
Computer Fundamentals:
Operating Systems, Concurrency

Dr Robert Harle

This Week

 The roles of the O/S (kernel, timeslicing, scheduling)

 The notion of threads

 Concurrency problems

 Multi-core processors

 Virtual machines

Traditionally

 A single program for a single user at a single time

Operating System

Hardware

Application

User

Time sharing

 A single computer for multiple users each
executing a single program

Operating System

Hardware

Operating System

Application

User

Application

User

Application

User

Microprocessors (early 80s)

 A dedicated machine for each person
running a single program

Operating System

Hardware

Operating System

Application

User

Hardware

Operating System

Application

User

Hardware

Operating System

Application

User

Multitasking (80s+)

 A dedicated machine for each person
running multiple programs

Operating System

Hardware

Operating System

Application

User

Application Application

OS Functions

 A modern OS does a lot

 Abstracts hardware (allows you to write code to
e.g. access HDD and takes care of the different
HDDs for you)

 Schedules processes

 Allocates main memory (to individual processes)

 Provides library of useful functions (e.g. get
system time, load file, etc)

 Enforces security

 May provide libraries to create a GUI

The Kernel

 The kernel is the part of the OS that runs the
system
 Just software
 Handles process scheduling (see later)
 Access to hardware
 Memory management

 Very complex software – when it breaks...
game over.

Memory Management

 The kernel allocates chunks of main memory to
each process. It tries to prevent a program from
accessing anything outside its allocation

Multitasking by Time-slicing

 Modern OSes allow us to run many programs
at once (“multitask”). Or so it seems. In
reality a CPU time-slices:
 Each running program (or “process”) gets a

certain slot of time on the CPU
 We rotate between the running processes with

each timeslot
 This is all handled by the OS, which schedules

the processes. It is invisible to the running
program.

A B C

time

A B C A B CD D

Process D
started

Processes
A,B,C running

Context Switching

 Every time the OS decides to switch the
running task, it has to perform a context
switch

 It saves all the program's context (the Fetch
Execute stuff like program counter, register
values, etc) to (main) memory

 It loads in the context for the next program
 Obviously there is a time cost associated with

doing this...

Choosing a Timeslot Size

 The computer is more efficient: it
spends more time doing useful stuff
and less time context switching

 The illusion of running multiple
programs simultaneously is broken

 Appears more responsive

 More time context switching means
the overall efficiency drops

Longer

Shorter

Relinquishing a Timeslot Early

 Sometimes a process is stuck waiting for
something to happen (e.g. data to be read from
disk)

 The process is “blocked”
 Should release (yield) its timeslot
 How can we know when to unblock it?

A B C A B C B CD D

A blocks
and yields

B

Poll

 We could periodically check (“poll”) to see
whether the data is there

 Essentially keep scheduling the process
even though it will mostly be doing
pointless checks

 Esay but obviously inefficient

Interrupts

 Modern systems support interrupts
 Just signals that something has happened.

An interrupt handler is associated with
each interrupt

 E.g. HDD raises an interrupt to say it's
done getting data → scheduler unblocks
the process

A B C A B C B CD D A

A blocks
Interrupt
handler

B

Platforms
 Almost all significant programs make use

of the library functions in an OS (e.g. to
draw a window)

 Our machine code needs not only a
specific instruction set, but also the
relevant operating system (with its
libraries) installed

 So software is typically compiled for a
specific platform: a (architecture, OS) pair
 x86/Windows
 ARM/Windows
 x86/Linux
 ARM/iOS
 X86/OSX

Threads and Concurrency!

Threads

 Sometimes a program needs to do
background tasks whilst still performing a
foreground task

 E.g. run an intensive computation but still
process mouse events in case the user hits
cancel.

 Processes have threads: effectively sub
processes that run and are scheduled
independently

A1 A2 C

time

A1 A2 B1 B3 A1 A2B2 C

Processes vs Threads

 Threads run independently but share
memory

Process A

Thread
1

Process B

Thread
1

Thread
2

Memory

Multiple CPUs

 Ten years ago, each generation of CPUs packed
more in and ran faster. But:
 The more you pack stuff in, the hotter it gets
 The faster you run it, the hotter it gets
 And we got down to physical limits anyway!!

 Some systems had multiple CPUs to get speed up

C

B

A

Multicore CPUs

 Modern system contain chips with multiple cores:
multiple CPUs in a single package

 Connections shorter → faster

 Lower power

C

B

A1

A2

Main Memory

Main Memory

The New Challenge

 Two cores run completely independently, so a
single machine really can run two or more
applications simultaneously

 BUT the real interest is how we write reliable
programs that use more than one core or
thread
 This is hard because they use the same

resources, and they can then interfere with
each other

 Those sticking around for IB CST will start
to look at such concurrency issues in far
more detail. We will just look at...

Race Conditions

c = c + 1;

c=5

c = c - 1;

Main memory

Thread 1 Thread 2

Race Conditions

LOAD c x
ADD #1 x
STORE x c

c=5

LOAD c x
SUB #1 x
STORE x c

Main memory

Thread 1 Thread 2

Race Conditions

LOAD c x
ADD #1 x
STORE x c

LOAD c x
SUB #1 x
STORE x c

Thread 1 Thread 2

5
5
6
6
6
5

6
5
5

t

5
6
6

Thread 1
Register

Thread 2
Register

Main
Memory

Race Conditions

LOAD c x

ADD #1 x
STORE x c

LOAD c x
SUB #1 x
STORE x c

Thread 1 Thread 2

5
5
5
4
4
6

5
4
4t

5

6
6

Thread 1 Thread 2
Thread 1
Register

Thread 2
Register

Main
Memory

Race Conditions

LOAD c x
ADD #1 x
STORE x c

LOAD c x

SUB #1 x
STORE x c

Thread 1 Thread 2

5
5
5
6
6
4

5

4
4

t

5
6
6

Thread 1 Thread 2
Thread 1
Register

Thread 2
Register

Main
Memory

Race Conditions

 When we have two or more threads
sharing a piece memory the result
can depend on the order of execution

 → “Race condition”

 Hard to detect (non-deterministic)
 Hard to debug
 Generally just hard

Solving Race Conditions

LOAD c x
ADD #1 x
STORE x c

 Risky sets of operations
like this must be made
atomic

 i.e. no context switching
once the code block is
started

 Not trivial → much of
CST IB devoted to this

Aside: The Value of Immutability

 If something is immutable, the race
conditions go away since you can only read it
→ remember this for OOP

Emulation

 Go back 20 years and emulators were all the rage:
programs on architecture X that simulated
architecture Y so that programs for Y could run on X

 Essentially interpreters, except they had to recreate
the entire system. So, for example, they had to run
the operating system on which to run the program.

PC operating system

Console OS

Game

 Now computers are so fast
we can run multiple virtual
machines on them

 Allows us to run multiple
operating systems
simultaneously!

Virtualisation

Hardware

Operating System

Application

User

Application

Operating System Operating System

Application

User

Application

User

Operating System

Application

User

Virtualisation

 This is time-sharing reinvented, with steroids

 Underpins the internet services we have today

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Windows 7

Windows 7

Ubuntu

Android

Heavy load Light load

So what have we learnt?

 Operating systems are complex pieces of
software

 They are really a collection of management
processes, each in charge of a different thing

 Multitasking is faked through timeslicing
 Multiple cores withn a CPU were introduced to

boost performance on multitasking systems
 All this parallelism leads to lots of tricky

concurrency issues that we're still trying to
bottom out.

	Object Oriented Programming Dr Robert Harle
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

