Programming in C and C++
4. Misc. — Library Features — Gotchas — Hints 'n" Tips

Dr. Anil Madhavapeddy

University of Cambridge
(based on previous years —
thanks to Alan Mycroft, Alastair Beresford and Andrew Moore)

Michaelmas Term 2014-2015

24

Example

o)

od 4

1d «

1dd 4«

reyo

reyo

w

il

wul

Bi g

41

V41 Lhyﬁle

00

62

52 | 00

1c

42 |00

05

00

00

00

4c

00

00

00

38

09X0

0SX0

2YX0

8EX0

7E€X0

0€X0

9ZX0

24

Uses of const and volatile

v

v

v

v

Any

declaration can be prefixed with const or volatile

A const variable can only be assigned a value when it is defined

The

const declaration can also be used for parameters in a function

definition

The

volatile keyword can be used to state that a variable may be

changed by hardware or the kernel.

>

The

v vy VvYy

For example, the volatile keyword may prevent unsafe compiler
optimisations for memory-mapped input/output

use of pointers and the const keyword is quite subtle:
const int *p is a pointer to a const int

int const *p is also a pointer to a const int

int *const p is a const pointer to an int

const int *const p is a const pointer to a const int

24

Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17 }

int main(void) {

int i = 42;
int j = 28;

const int *pc = &i; //Also:
*pc = 41; //Wrong
pc = &j;

int *const cp
*cp = 41;
cp = &j; //VWirong

&i;

const int *const cpc = &i;

*cpc = 41; //Wrong
cpc = &j; //VWrong
return O;

"int const *pc"

4/24

Typedefs

» The typedef operator, creates a synonym for a data type;
for example, typedef unsigned int Radius;

» Once a new data type has been created, it can be used in place of the
usual type name in declarations and casts;
for example, Radius r = 5; ...; r = (Radius) rshort;
> A typedef declaration does not create a new type
> It just creates a synonym for an existing type

» A typedef is particularly useful with structures and unions:

1 typedef struct 1llist *1lptr;
2 typedef struct 1llist {

3 int val;

4 1llptr next;

5 } linklist;

Inline functions

» A function in C can be declared inline; for example:

1 inline int fact(unsigned int n) {
2 return n 7 n*fact(n-1) : 1;

3}

» The compiler will then try to “inline” the function
> A clever compiler might generate 120 for fact(5)
» A compiler might not always be able to “inline” a function
» An inline function must be defined in the same execution unit as it
is used

» The inline operator does not change function semantics

> the inline function itself still has a unique address
» static variables of an inline function still have a unique address

» Both inline and register are largely unnecessary with modern
compilers and hardware

6 /24

That's it!

» We have now explored most of the C language

» The language is quite subtle in places; in particular watch out for:

> operator precedence
> pointer assignment (particularly function pointers)
» implicit casts between ints of different sizes and chars
» There is also extensive standard library support, including:
shell and file /O (stdio.h)
dynamic memory allocation (stdlib.h)
string manipulation (string.h)
character class tests (ctype.h)

v

(Read, for example, K&R Appendix B for a quick introduction)

vV vy vy VvV VY

(Or type “man function” at a Unix shell for details)

24

Library support: 1/0

I/O is not managed directly by the compiler; support in stdio.h:

» FILE *stdin, *stdout, *stderr;

» int printf(const char *format, ...);

» int sprintf(char *str, const char *format, ...);

» int fprintf (FILE *stream, const char *format, ...);
» int scanf(const char *format, ...); // sscanf,fscanf

» FILE xfopen(const char *path, const char *mode) ;
» int fclose(FILE *fp);

> size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *stream);

> size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

/24

1 #include<stdio.h>
2 #define BUFSIZE 1024

3

4 int main(void) {

© o N o o

10
11
12
13
14
15
16
17
18
19

FILE *fp;
char buffer [BUFSIZE];

if ((fp=fopen("somefile.txt","rb")) == 0) {
perror("fopen error:");
return 1;

}

while(!feof (fp)) {
int r = fread(buffer,sizeof (char) ,BUFSIZE,fp);
furite(buffer,sizeof (char),r,stdout);

}

fclose(fp);
return 0O;

9/24

Library support: dynamic memory allocation

» Dynamic memory allocation is not managed directly by the C compiler

» Support is available in stdlib.h:

>
>
>
>

> The
p =
> Any

|

v

void #*malloc(size_t size)

void *calloc(size_t nobj, size_t size)
void *realloc(void *p, size_t size)
void free(void *p)

C sizeof unary operator is handy when using malloc:
(char *) malloc(sizeof (char)*1000)

successfully allocated memory must be deallocated manually

Note: free() needs the pointer to the allocated memory

Failure to deallocate will result in a memory leak

10/ 24

Gotchas: operator precedence

1 #include<stdio.h>

2

3 struct test {int i;};

4 typedef struct test test_t;
5

6 int main(void) {

7

8 test_t a,b;

9 test_t *p[] = {&a,&bl};

10 pl0]->i=0;

11 pl1]1->i=0;

12 test_t *q = p[0];

13

14 printf ("%d\n",++q->1); //What does this do?
15

16 return O;

17 }

11/24

Gotchas: i++

1 #include <stdio.h>
2

3 int main(void) {

4

5 int i=2;

6 int j=i++ + ++i;
7 printf("%d %d\n",i,j); //What does this print?
8

9

return O;

10

Expressions like i++ + ++i are known as grey (or gray) expressions in that
their meaning is compiler dependent in C (even if they are defined in Java)

12 /24

Gotchas: local stack

#include <stdio.h>

1

2

3 char *unary(unsigned short s) {

4 char local[s+1];

5 int 1i;

6 for (i=0;i<s;i++) locall[il=’1’;
7 localls]=’\0’;

8 return local;

9

}

11 int main(void) {
12 printf("%s\n",unary(6)); //What does this print?
13 return O;

13 /24

Gotchas: local stack (contd.)
#include <stdio.h>

char global[10];

char locall[s+1];
char *p = s%2 7 global : local;
int 1i;
for (i=0;i<s;i++) plil=’1’;
10 pls]="\0’;
11 return p;
12 }
13
14 int main(void) {
5 printf("%s\n",unary(6)); //What does this print?
16 return O;

17 }

1
2
3
4
5 char *unary(unsigned short s) {
6
7
8
9

-

14 /24

Gotchas: careful with pointers

#include <stdio.h>
struct values { int a; int b; I};
int main(void) {

struct values test2 = {2,3};
struct values testl {0,1};

© o N o o B W N R

int *pi = &(testl.a);

10 pi +=1; //Is this sensible?

11 printf("%d\n",*pi);

12 pi += 2; //What could this point at?
13 printf ("%d\n",*pi);

14

15 return O;

16 F

15/24

Gotchas: XKCD pointers

OKAY, HUMAN.

HUH? 3
BERORE YU
HIT (COMPILE;
Y LISTEN Up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU MAGINE YOURSELF
WALKING OR
A SOMETHING,

AND SUDDENLY YOU
NISSTER STUMBLE,
AND JOLT AWAKE?
YEAH!
e

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

N
DOUBLE - CHECK. YOUR
DAMN POINTERS, CkAY?

 Sul

16 /24

Tricks: Duff's device

1 boring_send(int *to, int *from, int count)
2 {
do {
*to = *xfrom++;
} while(--count > 0);

send(int *to, int *from, int count)
{

10 int n=(count+7)/8;

11 switch(count%8){

12 case 0: do{ *to = *from++;

13 case 7: *to = *xfrom++;

3
4
5
6t
7
8
9

14 case 6: *to = *xfrom++;
15 case 5: *to = xfrom++;
16 case 4: *to = xfrom++;
17 case 3: *to = *xfrom++;
18 case 2: *to = *xfrom++;
19 case 1: *to = *xfrom++;

17 /24

- - L, N

Assessed exercise

See
>
»

>

“Head of Department’'s Announcement”

To be completed by noon on Monday 9th February 2015
Viva examinations 1300-1600 on 12th February 2015
Viva examinations 1300-1600 on 13th February 2015

Download the starter pack from:
http://www.cl.cam.ac.uk/Teaching/current/CandC++/
This should contain eight files:

server.c rfc0791.txt messagel message3
client.c rfc0793.txt message2 messaged

18 /24

http://www.cl.cam.ac.uk/Teaching/current/CandC++/

Exercise aims

Demonstrate an ability to:

v

Understand (simple) networking code

v

Use control flow, functions, structures and pointers

v

Use libraries, including reading and writing files

v

Understand a specification

v

Compile and test code

v

Comprehending man pages

Task is split into three parts:
» Comprehension and debugging
» Preliminary analysis

» Completed code and testing

19 /24

Exercise submission

» Assessment is in the form of a ‘tick’
» There will be a short viva; remember to sign up!
» Submission is via email to c-tick@cl.cam.ac.uk

» Your submission should include seven files, packed in to a ZIP file
called crsid.zip and attached to your submission email:

answers.txt clientl.c summary.c messagel.txt
serverl.c extract.c message2.jpg

20 /24

c-tick@cl.cam.ac.uk

Hints: |IP header

1

2

3
01234567890123456789012345678901

+—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—t—F—F—t—t—F—F—F—F—t—t—Ft—F—F—+—+—+

|Version| IHL

| Type of Servicel|
tot—t—t—t bttt —t—t—t—t—t—t—t bttt =ttt =ttt bttt —t—+—+

Identification |Flags|
s T e o e At S S e A At S

Time to Live

Protocol |

Source Address

Total Length

Fragment Offset

Header Checksum
B s s s s T T e S S L S T T T s Tt S B E S S R A

tot—F—t—+—+—+—+

Destination Address

+—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—t—F—F—t—F—F—F—F—F—t—F—Ft—t—F—+—+—+

Options

Padding

tot—t—t—t bttt =ttt =ttt =ttt bt =ttt — bt —t—F—t—+—t—+—+

21 /24

Hints: IP header (in C)

1 #include <stdint.h>

© o N o o B~ W N

-
o

11
12
13
14
15

16 #define IP_HLEN(lenver) (lenver & 0xO0f)
17 #define IP_VER(lenver) (lenver >> 4)

struct ip {

};

uint8_t hlenver;
uint8_t tos;
uintl6_t len;
uintl6_t id;
uintl6_t off;
uint8_t ttl;
uint8_t p;
uintl16_t sum;
uint32_t src;
uint32_t dst;

22/24

Hints: network byte order

» The IP network is big-endian; x86 is little-endian; ARM can be either

» Reading multi-byte values requires possible conversion

» The

>

>
>
>

BSD API specifies:

uint16_t ntohs(uint16_t netshort)
uint32_t ntohl(uint32_t netlong)

uint16_t htons(uint16_t hostshort)
uint32_t htonl(uint32_t hostlong)

which encapsulate the notions of host and network and their
interconversion (which may be a no-op)

23 /24

Exercises

1. What is the value of i after executing each of the following:

1.1 i = sizeof(char);

1.2 i = sizeof(int);

1.3 int a; i = sizeof a;

1.4 char b[5]; i = sizeof(b);

1.5 char *c=b; i = sizeof(c);

1.6 struct {int d;char e;} s; i = sizeof s;
1.7 void f(int j[5]) { i = sizeof j;}

1.8 void f(int j[1[10]) { i = sizeof j;}

2. Use struct to define a data structure suitable for representing a
binary tree of integers. Write a function heapify(), which takes a
pointer to an integer array of values and a pointer to the head of an
(empty) tree and builds a binary heap of the integer array values.
(Hint: you'll need to use malloc())

3. What other C data structure can be used to represent a heap? Would
using this structure lead to a more efficient implementation of
heapify()?

24 /24

