
Computer Fundamentals:
Number Systems

Dr Robert Harle



Today's Topics

 The significance of the bit and powers of 2

 Data quantities (B, kB, MB, GB, etc)

 Number systems (decimal, binary, octal , hexadecimal)

 Representing negative numbers (sign-magnitude, 1’s 
complement, 2’s complement)

 Binary addition (carries, overflows)
 Binary subtraction



So...

 What is a bit?



The Significance of the Bit

 A bit (Binary digIT) is merely 0 or 1

 It is a unit of information since you cannot communicate 
with anything less than two states

 The use of binary encoding dates back to the 1600s with 
Jacquard's loom, which created textiles using card 
templates with holes that allowed needles through



Bits and Computers

 The nice thing about a bit is that, with only two states, it is 
easy to embody in physical machinery

 Each bit is simply a switch and computers moved from 
vacuum tubes to transistors for this

e-



Decimal Number System

 Most computers count in binary, which we can easily 
understand from the decimal so ingrained in us

35462



Decimal Number System

 Most computers count in binary, which we can easily 
understand from the decimal so ingrained in us

35462

2x100



Decimal Number System

 Most computers count in binary, which we can easily 
understand from the decimal so ingrained in us

35462

2x1006x101+



Decimal Number System

 Most computers count in binary, which we can easily 
understand from the decimal so ingrained in us

35462

2x1006x101+4x102+



Decimal Number System

 Most computers count in binary, which we can easily 
understand from the decimal so ingrained in us

35462

2x1006x101+4x102+5x103+



Decimal Number System

 Most computers count in binary, which we can easily 
understand from the decimal so ingrained in us

35462

2x1006x101+4x102+5x103+3x104+



Binary

 Binary is exactly the same, only instead of ten 
digits/states (0 to 9) we have just two, so the base 
becomes 2:

10110

0x201x21+1x22+0x23+1x24+



Binary

 Binary is exactly the same, only instead of ten 
digits/states (0 to 9) we have just two, so the base 
becomes 2:

10110
b
 = 22

d

0x201x21+1x22+0x23+1x24+



Binary

 Binary is exactly the same, only instead of ten 
digits/states (0 to 9) we have just two, so the base 
becomes 2:

10110
b
 = 22

d

0x201x21+1x22+0x23+1x24+

Most Significant
Bit (MSB)

Least Significant
Bit (LSB)



Works for Fractional Numbers too...

35.462

2x10-36x10-2+4x10-1+5x100+3x101+



Works for Fractional Numbers too...

10.110
b 
 = 2.75

d

0x2-31x2-2+1x2-1+0x20+1x21+

35.462

2x10-36x10-2+4x10-1+5x100+3x101+



Check

11.011
b 
 



Check

11.011
b 
 = 3.375

d

1x2-31x2-2+0x2-1+1x20+1x21+



Representable Numbers

 With d decimal digits, we can represent 10d different 
values, usually the numbers 0 to (10d-1) inclusive

 In binary with n bits this becomes 2n values, usually 
the range 0 to (2n-1)

 Computers usually assign a set number of bits 
(physical switches) to an instance of a type. 
 An integer is often 32 bits, so can represent 

positive integers from 0 to 4,294,967,295 incl.
 Or a range of negative and positive integers...



Other Common Bases

 Higher bases make for shorter numbers that are easier for 
humans to manipulate. e.g. 
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this 
corresponds to whole chunks of binary



Other Common Bases

 Higher bases make for shorter numbers that are easier for 
humans to manipulate. e.g. 
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this 
corresponds to whole chunks of binary

 Octal is base-8 (8=23 digits, which means 3 bits per digit)

 6654733
d
=011-001-011-000-101-100-001-101

b
= 31305415

o



Other Common Bases

 Higher bases make for shorter numbers that are easier for 
humans to manipulate. e.g. 
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this 
corresponds to whole chunks of binary

 Octal is base-8 (8=23 digits, which means 3 bits per digit)

 6654733
d
=011-001-011-000-101-100-001-101

b
= 31305415

o

 Hexadecimal is base-16 (16=24 digits so 4 bits per digit)

 Our ten decimal digits aren't enough, so we add 6 new 
ones: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

 6654733
d
=0110-0101-1000-1011-0000-1101

b
=658B0D

h



Other Common Bases

 Higher bases make for shorter numbers that are easier for 
humans to manipulate. e.g. 
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this 
corresponds to whole chunks of binary

 Octal is base-8 (8=23 digits, which means 3 bits per digit)

 6654733
d
=011-001-011-000-101-100-001-101

b
= 31305415

o

 Hexadecimal is base-16 (16=24 digits so 4 bits per digit)

 Our ten decimal digits aren't enough, so we add 6 new 
ones: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

 6654733
d
=0110-0101-1000-1011-0000-1101

b
=658B0D

h

 Because we constantly slip between binary and hex, we have 
a special marker for it

 Prefix with '0x' (zero-x). So 0x658B0D=6654733
d
, 0x123=291

d



Bytes

 A byte was traditionally the number of bits needed to 
store a character of text

 A de-facto standard of 8 bits has now emerged
 256 values
 0 to 255 incl.
 Two hex digits to describe

 0x00=0, 0xFF=255

 Check: what does 0xBD represent? 



Bytes

 A byte was traditionally the number of bits needed to 
store a character of text

 A de-facto standard of 8 bits has now emerged
 256 values
 0 to 255 incl.
 Two hex digits to describe

 0x00=0, 0xFF=255

 Check: what does 0xBD represent?
 B → 11 or 1011
 D → 13 or 1101
 Result is 11x161+13x160 = 189 or 10111101



Larger Units

 Strictly the SI units since 1998 are:

 Kibibyte (KiB)
 1024 bytes (closest power of 2 to 1000)

 Mebibyte (MiB)
 1,048,576 bytes

 Gibibyte (GiB)
 1,073,741,824 bytes



Larger Units

 Strictly the SI units since 1998 are:

 Kibibyte (KiB)
 1024 bytes (closest power of 2 to 1000)

 Mebibyte (MiB)
 1,048,576 bytes

 Gibibyte (GiB)
 1,073,741,824 bytes

 but these haven't really caught on so we tend to still use the SI 
Kilobyte, Megabyte, Gigabyte. This leads to lots of confusion 
since technically these are multiples of 1,000.



The Problem with Ten



Unsigned Integer Addition

 Addition of unsigned integers works the same way as 
addition of decimal (only simpler!)
 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 0, carry 1

 Only issue is that computers have fixed sized types so we 
can't go on adding forever...

111
+ 001

001
+ 001

Carry flag: Carry flag:



Modulo or Clock Arithmetic

 Overflow takes us across the dotted 
boundary
 So 7+1=0 (overflow)
 We say this is (7+1) mod 8

000

001

010

011100

101

110

111 000
001
010
011
100
101
110
111



Negative Numbers

 All of this skipped over the need to represent 
negatives.

 The naïve choice is to use the MSB to indicate +/-
 1 in the MSB → negative
 0 in the MSB → positive

 This is the sign-magnitude technique

-7 = 1111

Negative
Normal positive 
representation of 7



Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so 

wastes one of our 2n labels
 Addition/subtraction circuitry must be designed 

from scratch

   1101
+ 0001
   1110

Our unsigned addition alg.



Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so 

wastes one of our 2n labels
 Addition/subtraction circuitry must be designed 

from scratch

   1101
+ 0001
   1110

Our unsigned addition alg.

+13
+1

+14

Unsigned
interpretation



Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so 

wastes one of our 2n labels
 Addition/subtraction circuitry must be designed 

from scratch

   1101
+ 0001
   1110

-5
+1
-6

+13
+1

+14

Sign-mag
interpretation

Unsigned
interpretation

Our unsigned addition alg.



Alternatively...

 Gives us two discontinuities and a 
reversal of direction using normal 
addition circuitry!!

000

001

010

011100

101

110

111 000
001
010
011
100
101
110
111



Ones' Complement

 The negative is the positive with all the bits flipped
 7 → 0111 so -7 → 1000
 Still the MSB is the sign
 One discontinuity but still -0    :-( 

000

001

010

011100

101

110

111 000
001
010
011
100
101
110
111



Two's Complement

 The negative is the positive with all the bits flipped 
and 1 added (the same procedure for the inverse)

 7 → 0111 so -7 → 1000+0001 → 1001
 Still the MSB is the sign
 One discontinuity and proper ordering

000
001
010
011
100
101
110
111

000

001

010

011100

101

110

111



Two's Complement

 Positive to negative: Invert all the bits and add 1

 Negative to positive: Same procedure!!

1011 (-5) → 0100 → 0101 (+5)

0101 (+5) → 1010 → 1011 (-5)



Signed Addition

   1101
+0001
  1110

Our unsigned addition alg.

 ...it just works with our addition algorithm!

+13
+1

+14

Unsigned



Signed Addition

   1101
+0001
  1110

-3
+1
-2

+13
+1

+14

2's-comp Unsigned

Our unsigned addition alg.

 ...it just works with our addition algorithm!



Signed Addition

   1101
+0001
  1110

-3
+1
-2

+13
+1

+14

2's-comp Unsigned

Our unsigned addition alg.

 ...it just works with our addition algorithm!



 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

Signed Addition

   0100
+0100
   1000

+4
+4
+8

Unsigned

Carry flag: 0



 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry 
should really be testing the bit to its right :-(

Signed Addition

   0100
+0100
   1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0



 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry 
should really be testing the bit to its right :-(

 So we introduce an overflow flag that indicates this problem

Signed Addition

   0100
+0100
   1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0
Overflow: 1



Integer subtraction

 Could implement the “borrowing” 
algorithm you probably learnt in school

 But why bother? We can just add the 
2's complement instead.

   0100
-  0011
   

   0100
+1101
   0001

→ 



Flags Summary

 When adding/subtracting
 Carry flag →  overflow for unsigned integer
 Overflow flag → overflow for signed  integer

 The CPU does not care whether it's 
handling signed or unsigned integers
 Down to our compilers/programs to 

interpret the result



Fractional Numbers
 Scientific apps rarely survive on integers alone, but 

representing fractional parts efficiently is 
complicated.

 Option one: fixed point
 Set the point at a known location. Anything to 

the left represents the integer part; anything to 
the right the fractional part

 But where do we set it??
 Option two: floating point

 Let the point 'float' to give more capacity on its 
left or right as needed

 Much more efficient, but harder to work with
 Very important: more in Numerical Methods 

course


