
Programming in C and C++
6. Operators — Inheritance — Virtual

Dr. Anil Madhavapeddy

University of Cambridge
(based on previous years –

thanks to Alan Mycroft, Alastair Beresford and Andrew Moore)

Michaelmas Term 2014–2015

1 / 20

From last lecture . . .

1 class Complex {

2 double re,im;

3 public:

4 Complex(double r=0.0L, double i=0.0L);

5 };

6

7 Complex::Complex(double r,double i) {

8 re=r,im=i; // deprecated initialisation-by-assignment

9 }

10

11 int main() {

12 Complex c(2.0), d(), e(1,5.0L);

13 return 0;

14 }

2 / 20

Operators

I C++ allows the programmer to overload the built-in operators

I For example, a new test for equality:

1 bool operator==(Complex a, Complex b) {

2 return a.real()==b.real() && a.imag()==b.imag();

3 // presume real() is an accessor for field ’re’, etc.

4 }

I An operator can be defined or declared within the body of a class,
and in this case one fewer argument is required; for example:

1 bool Complex::operator==(Complex b) {

2 return re==b.real() && im==b.imag();

3 }

I Almost all operators can be overloaded

3 / 20

Streams
I Overloaded operators also work with built-in types
I Overloading is used to define << (C++’s “printf”); for example:

1 #include <iostream>

2

3 int main() {

4 const char* s = "char array";

5

6 std::cout << s << std::endl;

7

8 //Unexpected output; prints &s[0]

9 std::cout.operator<<(s).operator<<(std::endl);

10

11 //Expected output; prints s

12 std::operator<<(std::cout,s);

13 std::cout.operator<<(std::endl);

14 return 0;

15 }

I Note std::cin, std::cout, std::cerr
4 / 20

The ‘this’ pointer

I If an operator is defined in the body of a class, it may need to return
a reference to the current object

I The keyword this can be used

I For example:

1 Complex& Complex::operator+=(Complex b) {

2 re += b.real();

3 this->im += b.imag();

4 return *this;

5 }

I In C (or assembler) terms this is an implicit argument to a method
when seen as a function.

5 / 20

Class instances as member variables

I A class can have an instance of another class as a member variable

I How can we pass arguments to the class constructor?

I New notation for a constructor:

1 class X {

2 Complex c;

3 Complex d;

4 X(double a, double b): c(a,b), d(b) {

5 ...

6 }

7 };

I This notation must be used to initialise const and reference members

I It can also be more efficient

6 / 20

Temporary objects

I Temporary objects are often created during execution

I A temporary which is not bound to a reference or named object exists
only during evaluation of a full expression (BUGS BUGS BUGS!)

I Example: the string class has a function c_str() which returns a
pointer to a C representation of a string:

1 string a("A "), b("string");

2 const char *s1 = a.c_str(); //Okay

3 const char *s2 = (a+b).c_str(); //Wrong

4 ...

5 //s2 still in scope here, but the temporary holding

6 //"a+b" has been deallocated

7 ...

8 string tmp = a+b;

9 const char *s3 = tmp.c_str(); //Okay

7 / 20

Friends

I A (non-member) friend function can access the private members of
a class instance it befriends

I This can be done by placing the function declaration inside the class
definition and prefixing it with the keyword friend; for example:

1 class Matrix {

2 ...

3 friend Vector operator*(const Matrix&,

4 const Vector&);

5 ...

6 };

7 }

8 / 20

Inheritance

I C++ allows a class to inherit features of another:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 };

6

7 class bicycle : public vehicle {

8 bool panniers;

9 public:

10 bicycle(bool p):vehicle(2),panniers(p) {}

11 };

12

13 int main() {

14 bicycle(false);

15 }

9 / 20

Derived member function call

I.e. when we call a function overriden in a subclass.

I Default derived member function call semantics differ from Java:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 int maxSpeed() {return 60;}

6 };

7

8 class bicycle : public vehicle {

9 int panniers;

10 public:

11 bicycle(bool p=true):vehicle(2),panniers(p) {}

12 int maxSpeed() {return panniers ? 12 : 15;}

13 };

10 / 20

Example

1 #include <iostream>

2 #include "example13.hh"

3

4 void print_speed(vehicle &v, bicycle &b) {

5 std::cout << v.maxSpeed() << " ";

6 std::cout << b.maxSpeed() << std::endl;

7 }

8

9 int main() {

10 bicycle b = bicycle(true);

11 print_speed(b,b); //prints "60 12"

12 }

11 / 20

Virtual functions

I Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

I Since a pointer to a derived class can be cast to a pointer to a base
class, calls at base class do not see the overridden function.

I To get polymorphic behaviour, declare the function virtual in the
superclass:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 virtual int maxSpeed() {return 60;}

6 };

12 / 20

Virtual functions

I In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

1 bicycle b(true);

2 vehicle v;

3 vehicle* pv;

4

5 user_input() ? pv = &b : pv = &v;

6

7 std::cout << pv->maxSpeed() << std::endl;

8 }

13 / 20

Enabling virtual functions

I To enable virtual functions, the compiler generates a virtual function
table or vtable

I A vtable contains a pointer to the correct function for each object
instance

I The vtable is an example of indirection

I The vtable introduces run-time overhead (this is compulsory in Java;
contemplate whether C++’s additional choice is good for efficiency or
bad for being an additional source of bugs)

14 / 20

Abstract classes

I Sometimes a base class is an un-implementable concept

I In this case we can create an abstract class:

1 class shape {

2 public:

3 virtual void draw() = 0;

4 }

I It is not possible to instantiate an abstract class:
shape s; //Wrong

I A derived class can provide an implementation for some (or all) the
abstract functions

I A derived class with no abstract functions can be instantiated

15 / 20

Example

1 class shape {

2 public:

3 virtual void draw() = 0;

4 };

5

6 class circle : public shape {

7 public:

8 //...

9 void draw() { /* impl */ }

10 };

16 / 20

Multiple inheritance

I It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {

2 ...

3 }

I Members from both base classes exist in the derived class

I If there is a name clash, explicit naming is required

I This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle::maxSpeed();

17 / 20

Multiple instances of a base class

I With multiple inheritance, we can build:

1 class A {};

2 class B : public A {};

3 class C : public A {};

4 class D : public B, public C {};

I This means we have two instances of A even though we only have a
single instance of D

I This is legal C++, but means all references to A must be stated
explicitly:

1 D d;

2 d.B::var=3;

3 d.C::var=4;

18 / 20

Virtual base classes

I Alternatively, we can have a single instance of the base class

I Such a “virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};

2 class Boat : public virtual Vehicle { ... };

3 class Car : public virtual Vehicle { ... };

4 class JamesBondCar : public Boat, public Car { ... };

19 / 20

Exercises

1. If a function f has a static instance of a class as a local variable,
when might the class constructor be called?

2. Write a class Matrix which allows a programmer to define 2 × 2
matrices. Overload the common operators (e.g. +, -, *, and /)

3. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
interoperate correctly (e.g. v2 = m*v1 should work as expected)

4. Why should destructors in an abstract class almost always be declared
virtual?

20 / 20

