Compiler Construction
Lent Term 2015
Lecture 6 (of 16)

« Alternatives for managing access to
non-local variables

— Lambda lifting
— Static links
— Heap allocated closures

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

Alternative 1: "Lambda Lifting”

fun () {
let a = ..;

fun h(y) {

then return a;
else return h(c)

}
return b + g(y);

}

return x + h(a);

}
f(17)

fun g (w, x, a, y, b) {
let ¢ = ..;
if ..
then return a;
else return h’(c, x, a)

}
fun h’ (y, x, a) {
let b = ..;
return b + g (y, x, a, y, b)
}
fun ' (X) {
let a = ..;
return x + h'(a, x, a);
}
f (17)

—

Stack
Evaluation

fun g’ (w, x, a, y, b) {
let ¢ = ..;
if ..
then return a;
else return h’ (c, x, a)

}
fun h' (y, x, a) {

let b = ..
return b + ¢’ (y, x, a, y, b)

}

fun £ (X)) {
let a = ..;
return x + h'(a, x, a);

}
f (17)

a

X

Cc g;
h’
f’

Problem: a lot

of
Duplication!
fun g’ (w, x, a, y, b) {
let ¢ = ..;
if ..

then return a;
else return h’ (c, x, a)

}
fun h' (y, x, a) {
let b = ..
return b + ¢’ (y, x, a, y, b)
}
fun F (X)) {
let a = ..;
return x + h’(a, x, a);
}
(17

1

+

Nesting depth

fun b(z) = e

fun g(x1) =

fun h(x2) =
fun f(x3) = e3(x1, x2, x3, b, g h, f)
in

e2(x1, x2, b, g, h, f)

end

in
e1(x1, b, g, h)

end

b(g(17))

Nesting depth

code Iin big box is at nesting depth k \

fun b(z) =|e nesting depth k + 1

fun q(x1) =

fun f(x3) =|e3(x1, x2, x3, b, g h, f) nesting depth k + 3

in
e2(x1, x2, b, g, h, f)

end nesting depth k + 2
in
e1(x1, b, g, h)
end nesting depth k + 1
b(g(17))

Function g is the definer of h. Functions g and b must
share a definer defined at depth k-1

Alternative 2: Augment stack frames with Static
Links (here SL{d} means a static link pointing at
most recent frame of the definer at depth d)

sp——S (

stack frame for

callee defined <
at nesting
depthi<=k + 1

SL{i — 1}

fp A FP-saved

(
stack frame for caller -

defined at nesting depth

k used to evaluate code <

at depth k + 1.

| SL{k -1}

The static link points
down to the closest
frame of definer

at nesting

depthi -1

caller and callee at same nesting depth k

CP | j:callf j:call f
Rt cp —Pl U e
Code Code
callf 0
Sp—>| FREE
SL{k — 1}
j+1
Sp = FREE fp =
/’

caller’' s
frame

SL{k — 1} SL{k-1
- B

caller at depth k and callee at depthi <k

cp [

sp =

FREE

call f (k -i) >

SL{k - 1}

p := !(fp + 2);
for c =1 to k - i

{

¥
SL{i-1} := p;

p i=1(p + 2);

cp ~

sp =

fp =

SL{k - 1}

caller at depth k and callee at depth k + 1

cp —

cp ~

sp =

FREE

SL{k - 1}

FREE

call f (-1) > sp >

fp =

FP-saved

jt1

FP-saved

SL{k - 1}

Code

return n

Sp >

FREE

return value

SL

return n

ra

fp =

No change to return

Code

return n

cp -»

sSp =

FREE

return value

Access to argument values at static
distance 0

sp i FREE
sp—> FREE arg 0 j> \'/

SL

ra

fp =t o

fp >
fp-j =&

Access to argument values at static
distance d, 0 < d

sp i FREE
sp—} FREE arg d j> \'}

Approach 3 : Closures

ldea : represent the dynamic value of a
function/procedure with free variables as a record.

let f(y : int) : int =
Tet g(x :int) : int = x + y Note that the two calls
in to f are associated with
gly * y) two variants of g --- one
- end with free variable y
;
£(17) + f21) bound to 17, the
end other with y bound to 21.

Firstrecord: { address :=¢g, vy = 17 }

Secondrecord: { address := g, vy := 21 }

Now pass closure record to the function itself

let g(c, X) = X + c.y

Tet f(y : int)

in

: int
let ¢ = { address :

glc, vy *vy)

end
in

f(17) + f(21)
end

=Yy }

This looks a lot like
lambda lifting, but here
we package all

values for free variables
into a single record,
together with

the function’s address.

Why add g’s address to the closure record?

This is not really required for this example, but see next slide ...

Closures work for functions-as-values!

Tet f(y : int) : int -> int =
Tet g(x :int) : int =y + x

in g end
in
let add21 : int -> int = f(21)
and addl7 : int -> int = f(17)
in
add17(3) + add21(-1)
end
end

NOTE: Neither lambda lifting nor

static links can implement this example.
WHY?

The values associated with y have to

outlive f’s activation records!

16

A possible intermediate representation

Let g(c, X) = X + C.y

let f(y : int) : int -> int = {address := g, y := y}
let add21l = f(21)

let addl7 = £(17)

apply_closure(addl7, 3) + apply_closure(add21l, -1)

Where, in pseudo-code, we have

apply_closure(c, v_1, v_2, .., v_k)

= c.address(c, v_1, v_2, .., v_k)
17

calla : gets address from stack top

CP | j:calla j: calla
cp ST
Code calla Code
Sp —» FREE
Sp =»| FREE i+
k fp ';
caller’'s
frame
]]
fp —» — |

Another example

let f(y : int) : int -> int

let g(x :1nt) : Iint =y + X
and h(x :1int) : iInt =y * X
in
if y < 17 then g else h
end
in
map T 1
end

This example may make it clearer why
a closure contains the address of the function.

Here the functions address (either g’'s or h’s) is

determined dynamically.
19

A possible intermediate representation

let g(c, X) = c.y + X
let h(c, X) = c.y * X

Tlet f(y : int) : int -> int
ify < 17
then { address :
else { address :

g, Y
h, v :

y }
y }

We may want to make a distinction between
functions that are called directly

f(17)

And those called indirectly

apply_closure(f(17), 21)

20

Oh, no! What have we done?

We have just implemented a higher level feature
(nested functions, first-class functions) using another
higher level feature (records).

OK, perhaps records are not so high level ...

But how do we allocate space for records at run-time?

ANSWER : need a region of storage for “long lived”
and “large” data structures (not just closures!)

This is normally called THE HEAP.

21

stack
pointer

frame
pointer

Status
register

Jargon Virtual Machine (v0.2)

<4 heap[heal_limit]
grows
Frame 2
sp shrinks
4= heap|[0]
-/ heap
fp (array of values)
frame 1
_ Ccp
frame O Code pointer
Stack
(really array) Code
(array of instructions)
SI == status 22

Typical (Low-Level) Memory Layout (UNIX)

: " Dealing with Virtual Machines

|ay0ut in (Virtual) memory. the low-level details....

high The heap is used for
memory Stack dynamically allocating
_____________________ I —. memory. Typically either
for very large objects or
for those objects that are
_____________________ I_] returned by functions/procedures
and must outlive
Heap the associated activation record.

Global vars and constants In languages like Java and ML,

the heap must be managed
low program instructions automatically (“garbage collection”)
memory

23

Similar situation with the lifetime of
reference cells

fun f(a : int) : int ref

{
let b : int ref := a;
return b;

}
let z : int ref = £(17);

1z

We need some way to store data that outlives the activation

record in which it is created.

Solution: The “Heap”

24

