Computer Fundamentals:
Operating Systems, Concurrency

Dr Robert Harle

The roles of the O/S (kernel, timeslicing, scheduling)
The notion of threads

Concurrency problems

Multi-core processors

Virtual machines

= A single program for a single user at a single time

Operating System

= A single computer for multiple users each
executing a single program

L L bl
Fatatatal bt alalalealoaleal M Y. Y

By O e e A 6 (©F B, G S =) a
st il Vel sl e e J = \
N A dal ESP. @ o L

=

S
EEaEmEE

" A dedicated machine for each person
running a single program

" A dedicated machine for each person
running multiple programs

a Stant | “yDownload directory “aDSFrame
=

wwstem Configuration E ditor | m 3:50 A

Explorer Download directony

& MacsFC [& alsl|=y
=3 Floppy [&:]
=3 Flopp [E:) D 3
=3 Boot_side [C:]
(1 4dosk Dirinfo Baddog. 106 KoalabGd4 Restore.doc
(2 Amidiag '

H LRy
(2 Audiory =
1 Invrtarpewe Linb3ewe Mmwmreg.exe DESQviews: DESQview
i g ';"'lUICD” scresnshat screenshot
antlire:

..

(R S\ump Dr. Slump Title Bookmark.htm Cslip.htm
Arare-chan

4D0S

(L) Bbslist
- Bmail
Kargy Park. Mettamerids Calmira KDE Dwxscinjpg macross.jpg
- Mmai Page

(221 Procomm

[x] j 0 AMIE B[}k Tanstaafquk O0ndestt Aclpagett Drdos_uptat
| File Options Depth of effects Utilities Help PaperCalc !

Color Scheme List Screen Element:

B
Bright Blus 5]| [Desktep Zp ConfBB8e.zip Hwinla43.2p

Add Scheme I Remove Scheme I Basic Colors: [iaternitibics

(1 [O T O (R 1995
I]

.| E’m - 405.5510204081633
File Edit EDEEEEEE =
LA [— EEEEEEEE 486 551020408163
Highlighted -----D-D ﬂggﬂﬂm
Custom Colors: M L ﬂ ﬂ ﬂ E
S DOEEOECO0 wa| 4] 5] 8] -]
Preview N A |] 2] = s %]

I | Restore Define Custom Colors M 0 J j ﬂ

Window Text

A modern OS does a lot

Abstracts hardware (allows you to write code to

e.g. access HDD and takes care of the different
HDDs for you)

Schedules processes
Allocates main memory (to individual processes)

Provides library of useful functions (e.g. get
system time, load file, etc)

Enforces security
May provide libraries to create a GUI

* The kernel is the part of the OS that runs the
system

= Just software

* Handles process scheduling (see later)
= Access to hardware

= Memory management

* Very complex software - when it breaks...
game over.

Applications

Kernel

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%

complete)

EIP: 8868: [<{cB3cadaf>] Not tainted VLI

If you'd like to know more, you can search online later for this error: HAL INITIALIZATION F Enﬁas: 08818246 (2.6. B'Prep)

EIP is at find_isa_irq_pin+8x8/8:>54

cax: 88880888 ebx: GBBBAAAE ecx: B0BBBA3f edx: 9EBEBEE3

esi: c751f888 edi: 01234567 ebp: c?51f888 esp: c75ifelc

ds: 887b es: B87?b ss: 8868

Process reboot (pid: 3585, threadinfo=c?51f888 task=d88b81b8)

Stack: cBilacf® 81234567 81234567 0088BBA8 c?7517808 81234567 cB1172a3 BEGA0ENS
cB133d63 cB8325a29 df6464b8 cl3eecBBf BBcS9fech d48dlcel ORABAAR1 dhf19488
88c59feB dcd2388c d48dleeB c8157064 BARRBBAA dB48al6d dcd23BAc dbf19468

Call Trace:

[<cBilacfB>] disable_I0_APIC+Bx16/8x1b6
[<cBi172a3>] machine_restart+Bx6/8xbc
[<c8133d63>1 sys_reboot+8x19a/8x58f
[<cB15788d>]1 handle_mm_fault+8xe5/8x229
[<cBiice?5>] do_page_fault+Bx1a5/Bx4f4
[<cB1864b7>1 destroy_inode+Bx36/8x45
[<cB8181fab>] dput+8x33/8x4f3
[<c8168a36>]1 _ fput+Bxc9/Bxee
[<cB167163>]1 filp_close+Bx59/8x5f
[<c8318c7b>] syscall_call+B8x?/8xb
Code: a2 £6 9f 5f ed4 89 37 cB 78 47 cB 78 47 cB 78 47 % 53 2
6c 38 24 6d 2c Bc 4b 26 14 29 14 Bf 67 4e 35 6d 2c Bc 6 1
88 46 13 98 46 13 88 63 17 81 6d 2c Bc

9b 53 2b Of A
81 6d 2c Bc 46

- o

* The kernel allocates chunks of main memory to
each process. It tries to prevent a program from
accessing anything outside its allocation

* Modern OSes allow us to run many programs

at once (“multitask”).

Or so it seems. In

reality a CPU time-slices:

= Each running program (or “process”) gets a
certain slot of time on the CPU

= We rotate between the running processes with

each timeslot

* This is all handled by the OS, which schedules
the processes. It is invisible to the running

orogram.
Processes Process D
A,B,C running started
\J \J
A B C D A B C D
P time

Every time the OS decides to switch the
running task, it has to perform a context
switch

It saves all the program's context (the Fetch
Execute stuff like program counter, register
values, etc) to (main) memory

It loads in the context for the next program

Obviously there is a time cost associated with
doing this...

Longer = The computer is more efficient: it

spends more time doing useful stuff
and less time context switching

= The illusion of running multiple
programs simultaneously is broken

= Appears more responsive

= More time context switching means
the overall efficiency drops

Shorter

= Sometimes a process is stuck waiting for
something to happen (e.g. data to be read from

disk)
* The process is “blocked”
* Should release (yield) its timeslot
= How can we know when to unblock it?

A blocks
and yields

n s casclols clos
>

= We could periodically check (“poll”) to see
whether the data is there

= Essentially keep scheduling the process
even though it will mostly be doing
pointless checks

= Esay but obviously inefficient

* Modern systems support interrupts

= Just signals that something has happened.
An interrupt handler is associated with
each interrupt

= E.g. HDD raises an interrupt to say it's
done getting data —» scheduler unblocks
the process

Interrupt
A blocks handler

g @

A B C A B C D B C|D A B

= Almost all significant programs make use
of the library functions in an OS (e.q. to
draw a window)

* Our machine code needs not only a
specific instruction set, but also the
relevant operating system (with its
libraries) installed

= 50 software is typically compiled for a
specific platform: a (architecture, OS) pair

= x86/Windows L}U

= ARM/Windows Windows

= X86/Linux

= ARM/iOS iOS @ X

X86/0SX

Threads and Concurrency!

= Sometimes a program needs to do
background tasks whilst still performing a
foreground task

= E.g. run an intensive computation but still
process mouse events in case the user hits
cancel.

"= Processes have threads: effectively sub
processes that run and are scheduled
iIndependently

Al A2 C Al A2 Bl B2 B3 Al A2 C

P time

* Threads run independently but share
memory

Memory

Process A Process B

Thread Thread
1 2

* Ten years ago, each generation of CPUs packed
more in and ran faster. But:

* The more you pack stuff in, the hotter it gets
* The faster you run it, the hotter it gets
* And we got down to physical limits anyway!!

= Some systems had multiple CPUs to get speed up

4= 5@

Modern system contain chips with multiple cores:
multiple CPUs in a single package

Connections shorter — faster
Lower power

Main Memory

Main Memory

X

= Two cores run completely independently, so a
single machine really can run two or more
applications simultaneously

= BUT the real interest is how we write reliable

programs that use more than one core or
thread

" This is hard because they use the same

resources, and they can then interfere with
each other

* Those sticking around for IB CST will start
to look at such concurrency issues in far
more detail. We will just look at...

Race Conditions

Thread 1 Thread 2

Race Conditions

Thread 1 Thread 2

Thread 1 Thread 2 Main

Thread 1 Register Thread 2 Register Memory
LOAD c X 5 5
ADD #1 x §) 5
STORE x c §) 6

LOAD c x 6 ©
SUB#1x 2 6
STORExc 2 3

Thread 1 Thread 2 Main

Thread 1 Register Thread 2 Register Memory
LOAD c X 5 5
LOAD c x 5 5
SUB #1 X 4 5
STORE x C 4 4
ADD #1 x §) 4
STORE X C §) 6

Thread 1 Thread 2 Main

Thread 1 Register Thread 2 Register Memory
LOAD c X 5 5
LOAD c X 5 5
ADD #1 x §) 5
STORE x c §) 6
SUB #1 x 4 6
STORE x c 4 4

When we have two or more threads
sharing a piece memory the result
can depend on the order of execution

— “Race condition”

Hard to detect (non-deterministic)
Hard to debug
Generally just hard

= Risky sets of operations
like this must be made

atomic
" |.e. ho context switching
LOAD c x once the code block is
ADD #1 X started

>TORE x C = Not trivial » much of

CST IB devoted to this

* |f something is immutable, the race
conditions go away since you can only read it
- remember this for OOP

= Go back 20 years and emulators were all the rage:
programs on architecture X that simulated
architecture Y so that programs for Y could run on X

= Essentially interpreters, except they had to recreate
the entire system. So, for example, they had to run
the operating system on which to run the program.

= Now computers are so fast
we can run multiple virtual
machines on them

Game = Allows us to run multiple
operating systems
Console OS simultaneously!

PC operating system

Operating System

Operating System

Operating System

= This is time-sharing reinvented, with steroids
= Underpins the internet services we have today

Heavy load

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Android

Light load

Windows 7

Windows 7

Ubuntu

Operating systems are complex pieces of
software

They are really a collection of management
processes, each in charge of a different thing

Multitasking is faked through timeslicing

Multiple cores withn a CPU were introduced to
boost performance on multitasking systems

All this parallelism leads to lots of tricky
concurrency issues that we're still trying to
bottom out.

	Object Oriented Programming Dr Robert Harle
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

