
1

Compiler Construction
Lent Term 2015

Lecture 7 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  In lecture demo of slang1 compiler

–  http://www.cl.cam.ac.uk/teaching/1415/CompConstr/slang1_compile.tar.gz
–  Jargon virtual machine

•  Uses static links
–  Lambda lifting

•  Slang.1 to Slang.1 transformation.
•  Does not always work. Why?
•  Static links in Jargon are not used lifted code
•  For tricky bits, see lambda_lift.ml

2

Compiler Construction
Lent Term 2015

Lectures 8 and 9 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

– Assorted topics
•  Bootstrapping
•  Garbage collection

Bootstrapping. We need some notation . . .

 app

 A

 A

mch

 A
 inter
 B

An application
called app written
in language A

An interpreter or
VM for language A
Written in language B

A machine called
mch running
language
A natively.

hello

 x86
 x86

 M1

 JBC
 jvm
 x86

hello

 JBC

 x86

 M1

Simple Examples

Tombstones

 C

 trans
A B

This is an application called trans
that translates programs in language
A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

 JBC
 jvm
 x86

Java JBC

JBC

 javac
Hello

Java

 x86

 M1

Hello

 JBC JBC x86

JBC

 aot

 JBC
 jvm
 x86
 x86

 M1

Hello

x86
 x86

 M1

 jvm

 C++ C++ x86

 x86

 gcc

 x86

 M1

Thanks to David Greaves
for the example.

Of course translators can be translated

 C

 trans
A B B

 foo_2
D E

 A

 foo_1
D E

Translator foo_2 is produced
as output from trans when
given foo_1 as input.

Our seemingly impossible task

 L

yippeee
L B

We have just invented a really great
new language L (in fact we claim that
“L is far superior to C++”). To prove how
great L is we write a compiler
for L in L (of course!). This
compiler produces machine code B
for a widely used instruction set
(say B = x86).

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

 B

yippeeee
L B

Furthermore, we want to compile our
compiler so that it can run
on a machine running B.

How can we compiler our compiler?

?

Step 1
Write a small interpreter (VM) for
a small language of byte codes

 MBC
 zoom
 B
 B

 M1

C++ B

 B

 gcc

 B

 M1

 MBC
 zoom
 C++

MBC = My Byte Codes

The zoom machine!

Step 2
Pick a small subset S of L and

write a translator from S to MBC

 B

 gcc
C++ B C++

 yip
S MBC

Write yip by hand. (It sure would be nice if we
could hide the fact that this is written is C++.)

Translator yipp is produced
as output from gcc when yip is given as input.

 B

 yipp
S MBC

Step 3
Write a compiler for L in S

 S

 yippe
L B

Write a compiler yippe for the
full language L, but written only
in the sub-language S.

Compile yippe using yipp to produce yippee

 B

 yipp
S MBC MBC

 yippee
L B

Step 4
Write a compiler for L in L

 L

 yippeee
L B

Rewrite compiler
yippe to yippeee,
using the full power
of language L.

 Now compile this using yippee to obtain our goal!

 MBC

 yippee
L B B

yippeeee
L B

 MBC
 zoom
 B
 B

 M1

 C++

S MBC yip

 B

C++ B gcc

 S

L B yippe

 B

S MBC yipp MBC

L B yippee B

L B yippeeee

 L

L B yippeee

Putting it all together

We wrote only these compilers
and the MBC VM.

 MBC
 zoom
 B

 B

 M1

 B

 M1

 B

 M1

Step 5 : Cover our tracks and leave the world
mystified and amazed

 L

 yippeee
L B

 MBC

 yippee
L B

1. Use gcc to compile the zoom interpreter
2. Use zoom to run voodoo with input yippeee to

output the compiler yippeeee

 MBC
 zoom
 C++

Our L compiler download site contains only three components:

Our instructions:
Shhhh! Don’t tell
anyone that
we wrote the first
compiler in C++

yippee is a just file of bytes.
We give it the mysterious and
intimidating name : voodoo

14

New topic : Automating run-time
memory management

•  Managing the heap
•  Garbage collection

–  Reference counting
–  Mark and sweep
–  Copy collection
–  Generational collection

Read related chapter of Appel

15

Memory Management

•  Modern programming languages allow
programmers to allocate new storage
dynamically
– New records, arrays, tuples, objects, closures,

etc.
•  Memory could easily be exhausted without some

method of reclaiming and recycling the storage
that will no longer be used.
– Let programmer worry about it (use malloc

and free in C…)
– Automatic “garbage collection”

16

Solutions
•  Let programmer worry about it (use malloc and free

in C…)
•  Do nothing
•  Automatic memory management (“garbage

collection”)
–  Reference Counting
–  Mark and Sweep
–  Copy Collection
–  Generational Collection
– … there are many other GC techniques …

In general, we must approximate since
determining exactly what objects will never be used again
is not decidable.

17

Explicit Memory Management

•  User library manages memory; programmer
decides when and where to allocate and de-
allocate
–  void* malloc(long n)
–  void free(void *addr)
–  Library calls OS for more pages when necessary
–  Advantage: Gives programmer a lot of control.
–  Disadvantage: people too clever and make mistakes.

Getting it right can be costly. And don’t we want to
automate-away tedium?

–  Advantage: With these procedures we can implement
memory management for “higher level” languages ;-)

18

Automatic Memory Management

Virtual Machine

Implementation

Includes memory
management

Generated
 code Generated

 code

Run-time system,
Including memory
management

Linker

Executable
•  When to invoke collection?

–  When out of memory?
–  When to allocate more space?
– …

Targeting a VM Targeting a platform

19

Automation is based on an approximation : if data can be
reached from a root set, then it is not “garbage”

r1

stack
and

registers

r2

ROOT SET
-------------------- HEAP --

Type information required (pointer or not),
some kind of “tagging” needed.

20

… Identify Cells Reachable From Root Set…

r1

stack

r2
registers

21

… reclaim unreachable cells

r1

stack

r2
registers

22

But How? Two basic techniques,
and many variations

•  Reference counting : Keep a reference count
with each object that represents the number of
pointers to it. Is garbage when count is 0.

•  Tracing : find all objects reachable from root set.
Basically transitive close of pointer graph.

For a very interesting (non-examinable) treatment of this subject see

 A Unified Theory of Garbage Collection.
 David F. Bacon, Perry Cheng, V.T. Rajan.
 OOPSLA 2004.

In that paper reference counting and tracing are presented as “dual”
approaches, and other techniques are hybrids of the two.

23

Reference Counting, basic idea:

•  Keep track of the number of pointers to each object (the
reference count).

•  When Object is created, set count to 1.
•  Every time a new pointer to the object is created,

increment the count.
•  Every time an existing pointer to an object is destroyed,

decrement the count
•  When the reference count goes to 0, the object is

unreachable garbage

24

Reference counting can’t detect cycles!

r1

stack
r2

•  Cons
•  Space/time overhead to maintain count.
•  Memory leakage when have cycles in data.

•  Pros
•  Incremental (no long pauses to collect…)

25

Mark and Sweep

•  A two-phase algorithm
– Mark phase: Depth first traversal of object

graph from the roots to mark live data
– Sweep phase: iterate over entire heap,

adding the unmarked data back onto the free
list

26

Cost of Mark Sweep (somewhat crude)

•  Cost of mark phase:
–  O(R) where R is the # of reachable words
–  Assume cost is c1 * R (c1 may be 10 instr’s)

•  Cost of sweep phase:
–  O(H) where H is the # of words in entire heap
–  Assume cost is c2 * H (c2 may be 3 instr’s)

•  Analysis
–  The “good” = each collection returns H - R words reclaimed
–  Amortized cost = time-collecting/amount-reclaimed

•  ((c1 * R) + (c2 * H)) / (H - R)
•  If R is close to H, then each collection reclaims little space..

–  R / H must be sufficiently small or GC cost is high.
 Could dynamically adjust. Say, if R / H is larger than .5, increase

heap size

27

Other Problems

•  Depth-first search is usually implemented as a
recursive algorithm
–  Uses stack space proportional to the longest path in

the graph of reachable objects
•  one activation record/node in the path
•  activation records are big

–  If the heap is one long linked list, the stack space
used in the algorithm will be greater than the heap
size!!

–  What do we do? Pointer reversal [See Appel]
•  Fragmentation

28

Copying Collection

•  Basic idea: use 2 heaps
–  One used by program
–  The other unused until GC time

•  GC:
–  Start at the roots & traverse the reachable data
–  Copy reachable data from the active heap (from-

space) to the other heap (to-space)
–  Dead objects are left behind in from space
–  Heaps switch roles

29

Copying Collection

to-space from-space

roots

30

Copying GC

•  Pros
–  Simple & collects cycles
–  Run-time proportional to # live objects
–  Automatic compaction eliminates fragmentation

•  Cons
–  Twice as much memory used as program requires

•  Usually, we anticipate live data will only be a small fragment
of store

•  Allocate until 70% full
•  From-space = 70% heap; to-space = 30%

–  Long GC pauses = bad for interactive, real-time apps

31

OBSERVATION: for a copying garbage
collector

•  80% to 98% new objects die very quickly.
•  An object that has survived several collections has a bigger

chance to become a long-lived one.
•  It’s a inefficient that long-lived objects be copied over and over.

32

IDEA: Generational garbage collection

Segregate objects into multiple areas
by age, and collect areas containing
older objects less often than the
younger ones.

33

Other issues…

–  When do we promote objects from young generation to

old generation
•  Usually after an object survives a collection, it will be

promoted
–  Need to keep track of older objects pointing to newer

ones!
–  How big should the generations be?

•  Appel says each should be exponentially larger than the last
–  When do we collect the old generation?

•  After several minor collections, we do a major collection
–  Sometimes different GC algorithms are used for the new

and older generations.
•  Why? Because the have different characteristics
•  Copying collection for the new

–  Less than 10% of the new data is usually live
–  Copying collection cost is proportional to the live data

•  Mark-sweep for the old

