6.6: Maximum flow

Frank Stajano Thomas Sauerwald
Introduction

Ford-Fulkerson

Max-Flow Min-Cut Theorem
History of the Maximum Flow Problem [Harris, Ross (1955)]

Maximum Flow is 163,000 tons per day!
Maximum Flow is 163,000 tons per day!
Flow Network

- Abstraction for material (one commodity!) flowing through the edges
- \(G = (V, E) \) directed graph without parallel edges
- distinguished nodes: source \(s \) and sink \(t \)
- every edge \(e \) has a capacity \(c(e) \)

How to find a Maximum Flow?
Flow Network

- Abstraction for material (one commodity!) flowing through the edges
- \(G = (V, E) \) directed graph without parallel edges
- distinguished nodes: source \(s \) and sink \(t \)
- every edge \(e \) has a capacity \(c(e) \)

Capacity function \(c : V \times V \rightarrow \mathbb{R}^+ \)

How to find a Maximum Flow?

6.6: Maximum Flow
Flow Network

- Abstraction for material (one commodity!) flowing through the edges
- $G = (V, E)$ directed graph without parallel edges
- distinguished nodes: source s and sink t
- every edge e has a capacity $c(e)$

Capacity function $c : V \times V \rightarrow \mathbb{R}^+$

$c(u, v) = 0 \iff (u, v) \notin E$

How to find a Maximum Flow?

6.6: Maximum flow
A flow is a function $f : V \times V \to \mathbb{R}$ that satisfies:

1. For every $u, v \in V$, $f(u, v) \leq c(u, v)$.
2. For every $v \in V \setminus \{s, t\}$, $\sum_{u \in V} f(u, v) = \sum_{v \in V} f(v, u)$.
3. For every $u, v \in V$, $f(u, v) = -f(v, u)$.

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$.
A flow is a function $f : V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$.

How to find a Maximum Flow:

6.6: Maximum flow T.S.
Flow Network

A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies:

- For every \(u, v \in V \), \(f(u, v) \leq c(u, v) \)

Flow

How to find a Maximum Flow?

6.6: Maximum flow T.S.
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u)$

How to find a Maximum Flow?
A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies:

- For every \(u, v \in V \), \(f(u, v) \leq c(u, v) \)
- For every \(v \in V \setminus \{s, t\} \), \(\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u) \)

Flow Conservation

The value of a flow is defined as

\[|f| = \sum_{v \in V} f(s, v) \]

Flow Network

6.6: Maximum flow
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u)$

Flow Conservation

Flow Network

For every $u, v \in V$, $f(u, v) = -f(v, u)$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

How to find a Maximum Flow?
Flow Network

A flow is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u)$

Flow Conservation
A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies:

- For every \(u, v \in V \), \(f(u, v) \leq c(u, v) \)
- For every \(v \in V \setminus \{s, t\} \), \(\sum_{(u, v) \in E} f(u, v) = \sum_{(v, u) \in E} f(v, u) \)

Flow Conservation

How to find a Maximum Flow?
A flow is a function $f : V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v)\in E} f(u, v) = \sum_{(v,u)\in E} f(v, u)$
- For every $u, v \in V$, $f(u, v) = -f(v, u)$

How to find a Maximum Flow?
Flow Network

Flow

A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies:

- For every \(u, v \in V \), \(f(u, v) \leq c(u, v) \)
- For every \(v \in V \setminus \{s, t\} \), \(\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u) \)
- For every \(u, v \in V \), \(f(u, v) = -f(v, u) \)

The value of a flow is defined as \(|f| = \sum_{v\in V} f(s,v) \)
A flow is a function $f : V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$
- For every $u, v \in V$, $f(u, v) = -f(v, u)$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$.
Flow Network

A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies:

- For every \(u, v \in V \), \(f(u, v) \leq c(u, v) \)
- For every \(v \in V \setminus \{s, t\} \), \(\sum_{(u,v) \in E} f(u,v) = \sum_{(v,u) \in E} f(v,u) \)
- For every \(u, v \in V \), \(f(u, v) = -f(v, u) \)

The value of a flow is defined as \(|f| = \sum_{v \in V} f(s, v) \)
Flow Network

A flow is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u)$
- For every $u, v \in V$, $f(u, v) = -f(v, u)$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

How to find a Maximum Flow?
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u, v) \in E} f(u, v) = \sum_{(v, u) \in E} f(v, u)$
- For every $u, v \in V$, $f(u, v) = -f(v, u)$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$
Flow Network

A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) that satisfies:

- For every \(u, v \in V \), \(f(u, v) \leq c(u, v) \)
- For every \(v \in V \setminus \{s, t\} \), \(\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u) \)
- For every \(u, v \in V \), \(f(u, v) = -f(v, u) \)

The value of a flow is defined as \(|f| = \sum_{v \in V} f(s, v) \)

The value of the flow is \(|f| = 8 + 10 + 10 = 28 \)
A flow is a function $f : V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u, v) = \sum_{(v,u) \in E} f(v, u)$
- For every $u, v \in V$, $f(u, v) = -f(v, u)$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

How to find a Maximum Flow?

Flow Network

6.6: Maximum flow
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

| f | $|f|$ |
|-----|------|
| 0 | 0 |
| 4/8 | 8 |
| 10 | 16 |
| 19 | |

Is this optimal? Greedy did not succeed!

6.6: Maximum flow
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

<table>
<thead>
<tr>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>19</td>
</tr>
</tbody>
</table>

Is this optimal?

Greedy did not succeed!

$|f| = 0$
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

| f | $|f|$ |
|-----|------|
| 0 | 0 |
| 8/10| 8/10 |
| 8/10| 8/10 |
| 0/10| 0/10 |
| 0/9 | 0/9 |
| 0/6 | 0/6 |
| 0/10 | 0/10 |
| 0/10 | 0/10 |
| 0/10 | 0/10 |
| 0/10 | 0/10 |
| 0/10 | 0/10 |

Greedy did not succeed!
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

Greedy did not succeed!

<table>
<thead>
<tr>
<th>f</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8/10</td>
<td>8/8</td>
</tr>
<tr>
<td>0/10</td>
<td>0/2</td>
</tr>
<tr>
<td>0/6</td>
<td>0/9</td>
</tr>
<tr>
<td>0/4</td>
<td>0/10</td>
</tr>
</tbody>
</table>

$|f| = 8$
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

6.6: Maximum flow
A First Attempt

Greedy Algorithm

- Start with \(f(u, v) = 0 \) everywhere
- Repeat as long as possible:
 - Find a \((s, t)\)-path \(p\) where each edge \(e = (u, v)\) has \(f(u, v) < c(u, v)\)
 - Augment flow along \(p\)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0/9</td>
<td>8/8</td>
<td>2/9</td>
</tr>
<tr>
<td>4</td>
<td>0/6</td>
<td>10/10</td>
<td>0/10</td>
</tr>
<tr>
<td>5</td>
<td>0/10</td>
<td>10/10</td>
<td>8/10</td>
</tr>
<tr>
<td>0/2</td>
<td></td>
<td>0/2</td>
<td></td>
</tr>
<tr>
<td>2/2</td>
<td>8/10</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>10/10</td>
<td></td>
<td></td>
<td>0/10</td>
</tr>
</tbody>
</table>

\(|f| = 8\)
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

| $|f|$ |
|-----|
| 10 |

| 6.6: Maximum flow | T.S. |
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

![Graph](image-url)

$|f| = 10$
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

![Graph](image)

|$f| = 10$
A First Attempt

Greedy Algorithm

- Start with $f(u, v) = 0$ everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge $e = (u, v)$ has $f(u, v) < c(u, v)$
 - Augment flow along p

Is this optimal?

Greedy did not succeed!

f	16
s	6/10
3	2/2
2	0/4
4	6/6
5	8/9
t	10/10
A First Attempt

Greedy Algorithm

- Start with \(f(u, v) = 0 \) everywhere
- Repeat as long as possible:
 - Find a \((s, t)\)-path \(p \) where each edge \(e = (u, v) \) has \(f(u, v) < c(u, v) \)
 - Augment flow along \(p \)

Is this optimal?

|f| = 16
A First Attempt

Greedy Algorithm

- Start with \(f(u, v) = 0 \) everywhere
- Repeat as long as possible:
 - Find a \((s, t)\)-path \(p \) where each edge \(e = (u, v) \) has \(f(u, v) < c(u, v) \)
 - Augment flow along \(p \)

![Graph with flow values](image)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Flow In</th>
<th>Flow Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>t</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

\[|f| = 19 \]

Greedy did not succeed!
Outline

Introduction

Ford-Fulkerson

Max-Flow Min-Cut Theorem
Residual Graph

Original Edge

Edge \(e = (u, v) \in E \)
- flow \(f(u, v) \) and capacity \(c(u, v) \)
Residual Graph

Original Edge

Edge $e = (u, v) \in E$
- flow $f(u, v)$ and capacity $c(u, v)$

Graph G:

![Graph diagram](image)
Residual Graph

Original Edge

Edge \(e = (u, v) \in E \)
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

\[
c_f(u, v) = \begin{cases}
 c(u, v) - f(u, v) & \text{if } (u, v) \in E, \\
 f(v, u) & \text{if } (v, u) \in E, \\
 0 & \text{otherwise}.
\end{cases}
\]

Graph \(G \):

\[u \xrightarrow{6/17} v \]
Residual Graph

Original Edge

Edge \(e = (u, v) \in E \)
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

\[
c_f(u, v) = \begin{cases}
 c(u, v) - f(u, v) & \text{if } (u, v) \in E, \\
 f(v, u) & \text{if } (v, u) \in E, \\
 0 & \text{otherwise.}
\end{cases}
\]

Graph \(G \):

\[
\begin{array}{c}
\text{u} \\
\rightarrow \\
\text{v}
\end{array}
\]

Residual \(G_f \):

\[
\begin{array}{c}
\text{u} \\
\rightarrow \\
\text{v}
\end{array}
\]
Residual Graph

Original Edge

Edge \(e = (u, v) \in E \)
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

\[
c_f(u, v) = \begin{cases}
 c(u, v) - f(u, v) & \text{if } (u, v) \in E , \\
 f(v, u) & \text{if } (v, u) \in E , \\
 0 & \text{otherwise}.
\end{cases}
\]

Residual Graph

- \(G_f = (V, E_f, c_f) \), \(E_f := \{(u, v) : c_f(u, v) > 0\} \)
Residual Graph with anti-parallel edges

Original Edge

Edge $e = (u, v) \in E$ (& possibly $e' = (v, u) \in E$)

- flow $f(u, v)$ and capacity $c(u, v)$

Graph G:

![Graph diagram]

- u to v with flow $6/17$
- v to u with flow $2/4$

Residual Graph

Graph G_f:

- u to v with residual capacity $17 - (6 - 2) = 13$
- v to u with residual capacity 8

6.6: Maximum flow
Residual Graph with anti-parallel edges

Original Edge

Edge \(e = (u, v) \in E \) (\& possibly \(e' = (v, u) \in E \))
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

For every pair \((u, v) \in V \times V\),

\[
c_f(u, v) = c(u, v) - f(u, v).
\]
Residual Graph with anti-parallel edges

Original Edge

Edge \(e = (u, v) \in E \) (\& possibly \(e' = (v, u) \in E \))
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

For every pair \((u, v) \in V \times V\),

\[
c_f(u, v) = c(u, v) - f(u, v).
\]
Residual Graph with anti-parallel edges

Original Edge

Edge \(e = (u, v) \in E \) (& possibly \(e' = (v, u) \in E \))
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

For every pair \((u, v) \in V \times V \),

\[
c_f(u, v) = c(u, v) - f(u, v).
\]

Graph \(G: \)

\(u \rightarrow v \)
\(6/17 \)
\(2/4 \)

Residual \(G_f: \)

\(u \rightarrow v \)
\(17-(6-2) \)
\(4-(2-6) \)
Residual Graph with anti-parallel edges

Original Edge

- Edge \(e = (u, v) \in E \) (\& possibly \(e' = (v, u) \in E \))
- flow \(f(u, v) \) and capacity \(c(u, v) \)

Residual Capacity

- For every pair \((u, v) \in V \times V\),
 \[
 c_f(u, v) = c(u, v) - f(u, v).
 \]
Residual Graph with anti-parallel edges

Original Edge

Edge $e = (u, v) \in E$ (and possibly $e' = (v, u) \in E$
- flow $f(u, v)$ and capacity $c(u, v)$

Residual Capacity

For every pair $(u, v) \in V \times V$,

$$c_f(u, v) = c(u, v) - f(u, v).$$

Residual Graph

- $G_f = (V, E_f, c_f)$, $E_f := \{(u, v) : c_f(u, v) > 0\}$

Graph G:

- $u \rightarrow v$ with flow $6/17$
- $u \rightarrow v$ with capacity $2/4$

Residual G_f:

- $u \rightarrow v$ with residual capacity 13
- $u \rightarrow v$ with residual capacity 8
Example of a Residual Graph (Handout)

Flow network G

Residual Graph G_f
The Ford-Fulkerson Method ("Enhanced Greedy")

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G_f can be found:
3: push as much extra flow as possible through it
The Ford-Fulkerson Method ("Enhanced Greedy")

```python
0: def fordFulkerson(G)
1:     initialize flow to 0 on all edges
2:     while an augmenting path in $G_f$ can be found:
3:         push as much extra flow as possible through it
```

Augmenting path: Path from source to sink in G_f
The Ford-Fulkerson Method ("Enhanced Greedy")

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G_f can be found:
3: push as much extra flow as possible through it

If f' is a flow in G_f and f a flow in G, then $f + f'$ is a flow in G
The Ford-Fulkerson Method ("Enhanced Greedy")

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G_f can be found:
3: push as much extra flow as possible through it

Questions:
- How to find an augmenting path?
- Does this method terminate?
- If it terminates, how good is the solution?

Using BFS or DFS, we can find an augmenting path in $O(V + E)$ time.
The Ford-Fulkerson Method ("Enhanced Greedy")

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G_f can be found:
3: push as much extra flow as possible through it

Using BFS or DFS, we can find an augmenting path in $O(V + E)$ time.

Questions:
- How to find an augmenting path?
- Does this method terminate?
- If it terminates, how good is the solution?
Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:

Is this a max-flow?
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph \(G = (V, E, c) \):

\[
\begin{align*}
\text{s} & \to \text{2} & 10/10 \\
\text{2} & \to \text{4} & 0/4 \\
\text{2} & \to \text{3} & 2/2 \\
\text{3} & \to \text{4} & 8/8 \\
\text{3} & \to \text{5} & 8/9 \\
\text{5} & \to \text{t} & 10/10 \\
\text{4} & \to \text{t} & 6/6 \\
\text{5} & \to \text{t} & 6/10
\end{align*}
\]

\(|f| = 16\)

Residual Graph \(G_f = (V, E_f, c_f) \):

\[
\begin{align*}
\text{s} & \to \text{2} & 10 \\
\text{2} & \to \text{3} & 2 \\
\text{3} & \to \text{4} & 4 \\
\text{3} & \to \text{5} & 8 \\
\text{4} & \to \text{5} & 6 \\
\text{5} & \to \text{s} & 6 \\
\text{5} & \to \text{t} & 10 \\
\text{t} & \to \text{4} & 6 \\
\text{t} & \to \text{s} & 4 \\
\text{t} & \to \text{3} & 1 \\
\text{t} & \to \text{5} & 10
\end{align*}
\]
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:

$|f| = 16$
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$: |f| = 18
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

Residual Graph $G_f = (V, E_f, c_f)$:
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>t</td>
</tr>
<tr>
<td>10/10</td>
<td>3/4</td>
<td>0/2</td>
<td>9/10</td>
<td>10/10</td>
</tr>
<tr>
<td>9/10</td>
<td>7/8</td>
<td>6/6</td>
<td>9/9</td>
<td>10/10</td>
</tr>
</tbody>
</table>

$|f| = 19$

Is this a max-flow?

Residual Graph $G_f = (V, E_f, c_f)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>t</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

$|f| = 19$
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

```
Graph G = (V, E, c):

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>9/10</td>
<td>9/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>10/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9/10</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

$|f| = 19$

Is this a max-flow?

Residual Graph $G_f = (V, E_f, c_f)$:

```
Residual Graph Gf = (V, Ef, cf):

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

6.6: Maximum flow
Illustration of the Ford-Fulkerson Method

Graph $G = (V, E, c)$:

![Graph](image)

$|f| = 19$

Is this a max-flow?

Residual Graph $G_f = (V, E_f, c_f)$:

![Residual Graph](image)
Outline

Introduction

Ford-Fulkerson

Max-Flow Min-Cut Theorem
A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T = V \setminus S\) such that \(s \in S\) and \(t \in T\).

Graph \(G = (V, E, c)\):

- \((s, 3)\) with capacity 10
- \((3, 2)\) with capacity 2
- \((2, 4)\) with capacity 4
- \((4, 5)\) with capacity 6
- \((5, t)\) with capacity 10
- \((s, 5)\) with capacity 9
- \((2, 5)\) with capacity 8
- \((3, t)\) with capacity 10

\[c(S, T) = 10 + 9 = 19\]

\[|f| = 16\]
A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T = V \setminus S\) such that \(s \in S\) and \(t \in T\).

Graph \(G = (V, E, c)\):

- \(s\) to \(2\): 10
- \(2\) to \(4\): 4
- \(2\) to \(3\): 2
- \(2\) to \(t\): 8
- \(3\) to \(s\): 10
- \(3\) to \(5\): 9
- \(4\) to \(5\): 6
- \(4\) to \(t\): 10
- \(5\) to \(t\): 10
From Flows to Cuts

Cut

- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T = V \setminus S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\):

\[
c(S, T) = \sum_{u \in S, v \in T} c(u, v) = \sum_{(u,v) \in E(S,T)} c(u, v)
\]

Graph \(G = (V, E, c)\):

\[
c(\{s, 3\}, \{2, 4, 5, t\}) = \]

6.6: Maximum flow

T.S.
A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T = V \setminus S\) such that \(s \in S\) and \(t \in T\).

The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\):

\[
c(S, T) = \sum_{u \in S, v \in T} c(u, v) = \sum_{(u,v) \in E(S,T)} c(u, v)
\]

Graph \(G = (V, E, c)\):

\[
c(\{s, 3\}, \{2, 4, 5, t\}) = 10 + 9 = 19
\]
A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T = V \setminus S\) such that \(s \in S\) and \(t \in T\).

The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\):

\[
c(S, T) = \sum_{u \in S, v \in T} c(u, v) = \sum_{(u, v) \in E(S, T)} c(u, v)
\]

A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network.

Graph \(G = (V, E, c)\):

\[
|f| = 16
\]
From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

$$|f| = \sum_{(u,v) \in E(S,T)} f(u,v) - \sum_{(v,u) \in E(T,S)} f(v,u).$$

Graph $G = (V, E, c)$:

$|f| = 16$
Flow Value Lemma (Lemma 26.4)

Let \(f \) be a flow with source \(s \) and sink \(t \), and let \((S, T)\) be any cut of \(G \). Then the value of the flow is equal to the net flow across the cut, i.e.,

\[
|f| = \sum_{(u, v) \in E(S, T)} f(u, v) - \sum_{(v, u) \in E(T, S)} f(v, u).
\]

Graph \(G = (V, E, c) \):

| \(f \) = 16 |
Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

$$|f| = \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u).$$

Graph $G = (V, E, c)$:

$$|f| = 16$$
From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

$$|f| = \sum_{(u,v) \in E(S,T)} f(u,v) - \sum_{(v,u) \in E(T,S)} f(v,u).$$

Graph $G = (V, E, c)$:

$$|f| = 16$$

10 - 2 + 8 = 16
Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

$$|f| = \sum_{(u, v) \in E(S, T)} f(u, v) - \sum_{(v, u) \in E(T, S)} f(v, u).$$

Graph $G = (V, E, c)$:

$$|f| = 16$$
From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

$$|f| = \sum_{(u,v) \in E(S,T)} f(u,v) - \sum_{(v,u) \in E(T,S)} f(v,u).$$

Graph $G = (V, E, c)$:

$$|f| = 16$$
Flow Value Lemma (Lemma 26.4)

Let \(f \) be a flow with source \(s \) and sink \(t \), and let \((S, T)\) be any cut of \(G \). Then the value of the flow is equal to the net flow across the cut, i.e.,

\[
|f| = \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u).
\]

Graph \(G = (V, E, c) \):

\[
8 + 8 - 6 + 6 = 16
\]
From Flows to Cuts

|\begin{align*}
|f| &= \sum_{(u,v) \in E(S,T)} f(u,v) - \sum_{(v,u) \in E(T,S)} f(v,u).
|\end{align*}|

Graph $G = (V, E, c)$:

\[8 + 8 - 6 + 6 = 16\]
From Flows to Cuts

\[|f| = \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u). \]

Graph \(G = (V, E, c) \):

\[|f| = 16 \]

\[8 + 8 - 6 + 6 = 16 \]
From Flows to Cuts

\[|f| = \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u). \]

\[|f| = \sum_{w \in V} f(s, w) \]

Graph \(G = (V, E, c) \):

\[|f| = 16 \]

\[8 + 8 - 6 + 6 = 16 \]
From Flows to Cuts

\[|f| = \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u). \]

\[|f| = \sum_{w \in V} f(s, w) = \sum_{u \in S} \left(\sum_{(u,w) \in E} f(u, w) - \sum_{(w,u) \in E} f(w, u) \right) \]

Graph \(G = (V, E, c) \):

\[|f| = 16 \]

\[8 + 8 - 6 + 6 = 16 \]
From Flows to Cuts

\[|f| = \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u). \]

\[|f| = \sum_{w \in V} f(s, w) = \sum_{u \in S} \left(\sum_{(u,w) \in E} f(u, w) - \sum_{(w,u) \in E} f(w, u) \right) \]

\[= \sum_{(u,v) \in E(S,T)} f(u, v) - \sum_{(v,u) \in E(T,S)} f(v, u). \]

Graph \(G = (V, E, c) : \)

\[|f| = 16 \]

\[8 + 8 - 6 + 6 = 16 \]