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Minimum Spanning Tree Problem

Given: undirected, connected
graph G = (V ,E ,w) with
non-negative edge weights

Goal: Find a subgraph ⊆ E of
minimum total weight that links
all vertices

Minimum Spanning Tree Problem

Must be necessarily a tree!
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Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities,
resistance etc.

Applications
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Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

Definition

How to find a safe edge?
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Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem
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Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex ), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex ), then T ∪ e` \ ex is a
MST.

e`

ex
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Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step,

given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h
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Use Disjoint Sets to keep track
of connected components!
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Complete Run of Kruskal’s Algorithm
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Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness
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Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!
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We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!
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Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:

Init (l. 6-13): O(V ), ExtractMin (15): O(V · log V ), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V ), ExtractMin (15): O(V · log V ), DecreaseKey (16-20): O(E · log V )
⇒ Overall: O(V log V + E log V )

Time Complexity

Amortized CostAmortized Cost
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5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V ), ExtractMin (15): O(V · log V ), DecreaseKey (16-20): O(E · 1)

⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V ), ExtractMin (15): O(V · log V ),

DecreaseKey (16-20): O(E · log V )

⇒ Overall: O(V log V + E log V )
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Summary (Kruskal and Prim)

Add safe edge to the current MST as long as possible

Theorem: An edge is safe if it is the lightest of a cut respecting A

Generic Idea

Gradually transforms a forest into a MST by merging trees

invokes disjoint set data structure

Runtime O(V + E log V )

Kruskal’s Algorithm

Gradually extends a tree into a MST by adding incident edges

invokes Fibonacci heaps (priority queue)

Runtime O(V log V + E)

Prim’s Algorithm
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Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a
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Can be implemented in time
O(E log V (log log V )3). [Thorup, 2000]
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Current State-of-the-Art

Does a linear-time MST algorithm exist?

randomised MST algorithm with expected runtime O(E)

based on Boruvka’s algorithm (from 1926)

Karger, Klein, Tarjan, JACM’1995

deterministic MST algorithm with runtime O(E · α(n))
Chazelle, JACM’2000

deterministic MST algorithm with asymptotically optimal runtime

however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002
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