
Microchallenge 7

Background:
Let G be a flow network with integral capacities and without anti-parallel edges.
An edge e ∈ E is upper-binding if increasing its capacity by 1 also increases the
maximum flow in G.
An edge e ∈ E is lower-binding if decreasing its capacity by 1 also decreases the
maximum flow in G.

Task:
1. Develop an algorithm which, given G and a maximum flow fmax in G as input,

computes all upper-binding edges in G in time O(E + V ).
2. (F) Develop an algorithm which, given G and a maximum flow fmax in G as input,

computes all lower-binding edges in G as efficiently as possible.
3. Apply your algorithm(s) to the graph and maximum flow below by writing a small

program.

s

2

3

4

5

6

7

t

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

1



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/10

0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/10

0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/10

0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/10

0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10

�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10

�
��

10/10

10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10

10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10

10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10

10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10

10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10

10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5

��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5

��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/5

5/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8

��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8

��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/8

8/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t (DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t (DFS on reversed Gf from t)

3. Go through all candidates (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t (DFS on reversed Gf from t)

3. Go through all candidates (u, v) and check if u ∈ S and v ∈ T

2



Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15

13/15

0/4

8/9

8/9

0/4

2/15

2/15

8/8

3/6

3/6

13/30

13/30

8/10

8/100/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

10/10
�
��

10/10
10/11

1

5/5��5/55/6

1
5

8/8��8/88/9

1

(s, 2)X

�
��(s, 3)

(3, 6)X

�
��(6, t)

(7, t)X

For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t (DFS on reversed Gf from t)

3. Go through all candidates (u, v) and check if u ∈ S and v ∈ T

2



Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding

s

2

3

4

5

6

7

t

10/10

5/5
13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10
10/10

Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!

3



Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding

s

2

3

4

5

6

7

t

10/10

5/5
13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10
10/10

Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!

3



Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding

s

2

3

4

5

6

7

t

10/10

5/5
13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10
10/10

Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!

3



Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding

s

2

3

4

5

6

7

t

10/10

5/5
13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10
10/10

Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!

3



Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding

s

2

3

4

5

6

7

t

10/10

5/5
13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10
10/10

Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!

3



Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding

s

2

3

4

5

6

7

t

10/10

5/5
13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10
10/10

Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!

3



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow

(way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5

��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5

��5/5

5/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/5

5/4

5/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/5

5/4

5/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/5

5/4

5/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/5

5/4

5/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/5

5/4

5/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5

13/15
13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/4

5/4

���13/15
���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4

���13/15
���13/30

��3/6

��5/4

14/15
14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4

14/15
14/30

4/6

4/4

14/15
14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4

14/15
14/30

4/6

4/4
(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10

���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10

���10/10

10/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/10

10/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/10

10/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/10

10/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/10

10/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/10

0/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/10

10/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/10

0/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/10

0/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/10

0/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/10

0/4

0/4

8/8
0/15

0/15 10/10

10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:
For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:
For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:
For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:
For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:
For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4



Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow (way = path from u to v in the residual graph)

G

s

2

3

4

5

6

7

t

10/10

5/5
13/15

13/30

3/6

2/15

8/9
8/100/4

0/4

8/8
0/15

0/15 10/10
10/10

Gf

s

2

3

4

5

6

7

t

10

5

13
2

4

8
1

4

13
2
8

3
3

17
13

2
815

15
10

10

5/5��5/55/45/4
���13/15

���13/30

��3/6

��5/4
14/15

14/30

4/6

4/4
14/15

14/30

4/6

4/4

(s, 2)X

(3, 6)X

(7, t)X

���(s, 3)

�
��(6, t)

10/10���10/1010/9

2/15
2/15

8/9
8/10

2/15

10/9

��2/15

��8/9
��8/10
��10/9

1/15

9/9
9/10

9/9

1/15

9/9
9/10
9/9

Algorithm:
For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges (reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)

4


	Microchallenges

