object co-ordinates into
viewing co-ordinates

 either or both of the modelling transform and viewing transform matrices can
be the identity matrix
 e.g. objects can be specified directly in viewing co-ordinates, or directly in

world co-ordinates
 this is a useful set of transforms, not a hard and fast model of how things

should be done

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinatesprojection

object in
object

co-ordinates modelling
transform

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

136

Viewing transformation 1

the problem:
 to transform an arbitrary co-ordinate system to the

default viewing co-ordinate system

camera specification in world co-ordinates
 eye (camera) at (ex,ey,ez)
 look point (centre of screen) at (lx,ly,lz)
 up along vector (ux,uy,uz)

 perpendicular to

world
co-ordinates

viewing
co-ordinatesviewing

transform

u

e

l

el

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

137

Viewing transformation 2
 translate eye point, (ex,ey,ez), to origin, (0,0,0)

 scale so that eye point to look point distance, , is distance
from origin to screen centre, d

el

T

1 0 0
0 1 0
0 0 1
0 0 0 1

e
e
e

x

y

z

el S

el

el

el

() () ()l e l e l ex x y y z z

d

d

d

2 2 2

0 0 0
0 0 0
0 0 0
0 0 0 1

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

138

Viewing transformation 3
 need to align line with z-axis

 first transform e and l into new co-ordinate system

 then rotate e''l'' into yz-plane, rotating about y-axis

el

e S T e 0 l S T l'' ''

22

1

''''

''arccosθ

1000
0θcos0θsin
0010
0θsin0θcos

zx

z

ll

l

R

x

z

(' ' , ' ' , ' ')l l lx y z

 0 2 2, ' ' , ' ' ' 'l l ly x z

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

139

Viewing transformation 4
 having rotated the viewing vector onto the yz plane, rotate it

about the x-axis so that it aligns with the z-axis

22

2

''''''

'''arccosφ

1000
0φcosφsin0
0φsinφcos0
0001

zy

z

ll

l

R

y

z

(, ' ' ' , ' ' ')0 l ly z

 0 0

0 0

2 2, , ' ' ' ' ' '

(, ,)

l l

d
y z

l R l''' '' 1

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

140

Viewing transformation 5
 the final step is to ensure that the up vector actually points up,

i.e. along the positive y-axis
 actually need to rotate the up vector about the z-axis so that it lies in the

positive y half of the yz plane

u R R u'''' 2 1
why don’t we need to
multiply u by S or T?

u is a vector rather than
a point, vectors do not
get translated

scaling u by a uniform
scaling matrix would
make no difference to the
direction in which it
points

22

3

''''''''

''''
arccosψ

1000
0100
00ψcosψsin
00ψsinψcos

yx

y

uu

u

R

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

141

Viewing transformation 6

 we can now transform any point in world co-ordinates to the
equivalent point in viewing co-ordinate

 in particular:
 the matrices depend only on e, l, and u, so they can be pre-

multiplied together

world
co-ordinates

viewing
co-ordinatesviewing

transform

x
y
z
w

x
y
z
w

'
'
'
'

R R R S T3 2 1

e l (, ,) (, ,)0 0 0 0 0 d

M R R R S T 3 2 1

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Illumination & shading
 Drawing polygons with uniform colours gives poor results
 Interpolate colours across polygons

142

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

143

Illumination & shading
Interpolating colours across polygons needs

 colour at each vertex
 algorithm to blend between the colours across the polygon

Works for ambient lighting and diffuse reflection
Specular reflection requires more information than just

the colour

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

144

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

145
Gouraud shading

 for a polygonal model, calculate the diffuse illumination at each
vertex
 calculate the normal at the vertex, and use this to calculate the diffuse

illumination at that point
 normal can be calculated directly if the polygonal model was derived from a

curved surface

 interpolate the colour between the
vertices across the polygon

 surface will look smoothly curved
 rather than looking like a set of polygons
 surface outline will still look polygonal

[(' , '), , (, ,)]x y z r g b1 1 1 1 1 1

[(' , '), ,
(, ,)]

x y z
r g b

2 2 2

2 2 2

[(' , '), , (, ,)]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

146

Flat vs Gouraud shading

 note how the interior is smoothly
shaded but the outline remains
polygonal

http://computer.howstuffworks.com/question484.htm
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

147

Phong shading
 similar to Gouraud shading, but calculate the specular component

in addition to the diffuse component
 therefore need to interpolate the normal across the polygon in

order to be able to calculate the reflection vector

 N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence

[(' , '), , (, ,),]x y z r g b1 1 1 1 1 1 1N

[(' , ') , ,
(, ,) ,]

x y z
r g b

2 2 2

2 2 2 2N

[(' , ') , , (, ,) ,]x y z r g b3 3 3 3 3 3 3N

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

148

Surface detail
so far we have assumed perfectly smooth,

uniformly coloured surfaces
real life isn’t like that:

 multicoloured surfaces
 e.g. a painting, a food can, a page in a book

 bumpy surfaces
 e.g. almost any surface! (very few things are

perfectly smooth)

 textured surfaces
 e.g. wood, marble

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

149

Texture mapping

all surfaces are smooth and of uniform
colour

most surfaces are textured with
2D texture maps

the pillars are textured with a solid texture

without with

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

150

Basic texture mapping
 a texture is simply an image,

with a 2D coordinate system
(u,v)

 each 3D object is parameterised
in (u,v) space

 each pixel maps to some part of
the surface

 that part of the surface maps to
part of the texture

u

v

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

151

Paramaterising a primitive

 polygon: give (u,v)
coordinates for three
vertices, or treat as part of
a plane

 plane: give u-axis and v-axis
directions in the plane

 cylinder: one axis goes up
the cylinder, the other
around the cylinder

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

152

Sampling texture space

u

v

Find (u,v) coordinate of the sample point on the object
and map this into texture space

Sample texture space to determine the pixel’s colour

Object (on screen)“Texture space”

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

153
Sampling texture space: finding the value

Nearest neighbour: the sample
value is the nearest pixel value to
the sample point.

Bi-linear: the sample value is the
weighted mean of the four pixels
around the sample point.

Bi-cubic (not shown): the sample value is the weighted mean of the sixteen
pixels around the sample point. Runs at a quarter the speed of bi-linear.Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

154

Texture mapping examples

nearest-
neighbour

bicubic

u

v

look at the bottom right hand corner of the distorted
image to compare the two interpolation methods

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

155

Up-sampling

nearest-
neighbour

blocky
artefacts

bicubic

blurry
artefacts

u

v

 if one pixel in the texture map covers
several pixels in the final image, you
get visible artefacts

 only practical way to prevent this is
to ensure that texture map is of
sufficiently high resolution that it does
not happen

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

156

Down-sampling
 if the pixel covers quite a large area

of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Down-sampling
without area averaging with area averaging

157

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Multi-resolution texture
 rather than down-sampling when necessary, pre-calculate

multiple versions of the texture at different resolutions and
pick the appropriate resolution to sample from…

 can use tri-linear interpolation to get an even better result:
that is, use bi-linear interpolation in the two nearest levels and
then linearly interpolate between the two interpolated values

158

average 2×2 pixels
to make 1 pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

159

an efficient memory arrangement for a multi-
resolution colour image

pixel (x,y) is a bottom level pixel location (level 0);
for an image of size (m,n), it is stored at these
locations in level k:

The MIP map
2 2

2

1 1
1

0 0

0

kk

ynxm
2

,
2

kk

ynx
2

,
2

kk

yxm
2

,
2

Red

GreenBlue
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

160

What can a texture map modify?
any (or all) of the colour components

 ambient, diffuse, specular

transparency
 “transparency mapping”

reflectiveness

but also the surface normal
 “bump mapping”

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

161

Bump mapping
 the surface normal is used in

calculating both diffuse and
specular reflection

 bump mapping modifies the
direction of the surface normal so
that the surface appears more or
less bumpy

 rather than using a texture map, a
2D function can be used which
varies the surface normal
smoothly across the plane

 but bump mapping doesn’t change
the object’s outline

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Graphics card architecture
162

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B
GPU

Texture
memory

What
happens in
the GPU?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Graphics card architecture
163

based on nVIDIA’s GeForce 6 architecture

Vertex Shader
(programmable)

Rasterizer
(z-buffer)

Fragment Shader
(programmable)

Raster
Operations

Unit

Texture Unit

3D triangles

textures frame buffers

Geometry stage Rasterization stage

Memory
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

OpenGL architecture
164

Initialise

Receive input

Update model

Free resources

Commands

Render model

Vertex processing

Transformed geometry

Rasterization

Fragments

Fragment processing

Blending

Display
C++/Java/Python

program
on host computer

GLSL shaders
on graphics

card
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

OpenGL in Java
public class MyCanvas extends GLCanvas implements GLEventListener {

public void init (GLAutoDrawable drawable) {
// Build model in buffers
// Compile and link shaders
}
public void display (GLAutoDrawable drawable) {
// Update transformations
// Draw
}
public void dispose (GLAutoDrawable drawable) { ... }
public void reshape (GLAutoDrawable drawable,

int x, int y, int width, int height) { ... }
}

165

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

OpenGL shaders
Compute
Vertex

 Receives coordinates, colour and transformations
 Applies model and view transformations to vertices
 Outputs transformed coordinates and colour

Tessellation control and evaluation
Geometry
Fragment

 Receives interpolated values from vertex shader
 Calculates lighting and shading for each visible pixel
 Outputs fragment colour

166

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

OpenGL Shading Language
Vertex shader

 uniform inputs per object – e.g. transformations
 in inputs per vertex – e.g. position and colour
 applies transformations to vertices
 out outputs per vertex – will be interpolated across a face

Fragment shader
 in inputs interpolated between vertices
 calculates lighting and shading
 outputs gl_FragColor for pixel

167

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

169

Computer Graphics & Image Processing

Background
Simple rendering
Graphics pipeline
Underlying algorithms

 Drawing lines, curves and polygons in 2D
 Clipping
 3D scan conversion

Colour and displays
Image processing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

170

Drawing a straight line
 a straight line can be defined by:

 a mathematical line is “length without breadth”
 a computer graphics line is a set of pixels
 which pixels do we need to turn on to draw a

given line?

cmxy
the slope of
the line x

y

m
1c

For a line passing through (x0,y0) and (x1,y1):

00

01

01

mxyc
xx
yym

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

171

Which pixels do we use?
 there are two reasonably sensible alternatives:

every pixel through which the
line passes

for lines of slope less than 45º
we can have either one or two

pixels in each column

the “closest” pixel to the line
in each column

for lines of slope less than 45º
we always have just one pixel

in every column

 in general, use this

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

172

A line drawing algorithm — preparation 1
pixel (x,y) has its centre at real co-ordinate (x,y)

 it thus stretches from (x-½, y-½) to (x+½, y+½)

y

x-1 x+1x

y+1

x-½
y-½

y+½

y+1½

x+½ x+1½x-1½

pixel (x,y)

Beware: not every graphics system uses this convention. Some put
real co-ordinate (x,y) at the bottom left hand corner of the pixel.Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

173

A line drawing algorithm — preparation 2
the line goes from (x0,y0) to (x1,y1)
the line lies in the first octant (0 m 1)
x0 < x1

(x0,y0)

(x1,y1)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

174Bresenham’s line drawing algorithm for
integer end points

Initialisation m = (y1 - y0) / (x1 - x0)
x = x0
yi = y0
y = y0
DRAW(x,y)

WHILE x x1 DO
x = x + 1
yi = yi + m
y = ROUND(yi)
DRAW(x,y)

END WHILE

y

x x+1

m
yi

(x0,y0)

y & y’

x x’

m
yi

yi’

Iteration

J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter”, IBM Systems Journal, 4(1), 1965Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

175
Bresenham’s algorithm for floating point

end points

y

x x+1

m
yi = y+yf

(x0,y0)

y & y’

x x’

m
y’+yf’

m = (y1 - y0) / (x1 - x0)
x = ROUND(x0)
yi = y0 + m * (x-x0)
y = ROUND(yi)
yf = yi - y
WHILE x ROUND(x1) DO

DRAW(x,y)
x = x + 1
yf = yf + m
IF (yf > ½) THEN

y = y + 1
yf = yf - 1

END IF
END WHILE

y+yf

We need to calculate the initial y from the rounded off initial position of x0 because we will not
necessarily get the right answer by rounding x0 and y0 independently.
Splitting the y-coordinate into fractional (yf) and integer (y) parts avoids rounding on every cycle.

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

176

Bresenham’s algorithm — more details
we assumed that the line is in the first octant

 can do fifth octant by swapping end points

therefore need four versions of the algorithm

1st

2nd3rd

4th

5th

6th 7th

8th

Exercise: work out what
changes need to be made to
the algorithm for it to work
in each of the other three
octants

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

177

Uses of the line drawing algorithm
to draw lines

as the basis for a curve-drawing algorithm

to draw curves as a sequence of lines

as the basis for iterating on the edges of polygons in
the polygon filling algorithms

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

178

A second line drawing algorithm
a line can be specified using an equation of the form:

this divides the plane into three regions:
 above the line k < 0
 below the line k > 0
 on the line k = 0

cbyaxyxk),(

k < 0

k > 0
k = 0

For a line segment from (x0,y0) to (x1,y1), the line is defined by:

1001

01

01

)(
yxyxc

xxb
yya

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

179

Midpoint line drawing algorithm 1
first work out the iterative step

 it is often easier to work out what should be done on each
iteration and only later work out how to initialise and
terminate the iteration

given that a particular pixel is on the line,
the next pixel must be either immediately to the right
(E) or to the right and up one (NE)

use a decision variable
(based on k) to determine
which way to go Evaluate the

decision variable
at this point

if ≥ 0 then go NE

if < 0 then go E
This is the current pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

180

Midpoint line drawing algorithm 2
decision variable needs to make a decision at point

(x+1, y+½)

if go E then the new decision variable is at
(x+2, y+½)

if go NE then the new decision variable is at
(x+2, y+1½)

d a x b y c () ()1 1
2

d a x b y c
d a

' () ()

2 1
2

d a x b y c
d a b

' () ()

2 1 1
2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

181

Midpoint line drawing algorithm 3

a = (y1 - y0)
b = -(x1 - x0)
c = x1 y0 - x0 y1
x = ROUND(x0)
y = ROUND((-a*x-c)/b)
d = a * (x+1) + b * (y+½) + c

WHILE x ROUND(x1) DO
DRAW(x,y)
IF d < 0 THEN

d = d + a
ELSE

d = d + a + b
y = y + 1

END IF
x = x + 1

END WHILE

Initialisation Iteration

y

x x+1(x0,y0)
First decision

point

E case
just increment x

NE case
increment x & y

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

182

Midpoint — comments
this version only works for lines in the first octant

 extend to other octants as for Bresenham

it is not immediately obvious that Bresenham and
Midpoint give identical results, but it can be proven
that they do

Midpoint algorithm can be generalised to draw
arbitrary circles & ellipses
 Bresenham can only be generalised to draw circles with

integer radii

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

183

Curves
circles & ellipses
Bézier cubics

 Pierre Bézier, worked in CAD for Renault
 de Casteljau invented them five years earlier at Citroën

 but Citroën would not let him publish the results
 widely used in graphic design & typography

NURBS
 Non-Uniform Rational B-Splines
 more powerful than Bezier & now more widely used
 consider these in Part II

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

184

Midpoint circle algorithm 1
equation of a circle is

 centred at the origin

decision variable can be
 d = 0 on the circle, d > 0 outside, d < 0 inside

divide circle into eight octants

 on the next slide we consider only
the second octant, the others are
similar

x y r2 2 2

d x y r 2 2 2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

185

Midpoint circle algorithm 2
decision variable needed to make a

decision at point (x+1, y-½)

if go E then the new decision variable is
at (x+2, y-½)

if go SE then the new decision variable is
at (x+2, y-1½)

d x y r () ()1 2 1
2

2 2

d x y r
d x

' () ()

2
2 3

2 1
2

2 2

d x y r
d x y

' () ()

2 1
2 2 5

2 1
2

2 2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

186

Midpoint circle algorithm 3
Drawing an origin-centred circle in all eight octants

Call Octant
Draw(x,y) 2
Draw(-x,y) 3
Draw(-x,-y) 6
Draw(x,-y) 7
Draw(y,x) 1
Draw(-y,x) 4
Draw(-y,-x) 5
Draw(y,-x) 8

1

23

4

5

6 7

8

The second-octant algorithm thus allows you to draw the whole circle.
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

187

Taking circles further
the algorithm can be easily extended

to circles not centred at the origin

a similar method can be derived for
ovals
 but: cannot naively use octants

 use points of 45° slope to divide
oval into eight sections

 and: ovals must be axis-aligned
 there is a more complex algorithm which

can be used for non-axis aligned ovals
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

188

Are circles & ellipses enough?
simple drawing packages use ellipses & segments of

ellipses

for graphic design & CAD need something with more
flexibility
 use cubic polynomials

 lower orders (linear, quadratic) cannot:
have a point of inflection
match both position and slope at both ends of a segment
be non-planar in 3D

 higher orders (quartic, quintic,…):
 can wiggle too much
 take longer to computeComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

189

Hermite cubic
 the Hermite form of the cubic is defined by its

two end-points and by the tangent vectors at
these end-points:

 two Hermite cubics can be smoothly joined by
matching both position and tangent at an end
point of each cubic

P t t t P

t t P

t t t T

t t T

() ()

()

()

()

2 3 1

2 3

2

3 2
0

3 2
1

3 2
0

3 2
1

Charles Hermite, mathematician, 1822–1901
P1

P0

T1

T0

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

190

Bézier cubic
 difficult to think in terms of tangent vectors

Bézier defined by two end points and two other
control points

P t t P

t t P

t t P

t P

() ()

()

()

1

3 1

3 1

3
0

2
1

2
2

3
3

Pierre Bézier worked for Renault in the 1960s

where:

10
),(

t

yxP iii

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

191

Bezier properties
 Bezier is equivalent to Hermite

Weighting functions are Bernstein polynomials

Weighting functions sum to one

 Bezier curve lies within convex hull of its control points
 because weights sum to 1 and all weights are non-negative

T P P T P P0 1 0 1 3 23 3 () ()

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()

b ti
i

0

3

1()

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

192

Types of curve join
each curve is smooth within itself
joins at endpoints can be:

 C1 – continuous in both position and tangent vector
 smooth join in a mathematical sense

 G1 – continuous in position, tangent vector in same direction
 smooth join in a geometric sense

 C0 – continuous in position only
 “corner”

 discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction”
to its vector on either side of the join

Cn GnComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

193

Types of curve join

C1 – continuous in position
& tangent vector

C1

G1 – continuous in
position & tangent
direction, but not
tangent magnitude

G1

C0 – continuous in
position only

C0

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

194

Drawing a Bezier cubic – iterative method
 draw as a set of short line segments equispaced in

parameter space, t

 problems:
 cannot fix a number of segments that is appropriate for all possible

Beziers: too many or too few segments
 distance in real space, (x,y), is not linearly related to distance in

parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

195

Examples
the tick marks are
spaced 0.05 apart in t
(∆t=0.05)

∆t=0.2 ∆t=0.1 ∆t=0.05

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

196

Drawing a Bezier cubic – adaptive method
adaptive subdivision

 check if a straight line between P0 and P3 is an adequate
approximation to the Bezier

 if so: draw the straight line
 if not: divide the Bezier into two halves, each a Bezier, and

repeat for the two new Beziers

need to specify some tolerance for when a straight
line is an adequate approximation
 when the Bezier lies within half a pixel width of the straight

line along its entire length

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

197

Drawing a Bezier cubic (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve

IF Flat(curve) THEN
DrawLine(curve)

ELSE
SubdivideCurve(curve, left, right)
DrawCurve(left)
DrawCurve(right)

END IF
END DrawCurve

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3

draw a line between
P0 and P3: we already
know how to do this

this requires some
straightforward
calculations

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

198

Checking for flatness

A

C

B
P(s)

22

2

)()(
))(())((

0)(

)1()(

ABAB

ACABACAB

yyxx
yyyyxxxx

AB
ACAB

s

s
sCPAB

sBAssP

 we need to know
this distance

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

199

Special cases
if s<0 or s>1 then the distance from point C to the

line segment AB is not the same as the distance from
point C to the infinite line AB

in these cases the distance is |AC| or |BC|
respectively

A

B

C

P(s)
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

200

Subdividing a Bezier cubic into two halves
a Bezier cubic can be easily subdivided into two

smaller Bezier cubics

Q P
Q P P
Q P P P
Q P P P P

0 0

1
1
2 0

1
2 1

2
1
4 0

1
2 1

1
4 2

3
1
8 0

3
8 1

3
8 2

1
8 3

R P P P P
R P P P
R P P
R P

0
1
8 0

3
8 1

3
8 2

1
8 3

1
1
4 1

1
2 2

1
4 3

2
1
2 2

1
2 3

3 3

Exercise: prove that the Bezier cubic curves defined by Q0, Q1, Q2, Q3 and R0, R1, R2, R3
match the Bezier cubic curve defined by P0, P1, P2, P3 over the ranges t[0,½] and
t[½,1] respectively

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

201

The effect of different tolerances
 this is the same Bezier curve drawn with four different tolerances

100 20 5 0.2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

202

What if we have no tangent vectors?
 base each cubic piece on the four surrounding data points

 at each data point the curve must depend solely on the
three surrounding data points
 define the tangent at each point as the direction from the preceding

point to the succeeding point
 tangent at P1 is ½(P2 -P0), at P2 is ½(P3 -P1)

 this is the basis of Overhauser’s cubic

Why?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

203

Overhauser’s cubic
 method for generating Bezier curves which match

Overhauser’s model
 simply calculate the appropriate Bezier control point locations

from the given points
 e.g. given points A, B, C, D, the Bezier control points are:

P0=B P1=B+(C-A)/6
P3=C P2=C-(D-B)/6

 Overhauser’s cubic interpolates its controlling data points
 good for control of movement in animation
 not so good for industrial design because moving a single point

modifies the surrounding four curve segments
 compare with Bezier where moving a single point modifies just

the two segments connected to that point

Overhauser worked for the Ford motor company in the 1960sComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

204

Simplifying line chains
 this can be thought of as an inverse problem to the one of

drawing Bezier curves

 problem specification: you are given a chain of line segments
at a very high resolution, how can you reduce the number of
line segments without compromising quality
 e.g. given the coastline of Britain defined as a chain of line segments at

one metre resolution, draw the entire outline on a 12801024 pixel
screen

 the solution: Douglas & Peucker’s line chain simplification
algorithm

This can also be applied to chains of Bezier curves at high resolution: most of the curves will each
be approximated (by the previous algorithm) as a single line segment, Douglas & Peucker’s
algorithm can then be used to further simplify the line chainComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

205

Douglas & Peucker’s algorithm

 find point, C, at greatest distance from line segment AB
 if distance from C to AB is more than some specified

tolerance then subdivide into AC and CB, repeat for each of
the two subdivisions

 otherwise approximate entire chain from A to B by the single
line segment AB

A B

C

Douglas & Peucker, Canadian Cartographer, 10(2), 1973
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

206

Clipping
what about lines that go off the edge of the screen?

 need to clip them so that we only draw the part of the line
that is actually on the screen

clipping points against a rectangle

y yT

y yB
x x L x x R

need to check against four edges:

T

B

R

L

yy
yy
xx
xx

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

207

Clipping lines against a rectangle — naïvely

21

21

21

221121

)1()(
)1()(
)1()(

),(to),(to

tyytty
txxttx
tPPttP

yxyxPP

edgeintersect not doessegment line else
))(),((at

intersectssegment linethen
)10(if

)1(
else

onintersecti no then)(if
with intersect to

12

1

21

21

LLL

L

L
L

LLL

L

tytxxx

t
xx
xxt

xtxtx

xx
xx

 do this operation for each of the four edges

This is naïve because a lot
of unnecessary operations
will be done for most lines.

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

208

Clipping lines against a rectangle — examples

 you can naïvely check every line against each of the four edges
 this works but is obviously inefficient

 adding a little cleverness improves efficiency enormously
 Cohen-Sutherland clipping algorithm

y yT

y yB

x x L x x R

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

209

Cohen-Sutherland clipper 1

 make a four bit code, one bit for each inequality

 evaluate this for both endpoints of the line

A x x B x x C y y D y yL R B T

Q A B C D Q A B C D1 1 1 1 1 2 2 2 2 2

y yT

y yB

x x L x x R

00001000 0100

00011001 0101

00101010 0110

ABCD ABCDABCD

Ivan Sutherland is one of the founders of Evans & Sutherland, manufacturers of flight simulator systems
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

210

Cohen-Sutherland clipper 2
 Q1= Q2 =0

 both ends in rectangle ACCEPT

 Q1 Q2 0
 both ends outside and in same half-plane REJECT

 otherwise
 need to intersect line with one of the edges and start again

 you must always re-evaluate Q and recheck the above tests after
doing a single clip

 the 1 bits tell you which edge to clip against

y yB

x x L

0000

0010

1010

0000

x x y y y y x x
x x

y y x x x x y y
y y

L
L

B
B

1 1 1 2 1
1

2 1

1 1 1 2 1
1

2 1

' ' ()

' ' ' ' ' (') '
'

P1

P1'

P1''

P2Example

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

211

Cohen-Sutherland clipper 3

 if code has more than a single 1 then you cannot tell which is the
best: simply select one and loop again

 horizontal and vertical lines are not a problem
 need a line drawing algorithm that can cope with floating-point

endpoint co-ordinates

y yT

y yB

x x L x x R

Why not?

Exercise: what happens in each of
the cases at left?
[Assume that, where there is a
choice, the algorithm always tries to
intersect with xL or xR before yB or yT.]

Try some other cases of your own
devising.

Why?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

212

which pixels do we turn on?

 those whose centres lie inside the polygon
 this is a naïve assumption, but is sufficient for now

Polygon filling

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

213
Scanline polygon fill algorithm

take all polygon edges and place in an edge list (EL) , sorted on
lowest y value
start with the first scanline that intersects the polygon, get all

edges which intersect that scan line and move them to an active
edge list (AEL)
for each edge in the AEL: find the intersection point with the

current scanline; sort these into ascending order on the x value
fill between pairs of intersection points
move to the next scanline (increment y); move new edges from

EL to AEL if start point y ; remove edges from the AEL if
endpoint y ; if any edges remain in the AEL go back to step

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

214

Scanline polygon fill example

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

215

Scanline polygon fill details
 how do we efficiently calculate the intersection points?

 use a line drawing algorithm to do incremental calculation
 store current x value, increment value dx, starting and ending y values
 on increment do a single addition x=x+dx

 what if endpoints exactly intersect
scanlines?
 need to ensure that the algorithm

handles this properly

 what about horizontal edges?
 can throw them out of the edge

list, they contribute nothing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

216

Clipping polygons

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

217

Sutherland-Hodgman polygon clipping 1
 clips an arbitrary polygon against an arbitrary convex polygon

 basic algorithm clips an arbitrary polygon against a single infinite clip
edge
 so we reduce a complex algorithm to a simpler one which we call

recursively
 the polygon is clipped against one edge at a time, passing the result on

to the next stage

Sutherland & Hodgman, “Reentrant Polygon Clipping,” Comm. ACM, 17(1), 1974
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

218

Sutherland-Hodgman polygon clipping 2
 the algorithm progresses around the polygon checking if each edge

crosses the clipping line and outputting the appropriate points

s

e

e output

inside outside

s
e

p output

inside outside
s

e

p and e output

inside outside

s

e

nothing
output

inside outside

Exercise: the Sutherland-Hodgman algorithm may introduce new edges along the
edge of the clipping polygon — when does this happen and why?

p

p

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Sutherland-Hodgman polygon clipping 3
 line segment defined by (xs,ys) and (xe,ye)
 line segment is: p(t) = (1-t)s+te
 clipping edge defined by ax+by+c=0

 test to see which side of edge s and e are on:
 k=ax+by+c
 k negative: inside, k positive: outside, k=0: on edge

 if ks and ke differ in sign then intersection point can be found by:

219

s
e

inside outside

p

)()(

0))1(())1((

eses

ss

eses

yybxxa
cbyaxt

ctyytbtxxta

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

220

Bounding boxes
 when working with complex objects, bounding boxes can be

used to speed up some operations

N

S

EW

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

221

Clipping with bounding boxes
 do a quick accept/reject/unsure test to the bounding box then

apply clipping to only the unsure objects

BBL BBR

BBB

BBT yT

yB

x L x R

A

A
A

R R

R

RR

R

U
U

U

BB x BB x BB x BB xL R R L B T T B

BB x BB x BB x BB xL L R R B B T T

otherwise clip at next higher level of detail

REJECT

 ACCEPT

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Clipping Bézier curves
If flat draw using clipped line drawing algorithm
Else consider the Bézier’s bounding box

accept draw using normal (unclipped) Bézier algorithm
reject do not draw at all
unsure split into two Béziers, recurse

222

A

A
A

R R

R

RR

R

U
U

U

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

223

Object inclusion with bounding boxes
 including one object (e.g. a graphics) file inside another can be easily

done if bounding boxes are known and used

use the eight values to
translate and scale the
original to the appropriate
position in the destination
document

N

S

EW

BBL BBR

BBB

BBT N

S

EW

COMPASS
productions

Tel: 01234 567890 Fax: 01234 567899
E-mail: compass@piped.co.uk

PT

PB

PRPL

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

224

Bit block transfer (BitBlT)
 it is sometimes preferable to predraw something and then

copy the image to the correct position on the screen as and
when required
 e.g. icons e.g. games

 copying an image from place to place is essentially a memory
operation
 can be made very fast
 e.g. 3232 pixel icon can be copied, say, 8 adjacent pixels at a time, if

there is an appropriate memory copy operation

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

225

Application 1: user interface
 early graphical user-

interfaces needed to use
objects that were quick to
draw
 straight lines
 filled rectangles

 complicated bits were done
using predrawn icons

 typefaces also tended to be
predrawn

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

226

Application 2: typography
 typeface: a family of letters designed to look good together

 usually has upright (roman/regular), italic (oblique), bold and bold-italic members

 two forms of typeface used in computer graphics
 pre-rendered bitmaps

 single resolution (don’t scale well)
 use BitBlT to put into frame buffer

 outline definitions
 multi-resolution (can scale)
 need to render (fill) to put into frame buffer

abcd efgh ijkl mnop – Gill Sans abcd efgh ijkl mnop – Times

These notes are mainly set in Gill Sans, a lineale (sans-serif) typeface designed by Eric
Gill for Monotype, 1928–30. The lowercase italic p is particularly interesting.
Mathematics is mainly set in Times New Roman, a roman typeface commissioned by
The Times in 1931, the design supervised by Stanley Morison.

abcd efgh ijkl mnop – Arial abcd efgh ijkl mnop – Garamond

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

227

Application 3: Postscript
 industry standard rendering language for printers
 developed by Adobe Systems
 stack-based interpreted language
 basic features

 object outlines made up of lines, arcs & Bezier curves
 objects can be filled or stroked
 whole range of 2D transformations can be applied to objects
 typeface handling built in

 typefaces are defined using Bezier curves
 halftoning
 can define your own functions in the language

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

228

Examples which are Bezier-friendly

typeface: Utopia (1989)
designed as a Postscript typeface by

Robert Slimbach at Adobe

typeface: Hobo (1910)
this typeface can be easily
approximated by BeziersComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

229

Examples which are more fussy

typeface: Helvetica (1957)
abcdQRST2345&

typeface: Palatino (1950)
abcdQRST2345&Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

230

Curves in 3D
same as curves in 2D, with an extra

co-ordinate for each point
e.g. Bezier cubic in 3D:

P t t P

t t P

t t P

t P

() ()

()

()

1

3 1

3 1

3
0

2
1

2
2

3
3

where: P x y zi i i i (, ,)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

231

Surfaces in 3D: patches
curves generalise to patches

 a Bezier patch has a Bezier curve running along each of its
four edges and four extra internal control points

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

232

Bezier patch definition
 the Bezier patch defined by the sixteen control points,

P0,0,P0,1,…,P3,3, is:

 compare this with the 2D version:

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()

P s t b s b t Pi j
ji

i j(,) () () ,

0

3

0

3

where:

P t b t Pi i
i

() ()

0

3

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

233

Continuity between Bezier patches
each patch is smooth within itself
ensuring continuity in 3D:

 C0 – continuous in position
 the four edge control points must match

 C1 – continuous in both position and tangent vector
 the four edge control points must match
 the two control points on either side of

each of the four edge control points must
be co-linear with both the edge point and each
other and be equidistant from the edge point

 G1 – continuous in position and tangent direction
 the four edge control points must match
 the relevant control points must be co-linear
 see pictureComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

234

Drawing Bezier patches
 in a similar fashion to Bezier curves, Bezier patches can be drawn by

approximating them with planar polygons
 simple method

 select appropriate increments in s and t and render the resulting quadrilaterals

 tolerance-based adaptive method
 check if the Bezier patch is sufficiently well approximated by a quadrilateral, if so

use that quadrilateral
 if not then subdivide it into two smaller Bezier patches and repeat on each

 subdivide in different dimensions on alternate calls to the subdivision
function

 having approximated the whole Bezier patch as a set of (non-planar)
quadrilaterals, further subdivide these into (planar) triangles
 be careful to not leave any gaps in the resulting surface!

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

235

Subdividing a Bezier patch — example

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

236

Triangulating the subdivided patch

 need to be careful not to generate holes
 need to be equally careful when subdividing connected patches

 consider whether it is worth doing this adaptive method

Final quadrilateral
mesh

Naïve triangulation More intelligent
triangulation

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

237

Viewing volume

eye point
(camera point)

viewing plane
(screen plane)

 the rectangular pyramid is
the viewing volume

 everything within the
viewing volume is projected
onto the viewing plane

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

238

Clipping in 3D
clipping against a volume in viewing co-ordinates

x

y

z
d

2b

2a

a point (x,y,z) can be
clipped against the
pyramid by checking it
against four planes:

x z a
d

x z a
d

y z b
d

y z b
d

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

239

What about clipping in z?
 need to at least check for z <

0 to stop things behind the
camera from projecting onto
the screen

 can also have front and back
clipping planes:
z > zf and z < zb
 resulting clipping volume is

called the viewing frustum

zfx

y

z
zb

x

y

z

oops!

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

240

Clipping in 3D — two methods
clip against the viewing frustum

 need to clip against six planes

project to 2D (retaining z) and clip against the axis-
aligned cuboid
 still need to clip against six planes

 these are simpler planes against which to clip
 this is equivalent to clipping in 2D with two extra clips for z

x z a
d

x z a
d

y z b
d

y z b
d

z z z zf b

x a x a y b y b z z z zf b

which is
best?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

241

Bounding volumes & clipping
can be very useful for reducing the amount of work

involved in clipping
what kind of bounding volume?

 axis aligned box

 sphere

can have multiple levels of bounding volume

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

242

3D scan conversion
lines
polygons

 depth sort
 Binary Space-Partitioning tree
 z-buffer
 A-buffer

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

243

3D line drawing
 given a list of 3D lines we draw them by:

 projecting end points onto the 2D screen
 using a line drawing algorithm on the resulting 2D lines

 this produces a wireframe version of whatever objects are
represented by the lines

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

244

Hidden line removal
 by careful use of cunning algorithms, lines that are hidden by

surfaces can be carefully removed from the projected version
of the objects
 still just a line drawing
 will not be covered further in this course

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

245

3D polygon drawing
 given a list of 3D polygons we draw them by:

 projecting vertices onto the 2D screen
 but also keep the z information

 using a 2D polygon scan conversion algorithm on the resulting 2D
polygons

 in what order do we draw the polygons?
 some sort of order on z

 depth sort
 Binary Space-Partitioning tree

 is there a method in which order does not matter?
 z-buffer

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

246

Depth sort algorithm
transform all polygon vertices into viewing co-ordinates

and project these into 2D, keeping z information
calculate a depth ordering for polygons, based on the most distant

z co-ordinate in each polygon
resolve any ambiguities caused by polygons overlapping in z
draw the polygons in depth order from back to front

 “painter’s algorithm”: later polygons draw on top of earlier polygons

 steps and are simple, step is 2D polygon scan conversion,
step requires more thought

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

247

Resolving ambiguities in depth sort
 may need to split polygons into smaller polygons to make a

coherent depth ordering

OK

OK

split

split

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

248

Resolving ambiguities: algorithm
 for the rearmost polygon, P, in the list, need to compare each polygon,

Q, which overlaps P in z
 the question is: can I draw P before Q?

do the polygons y extents not overlap?
do the polygons x extents not overlap?
 is P entirely on the opposite side of Q’s plane from the viewpoint?
 is Q entirely on the same side of P’s plane as the viewpoint?

 if all 4 tests fail, repeat and with P and Q swapped (i.e. can I
draw Q before P?), if true swap P and Q

 otherwise split either P or Q by the plane of the other, throw away
the original polygon and insert the two pieces into the list

 draw rearmost polygon once it has been completely checked

tests get
more

expensive

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Split a polygon by a plane
 remember the Sutherland-Hodgman algorithm

 splits a 2D polygon against a 2D line

 do the same in 3D: split a (planar) polygon by a plane

 line segment defined by (xs,ys,zs) and (xe,ye,ze)
 clipping plane defined by ax+by+cz+d=0

 test to see which side of plane a point is on:
 k=ax+by+cz+d
 k negative: inside, k positive: outside, k=0: on edge
 apply this test to all vertices of a polygon; if all have the same sign then the

polygon is entirely on one side of the plane

249

s
e

inside outside

p

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

250

Depth sort: comments

 the depth sort algorithm produces a list of polygons which
can be scan-converted in 2D, backmost to frontmost, to
produce the correct image

 it is reasonably cheap for small number of polygons, but
becomes expensive for large numbers of polygons

 the ordering is only valid from one particular viewpoint

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

251

Back face culling: a time-saving trick
 if a polygon is a face of a closed polyhedron

and faces backwards with respect to the
viewpoint then it need not be drawn at all
because front facing faces would later obscure
it anyway
 saves drawing time at the the cost of one extra test

per polygon
 assumes that we know which way a polygon is

oriented

 back face culling can be used in combination
with any 3D scan-conversion algorithm

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

252

Binary Space-Partitioning trees
 BSP trees provide a way of quickly calculating the correct

depth order:
 for a collection of static polygons
 from an arbitrary viewpoint

 the BSP tree trades off an initial time- and space-intensive pre-
processing step against a linear display algorithm (O(N)) which
is executed whenever a new viewpoint is specified

 the BSP tree allows you to easily determine the correct order
in which to draw polygons by traversing the tree in a simple
way

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

253

BSP tree: basic idea
 a given polygon will be correctly scan-converted if:

 all polygons on the far side of it from the viewer are scan-converted
first

 then it is scan-converted
 then all the polygons on the near side of it are scan-converted

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

254

Making a BSP tree
 given a set of polygons

 select an arbitrary polygon as the root of the tree
 divide all remaining polygons into two subsets:

 those in front of the selected polygon’s plane
 those behind the selected polygon’s plane

 any polygons through which the plane passes are split into two
polygons and the two parts put into the appropriate subsets

 make two BSP trees, one from each of the two subsets
 these become the front and back subtrees of the root

 may be advisable to make, say, 20 trees with different
random roots to be sure of getting a tree that is reasonably
well balanced

You need to be able to tell which side of an arbitrary plane a vertex lies on and how to split a
polygon by an arbitrary plane – both of which were discussed for the depth-sort algorithm.Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

255

Drawing a BSP tree
 if the viewpoint is in front of the root’s polygon’s plane

then:
 draw the BSP tree for the back child of the root
 draw the root’s polygon
 draw the BSP tree for the front child of the root

 otherwise:
 draw the BSP tree for the front child of the root
 draw the root’s polygon
 draw the BSP tree for the back child of the root

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

256

Scan-line algorithms
 instead of drawing one polygon at a time:

modify the 2D polygon scan-conversion algorithm to handle all of the
polygons at once

 the algorithm keeps a list of the active edges in all polygons and
proceeds one scan-line at a time
 there is thus one large active edge list and one (even larger) edge list

 enormous memory requirements

 still fill in pixels between adjacent pairs of edges on the scan-line but:
 need to be intelligent about which polygon is in front

and therefore what colours to put in the pixels
 every edge is used in two pairs:

one to the left and one to the right of it

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

257

z-buffer polygon scan conversion
depth sort & BSP-tree methods involve clever sorting

algorithms followed by the invocation of the standard
2D polygon scan conversion algorithm

by modifying the 2D scan conversion algorithm we
can remove the need to sort the polygons
 makes hardware implementation easier
 this is the algorithm used on graphics cards

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

258

z-buffer basics
store both colour and depth at each pixel

scan convert one polygon at a time in any order

when scan converting a polygon:
 calculate the polygon’s depth at each pixel
 if the polygon is closer than the current depth stored at

that pixel
 then store both the polygon’s colour and depth at that pixel
 otherwise do nothing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

259

z-buffer algorithm

FOR every pixel (x,y)
Colour[x,y] = background colour ;
Depth[x,y] = infinity ;

END FOR ;

FOR each polygon
FOR every pixel (x,y) in the polygon’s projection

z = polygon’s z-value at pixel (x,y) ;
IF z < Depth[x,y] THEN

Depth[x,y] = z ;
Colour[x,y] = polygon’s colour at (x,y) ;

END IF ;
END FOR ;

END FOR ;

this requires you to
project the polygon’s
vertices to 2D and run
the 2D polygon scan-
conversion algorithm

this requires you to
modify the 2D algorithm
so that it can compute
the z-value at each pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

260

z-buffer example

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

261

Interpolating depth values 1
 just as we incrementally interpolate x as we move along

each edge of the polygon, we can incrementally
interpolate z:
 as we move along the edge of the polygon
 as we move across the polygon’s projection

(, ,)x y z1 1 1

(, ,)x y z2 2 2

(, ,)x y z3 3 3

(' , ' ,)x y d1 1

(' , ' ,)x y d2 2

(' , ' ,)x y d3 3

project
x x d

z

y y d
z

a a
a

a a
a

'

'

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

262

Interpolating depth values 2
 we thus have 2D vertices, with added depth information

 we can interpolate x and y in 2D

 but z must be interpolated in 3D

[(' , '),]x y za a a

x t x t x
y t y t y
' () ' () '
' () ' () '

1
1

1 2

1 2

1 1 1 1
1 2z

t
z

t
z

 () ()

this point is halfway
between front and

back in 2D (measure
with a ruler if you do

not believe it)

this point is halfway
between front and
back in 3D (count the
rungs on the ladder)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

263

Interpolating depth values 3

21

21

21

11)1(1

)1(

'')1('

'

z
t

z
t

z

z
bdadt

z
bdadt

z
bdad

txxtx

z
bdad

z
dxx

bazx consider the projection onto the plane y=0

interpolate x′ in 2D space

now project to z=d

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

264

Comparison of methods

 BSP is only useful for scenes which do not change

 as number of polygons increases, average size of polygon decreases, so time to
draw a single polygon decreases

 z-buffer easy to implement in hardware: simply give it polygons in any order you
like

 other algorithms need to know about all the polygons before drawing a single
one, so that they can sort them into order

Algorithm Complexity Notes
Depth sort O(N log N) Need to resolve ambiguities
Scan line O(N log N) Memory intensive
BSP tree O(N) O(N log N) pre-processing step
z-buffer O(N) Easy to implement in hardware

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

265

Putting it all together - a summary
a 3D polygon scan conversion algorithm needs to

include:
 a 2D polygon scan conversion algorithm
 2D or 3D polygon clipping
 projection from 3D to 2D
 either:

 ordering the polygons so that they are drawn in the correct order

or:
 calculating the z value at each pixel and using a depth-buffer

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

266

Anti-aliasing method 1: area averaging
 average the contributions of all polygons to each pixel

 e.g. assume pixels are square and we just want the average
colour in the square

 Ed Catmull developed an algorithm which does this:
 works a scan-line at a time
 clips all polygons to the scan-line
 determines the fragment of each polygon which projects

to each pixel
 determines the amount of the pixel covered by the visible

part of each fragment
 pixel's colour is a weighted sum of the visible parts

 expensive algorithm!

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

267

Anti-aliasing method 2: super-sampling
 sample on a finer grid, then

average the samples in each
pixel to produce the final
colour
 for an nn sub-pixel grid, the

algorithm would take roughly n2

times as long as just taking one
sample per pixel

 can simply average all of the
sub-pixels in a pixel or can do
some sort of weighted average

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

268

The A-buffer – efficient super-sampling
 a significant modification of the z-buffer, which allows for sub-

pixel sampling without as high an overhead as straightforward
super-sampling

 basic observation:
 a given polygon will cover a pixel:

 totally
 partially
 not at all

 sub-pixel sampling is only required in the
case of pixels which are partially covered
by the polygon

L. Carpenter, “The A-buffer: an antialiased hidden surface method”, SIGGRAPH 84, 103–8
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

269

A-buffer: details
 for each pixel, a list of masks is stored
 each mask shows how much of a polygon covers the pixel
 the masks are sorted in depth order
 a mask is a 48 array of bits:

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

1 = polygon covers this sub-pixel

0 = polygon doesn’t cover this sub-pixel

sampling is done at the centre of each
of the sub-pixels

need to store both
colour and depth in
addition to the mask{

The use of 4×8 bits is because of the original architecture on which this was implemented.
You could use any number of sub-pixels: a power of 2 is obviously sensible.Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

270

A-buffer: example
 to get the final colour of the pixel you need to average

together all visible bits of polygons

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

sub-pixel
colours

final pixel
colour(frontmost) (backmost)

A=11111111 00011111 00000011 00000000
B=00000011 00000111 00001111 00011111
C=00000000 00000000 11111111 11111111

AB =00000000 00000000 00001100 00011111
ABC =00000000 00000000 11110000 11100000

A covers 15/32 of the pixel
AB covers 7/32 of the pixel
ABC covers 7/32 of the pixel

A B C

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

271

Making the A-buffer more efficient
 if a polygon totally covers a pixel then:

 do not need to calculate a mask, because the mask is all 1s
 all masks currently in the list which are behind this polygon can be

discarded
 any subsequent polygons which are behind this polygon can be

immediately discounted (without calculating a mask)

 in most scenes, therefore, the majority of pixels will have only
a single entry in their list of masks

 the polygon scan-conversion algorithm can be structured so
that it is immediately obvious whether a pixel is totally or
partially within a polygon

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

272

A-buffer: calculating masks
 clip polygon to pixel
 calculate the mask for each edge bounded by the right hand

side of the pixel
 there are few enough of these that they can be stored in a look-up

table

 XOR all masks together

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

273

A-buffer: comments
 the A-buffer algorithm essentially adds anti-aliasing to the z-

buffer algorithm in an efficient way

 most operations on masks are AND, OR, NOT, XOR
 very efficient boolean operations

 why 48?
 algorithm originally implemented on a machine with 32-bit registers

(VAX 11/780)
 on a 64-bit register machine, 88 is more sensible

 what does the A stand for in A-buffer?
 anti-aliased, area averaged, accumulator

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

274

A-buffer: extensions
 as presented the algorithm assumes that a mask has a constant

depth (z value)
 can modify the algorithm and perform approximate intersection

between polygons

 can save memory by combining fragments which start life in
the same primitive
 e.g. two triangles that are part of the decomposition of a Bezier patch

 can extend to allow transparent objects

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

277

Computer Graphics & Image Processing

Background
Simple rendering
Graphics pipeline
Underlying algorithms
Colour and displays

 Colour models for display and printing
 Display technologies
 Colour printing

Image processing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

278

Representing colour
we need a mechanism which allows us to represent

colour in the computer by some set of numbers
 preferably a small set of numbers which can be quantised

to a fairly small number of bits each

we will discuss:
 Munsell’s artists’ scheme

 which classifies colours on a perceptual basis

 the mechanism of colour vision
 how colour perception works

 various colour spaces
 which quantify colour based on either physical or perceptual

models of colour

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

279

Munsell’s colour classification system
three axes

 hue the dominant colour
 value bright colours/dark colours
 chroma vivid colours/dull colours

 can represent this as a 3D graph

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

280

Munsell’s colour classification system
any two adjacent colours are a standard “perceptual”

distance apart
 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

281

XYZ colour space
not every wavelength can be represented as a mix of red,

green, and blue lights
but matching & defining coloured light with a mixture of

three fixed primaries is desirable
CIE define three standard primaries: X, Y, Z

FvDFH Sec 13.2.2

Y matches the human eye’s response to light of a
constant intensity at each wavelength (luminous-
efficiency function of the eye)

X, Y, and Z are not themselves colours, they are
used for defining colours – you cannot make a light
that emits one of these primaries

XYZ colour space was defined in 1931 by the Commission
Internationale de l’ Éclairage (CIE)Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

282

CIE chromaticity diagram
chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

x X
X Y Z

y Y
X Y Z

z Z
X Y Z

x y z

 , , 1

FvDFH Fig 13.24
Colour plate 2

580nm

600nm

700nm

560nm

540nm

520nm

500nm

490nm

510nm

480nm

460nm
410nm

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

283

Colour spaces
 CIE XYZ, Yxy
 Uniform

 equal steps in any direction make equal perceptual differences
 CIE L*u*v*, CIE L*a*b*

 Pragmatic
 used because they relate directly to the way that the hardware works
 RGB, CMY, CMYK

 Munsell-like
 used in user-interfaces
 considered to be easier to use for specifying colour than are the pragmatic

colour spaces
 map easily to the pragmatic colour spaces
 HSV, HLS

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

284

XYZ is not perceptually uniform

Each ellipse shows how
far you can stray from
the central point before
a human being notices
a difference in colour

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

285

Luv was designed to be more uniform

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

286

Luv colour space
L is luminance and is
orthogonal to u and v, the
two colour axes

L*u*v* is an official CIE colour space. It is a straightforward distortion of XYZ space.
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

287

Lab space
another CIE colour

space
based on complementary

colour theory
 see slide 206 (Colour

signals sent to the brain)

also aims to be
perceptually uniform

L*=116(Y/Yn)1/3

a*=500[(X/Xn)1/3-(Y/Yn)1/3]
b*=200[(Y/Yn)1/3-(Z/Zn)1/3]

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

288

Lab space

this visualization shows
those colours in Lab space
which a human can perceive

again we see that human
perception of colour is not
uniform
 perception of colour

diminishes at the white and
black ends of the L axis

 the maximum perceivable
chroma differs for different
hues

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

289

RGB space
all display devices which output light mix red, green

and blue lights to make colour
 televisions, CRT monitors, video projectors, LCD screens

nominally, RGB space is a cube
the device puts physical limitations on:

 the range of colours which can be displayed
 the brightest colour which can be displayed
 the darkest colour which can be displayed

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

290

RGB in XYZ space
CRTs and LCDs mix red, green, and blue to make all

other colours
the red, green, and blue primaries each map to a point

in XYZ space
any colour within the resulting

triangle can be displayed
 any colour outside the triangle

cannot be displayed
 for example: CRTs cannot display

very saturated purple, turquoise,
or yellow FvDFH Figs 13.26, 13.27

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

291

CMY space
printers make colour by mixing coloured inks
the important difference between inks (CMY) and

lights (RGB) is that, while lights emit light, inks absorb
light
 cyan absorbs red, reflects blue and green
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

CMY is, at its simplest, the inverse of RGB
CMY space is nominally a cube

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

292

Ideal and actual printing ink reflectivities

actual

ideal

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

293

CMYK space
in real printing we use black

(key) as well as CMY
why use black?

 inks are not perfect absorbers
 mixing C + M + Y gives a muddy

grey, not black
 lots of text is printed in black:

trying to align C, M and Y perfectly
for black text would be a
nightmare

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

294

Using K
if we print using just

CMY then we can get
up to 300% ink at any
point on the paper

removing the
achromatic portion of
CMY and replacing
with K reduces the
maximum possible ink
coverage to 200%

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

295

Colour spaces for user-interfaces
RGB and CMY are based on the physical devices

which produce the coloured output
RGB and CMY are difficult for humans to use for

selecting colours
Munsell’s colour system is much more intuitive:

 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

computer interface designers have developed basic
transformations of RGB which resemble Munsell’s
human-friendly system

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

296

HSV: hue saturation value
three axes, as with Munsell

 hue and value have same meaning
 the term “saturation” replaces

the term “chroma”

 designed by Alvy Ray Smith in 1978
 algorithm to convert HSV to RGB

and back can be found in Foley et al.,
Figs 13.33 and 13.34Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

297

HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same
meaning

 the term “lightness” replaces the
term “value”

designed to address the
complaint that HSV has all pure
colours having the same
lightness/value as white
 designed by Metrick in 1979
 algorithm to convert HLS to RGB

and back can be found in Foley et
al., Figs 13.36 and 13.37Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

298

Summary of colour spaces
 the eye has three types of colour receptor
 therefore we can validly use a three-dimensional

co-ordinate system to represent colour
 XYZ is one such co-ordinate system

 Y is the eye’s response to intensity (luminance)
 X and Z are, therefore, the colour co-ordinates

 same Y, change X or Z same intensity, different colour
 same X and Z, change Y same colour, different intensity

 there are other co-ordinate systems with a luminance axis
 L*a*b*, L*u*v*, HSV, HLS

 some other systems use three colour co-ordinates
 RGB, CMY
 luminance can then be derived as some function of the three

 e.g. in RGB: Y = 0.299 R + 0.587 G + 0.114 B
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

299

Image display
a handful of technologies cover over 99% of all

display devices
 active displays

 cathode ray tube standard for late 20th century
 liquid crystal display most common today
 plasma displays briefly popular but power-hungry
 digital mirror displays increasing use in video projectors

 printers (passive displays)
 laser printers the traditional office printer
 ink jet printers the traditional home printer
 commercial printers for high volume

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

300

Liquid crystal displays I
 liquid crystals can twist the polarisation of light
 basic control is by the voltage that is applied across the

liquid crystal: either on or off, transparent or opaque
 greyscale can be achieved with some types of liquid crystal

by varying the voltage
 colour is achieved with colour filters

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

301

Liquid crystal displays II
there are two polarizers at right angles to one another
on either side of the liquid crystal: under normal
circumstances these would block all light

there are liquid crystal directors: micro-grooves which
align the liquid crystal molecules next to them

the liquid crystal molecules try to line up with one
another; the micro-grooves on each side are at right
angles to one another which forces the crystals’
orientations to twist gently through 90° as you go from
top to bottom, causing the polarization of the light to
twist through 90°, making the pixel transparent

liquid crystal molecules are polar: they have a positive and a
negative end

applying a voltage across the liquid crystal causes the
molecules to stand on their ends, ruining the twisting
phenomenon, so light cannot get through and the
pixel is opaqueComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

302

Liquid crystal displays III
 low power consumption compared to CRTs although the

back light uses a lot of power
 image quality historically not as good as cathode ray tubes,

but improved dramatically over the last ten years
 uses

 laptops
 video projectors
 rapidly replacing CRTs as desk top displays
 increasing use as televisions

a three LCD video projector, with colour made by
devoting one LCD panel to each of red, green and

blue, and by splitting the light using dichroic mirrors
which pass some wavelengths and reflect othersComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

303

Digital micromirror devices I
 developed by Texas Instruments

 often referred to as Digital Light Processing (DLP) technology

 invented in 1987, following ten year’s work on deformable
mirror devices

 manufactured like a silicon chip!
 a standard 5 volt, 0.8 micron, CMOS process
 micromirrors are coated with a highly reflected aluminium alloy
 each mirror is 16×16µm2

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

304

Digital micromirror devices II
 used increasingly in video projectors
 widely available from late 1990s
 colour is achieved using either three DMD chips or one

chip and a rotating colour filter

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Electrophoretic displays I
electronic paper widely used in e-books
iRex iLiad, Sony Reader, Amazon Kindle
200 dpi passive display

305

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Electrophoretic displays II
transparent capsules ~40µ diameter

 filled with dark oil
 negatively charged 1µ titanium dioxide particles

electrodes in substrate attract or repel white particles
image persists with no power consumption

306

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Electrophoretic displays III
colour filters over

individual pixels

flexible substrate
using plastic
semiconductors
(Plastic Logic)

307

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

308

Printers
many types of printer

 ink jet
 sprays ink onto paper

 laser printer
 uses a laser to lay down a pattern of charge on a drum; this picks

up charged toner which is then pressed onto the paper

 commercial offset printer
 an image of the whole page is put on a roller
 this is repeatedly inked and pressed against the paper to print

thousands of copies of the same thing

all make marks on paper
 essentially binary devices: mark/no mark

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

309

Printer resolution
laser printer

 300–1200dpi

ink jet
 used to be lower resolution & quality than laser printers

but now have comparable resolution

phototypesetter for commercial offset printing
 1200–2400 dpi

bi-level devices: each pixel is either on or off
 black or white (for monochrome printers)
 ink or no ink (in general)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

310

What about greyscale?

 achieved by halftoning
 divide image into cells, in each cell draw a spot of

the appropriate size for the intensity of that cell
 on a printer each cell is mm pixels, allowing m2+1

different intensity levels
 e.g. 300dpi with 44 cells 75 cells per inch, 17

intensity levels
 phototypesetters can make 256 intensity levels in

cells so small you can only just see them

 an alternative method is dithering
 dithering photocopies badly, halftoning photocopies

well

will discuss halftoning and dithering in Image Processing section of courseComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

311

Halftoning & dithering examples

Halftoning Dithering

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

312

What about colour?
generally use cyan, magenta, yellow, and black inks

(CMYK)
inks aborb colour

 c.f. lights which emit colour
 CMY is the inverse of RGB

why is black (K) necessary?
 inks are not perfect aborbers
 mixing C + M + Y gives a muddy grey, not black
 lots of text is printed in black: trying to align C, M and Y

perfectly for black text would be a nightmare

see slide 221 CMYK spaceComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

313

How do you produce halftoned colour?
 print four halftone screens, one in each colour
 carefully angle the screens to prevent interference (moiré) patterns

Standard rulings (in lines per inch)
65 lpi
85 lpi newsprint
100 lpi
120 lpi uncoated offset paper
133 lpi uncoated offset paper
150 lpi matt coated offset paper or art paper

publication: books, advertising leaflets
200 lpi very smooth, expensive paper

very high quality publication

150 lpi 16 dots per cell
= 2400 dpi phototypesetter
(1616 dots per cell = 256

intensity levels)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

314

Four colour halftone screens
Standard angles

 Cyan 15°
 Black 45°
 Magenta 75°
 Yellow 90°

At bottom is the moiré pattern
 this is the best possible (minimal)

moiré pattern
 produced by this optimal set of

angles
 all four colours printed in black to

highlight the effect

Magenta, Cyan & Black
are at 30° relative to
one another
Yellow (least distinctive
colour) is at 15° relative
to Magenta and Cyan

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

315

Range of printable colours

a: colour photography
(diapositive)

b: high-quality offset printing
c: newspaper printing

why the hexagonal shape?
because we can print dots which
only partially overlap making the
situation more complex than for
coloured lights

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

316

Beyond four colour printing
 printers can be built to do printing in more colours

 gives a better range of printable colours

 six colour printing
 for home photograph printing
 dark & light cyan, dark & light magenta, yellow, black

 eight colour printing
 3× cyan, 3× magenta, yellow, black
 2× cyan, 2× magenta, yellow, 3× black

 twelve colour printing
 3× cyan, 3× magenta, yellow, black

red, green, blue, orange

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

317

The extra range of colour

this gamut is for
so-called HiFi
colour printing
 uses cyan,

magenta, yellow,
plus red, green and
blue inks

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

318

Laser printer

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

319

Ink jet printers

continuous ink jet
(left)

piezo ink jet
(right)

thermal ink jet
or bubble jet
(left)

electrostatic ink jet
(right)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

320

Commercial offset printing
 the plate cylinder is where the

printing plate is held
 this is dampened and inked

anew on every pass
 the impression from the plate

cylinder is passed onto the
blanket cylinder

 it is then transferred it onto the
paper which passes between the
blanket and impression cylinders

 the blanket cylinder is there so
that the printing plate does not
come into direct contact with
the paperComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

325

Computer Graphics & Image Processing

Background
Simple rendering
Graphics pipeline
Underlying algorithms
Colour and displays
Image processing

 Point processing
 Area processing
 Rendering

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

326

Point processing
each pixel’s value is modified
the modification function only takes that pixel’s value

into account

 where p(i,j) is the value of the pixel and p'(i,j) is the
modified value

 the modification function, f (p), can perform any operation
that maps one intensity value to another

p i j f p i j' (,) { (,)}

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

327
Point processing

inverting an image

black

white

p

f(p)

black white

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

328
Point processing

improving an image’s contrast

black

white

p

f(p)

black white

dark histogram improved histogram

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

329
Point processing

modifying the output of a filter

black

white

p

f(p)

black white
black

white

p

f(p)

black white

black or white = edge
mid-grey = no edge

black = edge
white = no edge
grey = indeterminate

black = edge
white = no edge

thresholding

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

330

Image compositing
merging two or more images together

what does this operator do?

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

331

Simple compositing
copy pixels from one image to another

 only copying the pixels you want
 use a mask to specify the desired pixels

the mask determines
which image is used
for each pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

332

Alpha blending for compositing
instead of a simple boolean mask, use an alpha mask

 value of alpha mask determines how much of each image to
blend together to produce final pixel

the mask determines
how to blend the two
source pixel values

a b

m d ma m b ()1

d

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

333

Differencing – an example

- =
take the difference between the two images black = large difference

white = no differenced a b 1 | |

a b d

where 1 = white and 0 = black

the two images are taken from slightly different viewpoints

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

334

Differencing – an example

- =
take the difference between the two images black = no difference

white = large difference|| bad

a b d

where 1 = white and 0 = black

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

335

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

336

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

337

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

338

Filtering
move a filter over the image, calculating a new value

for every pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

339

Filters - discrete convolution
convolve a discrete filter with the image to produce a

new image
 in one dimension:

 in two dimensions:

f x h i f x i
i

' () () ()

where h(i) is the filter

f x y h i j f x i y j
ji

' (,) (,) (,)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

340

Example filters - averaging/blurring

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1 1 1
1 1 1
1 1 1

 1
9

1 2 1
2 24
1 2 1

1
16

1 2 4 2 1
2
4
2
1 2 4 2 1

2
4
2

6 6

6 69
9

9
9161

112

Basic 3x3 blurring filter

Gaussian 3x3 blurring filter
Gaussian 5x5 blurring filter

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

341

Example filters - edge detection

1 1 1
0 00
-1 -1 -1

1 1 0
1 -10
0 -1 -1

1 0 -1
1 -10
1 0 -1

1 2 1
0 00
-1 -2 -1

2 1 0
1 -10
0 -1 -2

1 0 -1
2 -20
1 0 -1

1 0
-10

0 1
0-1Prewitt filters

Sobel filters

Roberts filters

Horizontal Vertical Diagonal

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

342

Example filter - horizontal edge detection

1 1 1
0 00
-1 -1 -1

300 200 100 0

300 300 200 100

0 100 100 100

0 0 0 0 0 0

0 0 0 0

0

300

300

0

0

0

0 0 0 0 0 00

0 0 0 0 0

300

300

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

300

300

0

0

100 100 100 100 100 100

100 100 100 100 100 100

0 0 0 100 100 100

0 0 0 0 100 100

0 0 0 0 100 100

0 0 0 0 100 100

100 100 100 100 100 100

100

100

0

0

0

0

100

100

100

100

100

100

100

100

100

100

0

0

0

0

100

Horizontal edge
detection filter

Image Result

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

343

Example filter - horizontal edge detection

original image after use of a 33 Prewitt
horizontal edge detection filter

mid-grey = no edge, black or white = strong edge

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

344

Median filtering
not a convolution method
the new value of a pixel is the median of the values of

all the pixels in its neighbourhood

99
10 15
12
15

17 21 24

18

27

34 2

37
38 42
40 44

40 41 43 47

16 20 25
22 23 25
37 36 39

27
39
41

16 21 24
20 36
23 36 39

25
(16,20,22,23,

25,
25,36,37,39)

sort into order and take median

e.g. 33 median filter

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

345

Median filter - example

Original noisy image Small median filter
reduces the noise

Large median filter
reduces noise but blursComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

346

Median filter - limitations
copes well with shot (impulse) noise
not so good at other types of noise

in this example,
median filter reduces
noise but doesn’t
eliminate it

Gaussian filter
eliminates noise
at the expense of
excessive blurring

original

add shot noise

median
filter

Gaussian
blurComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Median filter – as an artistic effect
347

30×30 median filterComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Filtering based on local image properties
348

Photoshop “Crystallize” filter with cell size 20Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Filtering based on local image properties
349

Photoshop “Wind” filterComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Filtering based on global image properties
350

Photoshop “Auto Colour” adjustmentComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Morphological image processing
Consider images as sets of binary pixels

 Image (with for images)
 Structuring element

351

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Dilation
352

expands image by structuring element

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Erosion

set of points where can be centred to lie entirely

inside

353

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Opening

Smooths outlines and breaks narrow links

354

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Closing

Smooths outlines and joins narrow breaks

355

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Boundary

where is a solid template

356

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

Morphology with grey scales
Consider images as functions ଶ

 still with structuring element ଶ

Dilation:
௦∈ௌ

 largest value in -shaped region

Erosion:
௦∈ௌ

 smallest value in -shaped region

Same opening and closing

357

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

358

Halftoning & dithering
mainly used to convert greyscale to binary

 e.g. printing greyscale pictures on a laser printer
 8-bit to 1-bit

is also used in colour printing,
normally with four colours:
 cyan, magenta, yellow, black

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

359

Halftoning
each greyscale pixel maps to a square of binary pixels

 e.g. five intensity levels can be approximated by a 22 pixel
square
 1-to-4 pixel mapping

8-bit values that map to each of the five possibilities
0-51 52-102 103-153 154-204 205-255

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

360

Halftoning dither matrix

one possible set of patterns for the 33 case is:

these patterns can be represented by the dither
matrix: 7 9 5

2 1 4
6 3 8

 1-to-9 pixel mapping

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

361

Rules for halftone pattern design
 mustn’t introduce visual artefacts in areas of constant intensity

 e.g. this won’t work very well:

 every on pixel in intensity level j must also be on in levels > j
 i.e. on pixels form a growth sequence

 pattern must grow outward from the centre
 simulates a dot getting bigger

 all on pixels must be connected to one another
 this is essential for printing, as isolated on pixels will not print very well

(if at all)

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

362

Ordered dither
 halftone prints and photocopies well, at the expense of large

dots
 an ordered dither matrix produces a nicer visual result than

a halftone dither matrix
1 9 3 11
15 5 13 7
4 12 2 10
14 8 16 6

16 8 11 14
12 1 2 5
7 4 3 10
15 9 6 13

ordered
dither

halftone

3 6 9 14

Exercise: phototypesetters may use halftone cells up to size16x16, with 256 entries;
either construct a halftone dither matrix for a cell that large or, better, an algorithm to generate
an appropriate halftone dither matrixComputer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

363

1-to-1 pixel mapping
a simple modification of the ordered dither method

can be used
 turn a pixel on if its intensity is greater than (or equal to)

the value of the corresponding cell in the dither matrix

1 9 3 11
15 5 13 7
4 12 2 10
14 8 16 6

0 1 2 3
0
1
2
3

m

n

dm n,

q p

b q d

i j i j

i j i j i j

, ,

, , ,()

div

mod mod

15

4 4

quantise 8 bit pixel value

find binary value

e.g.

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

364

Error diffusion
error diffusion gives a more pleasing visual result than

ordered dither
method:

 work left to right, top to bottom
 map each pixel to the closest quantised value
 pass the quantisation error on to the pixels to the right

and below, and add in the errors before quantising these
pixels

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

365

Error diffusion - example (1)
map 8-bit pixels to 1-bit pixels

 quantise and calculate new error values

 each 8-bit value is calculated from pixel and error values:

8-bit value
fi,j

1-bit value
bi,j

error
ei,j

0-127

128-255

0

1

f i j,

f i j, 255

f p e ei j i j i j i j, , , ,
1
2 1

1
2 1

in this example the errors
from the pixels to the left
and above are taken into
account

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

366

Error diffusion - example (2)

107 100

60 80

+30

107 100

60 80

0

+30

1

137 100

0 0

+55

-59

-59 1 96

0 0

0
-59 +48

+48

original image process pixel (0,0) process pixel (1,0)

process pixel (0,1) process pixel (1,1)

107 100

0 110

+30 +55

+55

0

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

367

Error diffusion
 Floyd & Steinberg developed the error diffusion method in

1975
 often called the “Floyd-Steinberg algorithm”

 their original method diffused the errors in the following
proportions:

7
16

1
165

16
3

16

pixels still to
be processed

pixels that have
been processed

current pixel

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

368

Halftoning & dithering — examples
ordered dither

halftoning
(44 cells)

error diffused

halftoning
(55 cells)

original

thresholding
Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

369

Halftoning & dithering — examples
original

halftoned with a very
fine screen

ordered dither

the regular dither
pattern is clearly
visible

error diffused

more random than
ordered dither and
therefore looks more
attractive to the
human eye

thresholding

<128 black

128 white

halftoning

the larger the cell size, the more intensity levels
available

the smaller the cell, the less noticable the
halftone dots

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

370

Course review

Background
Simple rendering
Graphics pipeline
Underlying algorithms
Colour and displays
Image processing

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

371

What next?
Advanced graphics

 Modelling, splines, subdivision surfaces, complex geometry,
more ray tracing, radiosity, animation

Human-computer interaction
 Interactive techniques, quantitative and qualitative

evaluation, application design

Information theory and coding
 Fundamental limits, transforms, coding

Computer vision
 Inferring structure from images

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

372

And then?
Graphics

 multi-resolution modelling
 animation of human behaviour
 æsthetically-inspired image processing

HCI
 large displays and new techniques for interaction
 emotionally intelligent interfaces
 applications in education and for special needs
 design theory

http://www.cl.cam.ac.uk/research/rainbow/

Computer Graphics & Image Processing 2014 (c) 1996-2014 Neil A Dodgson & Peter Robinson

