
Microchallenge 7

Background:
Let G be a flow network with integral capacities and without anti-parallel edges.
An edge e ∈ E is upper-binding if increasing its capacity by 1 also increases the
maximum flow in G.
An edge e ∈ E is lower-binding if decreasing its capacity by 1 also decreases the
maximum flow in G.

Task:
1. Develop an algorithm which, given G and a maximum flow fmax in G as input,

computes all upper-binding edges in G in time O(E + V ).
2. (F) Develop an algorithm which, given G and a maximum flow fmax in G as input,

computes all lower-binding edges in G as efficiently as possible.
3. Apply your algorithm(s) to the graph and maximum flow below by writing a small

program.
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Upper-Binding Edges

⇒ only edges which are used to their capacity can be upper-binding

Intuitively: Only increasing the capacity of such an edge
can help increasing the (maximum) flow

Formally: Only increasing the capacity of such an edge
leads to a new edge in the residual graph Gf (and hence
potentially to a new augmenting path from s to t)
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For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s

(DFS on Gf from s)

2. Let T be all vertices that can reach t

(DFS on reversed Gf from t)

3. Go through all (u, v) and check if u ∈ S and v ∈ T
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For every candidate edge (u, v) we need to know whether u
can be reached from s and t can be reached from v in Gf .

Algorithm:

1. Let S be all vertices reachable from s (DFS on Gf from s)

2. Let T be all vertices that can reach t (DFS on reversed Gf from t)
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Lower-Binding Edge (First Attempt)

An edge e ∈ E is lower-binding if decreasing its capacity by 1 also
decreases the maximum flow in G.

⇒ only edges which are used to their capacity can be lower-binding
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Each edge of any minimum cut is lower-binding (in fact these
sets are equal due to the Max-Flow Min-Cut Theorem!)

Given the maximum flow, we know one minimum cut (see
proof of Key Lemma) but there could be other minimum cuts!
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Lower-Binding Edge (Second Attempt)

Idea: An edge (u, v) is not lower-binding iff there is a “way” to
reroute the flow

(way = path from u to v in the residual graph)
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Algorithm:

For each candidate e = (u, v) check if ∃ path from u to v in Gf

If yes, edge (u, v) is not lower-binding, otherwise it is.

 E times DFS/BFS ⇒ Runtime O(E · (V + E))

Tweak: Only need two DFS/BFS per
vertex ⇒ Runtime O(V · (V + E))

In this example, the set of upper-binding edges coincides with the
set of lower-binding edges

(reason: minimum cut is unique).

Not completely obvious, requires a proof (which is not given here)
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