5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2015
Outline

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree
Amortized Analysis via Potential Method

- **INSERT:** actual $O(1)$
- **EXTRACT-MIN:** actual $O(\text{trees}(H) + d(n))$
- **DECREASE-KEY:** actual $O(\# \text{ cuts}) \leq O(\text{marks}(H))$
Amortized Analysis via Potential Method

- **INSERT:** actual $\mathcal{O}(1)$
- **EXTRACT-MIN:** actual $\mathcal{O}(\text{trees}(H) + d(n))$
- **DECREASE-KEY:** actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$
Amortized Analysis via Potential Method

- **INSERT**: actual $\mathcal{O}(1)$
- **EXTRACT-MIN**: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- **DECREASE-KEY**: actual $\mathcal{O}(\#\text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$

\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]
Amortized Analysis via Potential Method

- **INSERT:** actual $\mathcal{O}(1)$
- **EXTRACT-MIN:** actual $\mathcal{O}(\text{trees}(H) + d(n))$
- **DECREASE-KEY:** actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$
Amortized Analysis via Potential Method

- **INSERT:** actual $\mathcal{O}(1)$
- **EXTRACT-MIN:** actual $\mathcal{O}(\text{trees}(H) + d(n))$
- **DECREASE-KEY:** actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]
Amortized Analysis via Potential Method

- **INSERT**: actual $\mathcal{O}(1)$
 amortized $\mathcal{O}(1)$
- **EXTRACT-MIN**: actual $\mathcal{O}(\text{trees}(H) + d(n))$
 amortized $\mathcal{O}(d(n))$
- **DECREASE-KEY**: actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$
 amortized $\mathcal{O}(1)$

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

Lifecycle of a node

5.2: Fibonacci Heaps (Analysis)
Amortized Analysis via Potential Method

- **INSERT:** actual $O(1)$
 amortized $O(1)$ ✓
- **EXTRACT-MIN:** actual $O(\text{trees}(H) + d(n))$
 amortized $O(d(n))$?
- **DECREASE-KEY:** actual $O(\# \text{ cuts}) \leq O(\text{marks}(H))$
 amortized $O(1)$?

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]
Outline

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree
Amortized Analysis of **DECREASE-KEY**

- **DECREASE-KEY**: $\mathcal{O}(x + 1)$, where x is the number of cuts.
Amortized Analysis of DECREASE-KEY

Actual Cost

- **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]
Amortized Analysis of **DECREASE-KEY**

Actual Cost
- **DECREASE-KEY:** $O(x + 1)$, where x is the number of cuts.

Change in Potential

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$
Amortized Analysis of **DECREASE-KEY**

- **Actual Cost**
 - **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

- **Change in Potential**
 - $\text{trees}(H') =$

Φ(H) = trees(H) + 2 \cdot marks(H)
Amortized Analysis of DECREASE-KEY

Actual Cost

- **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]

Change in Potential

- $\text{trees}(H') = \text{trees}(H) + x$
Amortized Analysis of **DECREASE-KEY**

Actual Cost
- **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

Change in Potential
- $\text{trees}(H') = \text{trees}(H) + x$
- $\text{marks}(H') \leq$

Potential Function

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$
Amortized Analysis of DECREASE-KEY

Actual Cost

- **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]

Change in Potential

- $\text{trees}(H') = \text{trees}(H) + x$
- $\text{marks}(H') \leq \text{marks}(H) - x + 2$
Amortized Analysis of `DECREASE-KEY`

Actual Cost
- `DECREASE-KEY`: $O(x + 1)$, where x is the number of cuts.

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

Change in Potential
- $\text{trees}(H') = \text{trees}(H) + x$
- $\text{marks}(H') \leq \text{marks}(H) - x + 2$
- $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 - x$.

5.2: Fibonacci Heaps (Analysis)
T.S.
5
Amortized Analysis of **DECREASE-KEY**

- **Actual Cost**
 - **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

- **Change in Potential**
 - $\text{trees}(H') = \text{trees}(H) + x$
 - $\text{marks}(H') \leq \text{marks}(H) - x + 2$
 - $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 - x$.

- **Amortized Cost**
 - $\tilde{c}_i = c_i + \Delta \Phi$

Actual Cost

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

Change in Potential

Amortized Cost
Amortized Analysis of \textsc{Decrease-Key}

\begin{itemize}
 \item \textsc{Decrease-Key}: $O(x + 1)$, where x is the number of cuts.
\end{itemize}

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]

\begin{itemize}
 \item \text{trees}(H') = \text{trees}(H) + x
 \item \text{marks}(H') \leq \text{marks}(H) - x + 2
 \Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 - x.
\end{itemize}

\[\tilde{c}_i = c_i + \Delta \Phi \leq O(x + 1) + 4 - x \]
Amortized Analysis of DECREASE-KEY

Actual Cost
- **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

Φ(H)

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

Change in Potential
- trees(H') = trees(H) + x
- marks(H') ≤ marks(H) − $x + 2$
 $$\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 - x.$$

Amortized Cost

$$\tilde{c}_i = c_i + \Delta \Phi \leq O(x + 1) + 4 - x = O(1)$$
Amortized Analysis of DECREASE-KEY

Actual Cost

- **DECREASE-KEY**: $O(x + 1)$, where x is the number of cuts.

\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]

First Coin \(\sim\) pays cut
Second Coin \(\sim\) increase of \(\text{trees}(H)\)

Change in Potential

- \(\text{trees}(H') = \text{trees}(H) + x\)
- \(\text{marks}(H') \leq \text{marks}(H) - x + 2\)
 \[\Rightarrow \ \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 - x.\]

Amortized Cost

\[
\tilde{c}_i = c_i + \Delta \Phi \leq O(x + 1) + 4 - x = O(1)
\]
Amortized Analysis of \textsc{Extract-Min}

- \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

Actual Cost
Amortized Analysis of \textsc{Extract-Min}

Actual Cost

- \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]
Amortized Analysis of *EXTRACT-MIN*

- **Actual Cost**
 - *EXTRACT-MIN*: $\mathcal{O}(\text{trees}(H) + d(n))$

- **Change in Potential**
 - $\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$
Amortized Analysis of \textsc{Extract-Min}

- Actual Cost
 - \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

- Change in Potential
 - marks(H') \? marks(H)

\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]
Amortized Analysis of \textsc{Extract-Min}

- **Actual Cost**
 - \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

 \[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]

- **Change in Potential**
 - $\text{marks}(H') \neq \text{marks}(H)$

5.2: Fibonacci Heaps (Analysis)
Amortized Analysis of \textsc{Extract-Min}

Actual Cost
- \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

Change in Potential
- $\text{marks}(H') \leq \text{marks}(H)$

Potential Function
\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]
Amortized Analysis of \textsc{Extract-Min}

Actual Cost
- \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

\begin{align*}
\Phi(H) &= \text{trees}(H) + 2 \cdot \text{marks}(H)
\end{align*}

Change in Potential
- $\text{marks}(H') \leq \text{marks}(H)$
- $\text{trees}(H') \leq \text{trees}(H)$
Amortized Analysis of EXTRACT-MIN

Actual Cost

- **EXTRACT-MIN**: $O(trees(H) + d(n))$

Change in Potential

- $marks(H') \leq marks(H)$
- $trees(H') \leq$

Potential Function

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$
Amortized Analysis of EXTRACT-MIN

Actual Cost

- **EXTRACT-MIN**: $O(\text{trees}(H) + d(n))$

Change in Potential

- $\text{marks}(H') \leq \text{marks}(H)$
- $\text{trees}(H') \leq d(n) + 1$

$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$

Change in Potential

- $\text{marks}(H') \leq \text{marks}(H)$
- $\text{trees}(H') \leq d(n) + 1$

$d(n)$

degrees
Amortized Analysis of \textsc{Extract-Min}

- **Actual Cost**
 - \textsc{Extract-Min}: $O(\text{trees}(H) + d(n))$

- **Potential Function**
 - $\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$

- **Change in Potential**
 - $\text{marks}(H') \leq \text{marks}(H)$
 - $\text{trees}(H') \leq d(n) + 1$
 - $\Rightarrow \Delta \Phi \leq d(n) + 1 - \text{trees}(H)$

5.2: Fibonacci Heaps (Analysis) T.S. 6
Amortized Analysis of \textsc{Extract-Min}

- **Actual Cost**
 - \textbf{\textsc{Extract-Min}}: $O(\text{trees}(H) + d(n))$

- **Potential Function**
 - $\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$

- **Change in Potential**
 - $\text{marks}(H') \leq \text{marks}(H)$
 - $\text{trees}(H') \leq d(n) + 1$
 - $\Rightarrow \Delta \Phi \leq d(n) + 1 - \text{trees}(H)$

- **Amortized Cost**
 - $\tilde{c}_i = c_i + \Delta \Phi$

5.2: Fibonacci Heaps (Analysis)
Amortized Analysis of EXTRACT-MIN

Actual Cost
- \textbf{EXTRACT-MIN}: \(\mathcal{O}(\text{trees}(H) + d(n)) \)

\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]

Change in Potential
- \(\text{marks}(H') \leq \text{marks}(H) \)
- \(\text{trees}(H') \leq d(n) + 1 \)
\[\Rightarrow \Delta \Phi \leq d(n) + 1 - \text{trees}(H)\]

Amortized Cost
\[
\tilde{c}_i = c_i + \Delta \Phi \leq \mathcal{O}(\text{trees}(H) + d(n)) + d(n) + 1 - \text{trees}(H)
\]
Amortized Analysis of EXTRACT-MIN

- **Actual Cost**
 - EXTRACT-MIN: $O(\text{trees}(H) + d(n))$

- **Change in Potential**
 - marks(H') \leq marks(H)
 - trees(H') \leq $d(n) + 1$
 - \Rightarrow $\Delta \Phi \leq d(n) + 1 - \text{trees}(H)$

- **Amortized Cost**
 - $\tilde{c}_i = c_i + \Delta \Phi \leq O(\text{trees}(H) + d(n)) + d(n) + 1 - \text{trees}(H) = O(d(n))$
Amortized Analysis of EXTRACT-MIN

Actual Cost
- **EXTRACT-MIN**: $O(\text{trees}(H) + d(n))$

Φ(H) = trees(H) + 2 · marks(H)

Change in Potential
- marks(H') ≤ marks(H)
- trees(H') ≤ $d(n)$ + 1
 \Rightarrow $\Delta \Phi \leq d(n) + 1 - \text{trees}(H)$

Amortized Cost
\[
\tilde{c}_i = c_i + \Delta \Phi \leq O(\text{trees}(H) + d(n)) + d(n) + 1 - \text{trees}(H) = O(d(n))
\]

How to bound $d(n)$?
Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree
Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Binomial Heap
Bounding the Maximum Degree

Binomial Heap

Every tree is a binomial tree \(\Rightarrow d(n) \leq \log_2 n. \)
Bounding the Maximum Degree

Binomial Heap

Every tree is a binomial tree \(\Rightarrow d(n) \leq \log_2 n \).

\[d = 3, \quad n = 2^3 \]
Bounding the Maximum Degree

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Binomial Heap

Not all trees are binomial trees, but still $d(n) \leq \log_\phi n$, where $\phi \approx 1.62$.

Fibonacci Heap
Bounding the Maximum Degree

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Binomial Heap

```
Not all trees are binomial trees, but still $d(n) \leq \log_\varphi n$, where $\varphi \approx 1.62$.
```

Fibonacci Heap
We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\phi^k \) nodes.

Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state. Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment and \(d_1, d_2, \ldots, d_k \) be their degrees.

\[
\forall 1 \leq i \leq k: d_i \geq i - 2
\]
Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_{\varphi} n \]
Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

$d(n) \leq \log_\varphi n$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_{\varphi} n \]

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state.
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment.

![Diagram of a tree with nodes y_1, y_2, y_3 and a root x.]
We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state.
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment.
We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_{\varphi} n \]

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

Consider any node x of degree k (not necessarily a root) at the final state.
Let y_1, y_2, \ldots, y_k be the children in the order of attachment.

$$d(n) \leq \log_{\varphi} n$$
Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log \varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[
d(n) \leq \log_\varphi n
\]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state.
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment.
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
Consider any node x of degree k (not necessarily a root) at the final state.
Let y_1, y_2, \ldots, y_k be the children in the order of attachment.
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

```
  x
 / \  /
/   / /
/   /  
  y_1 y_2 y_3 y_4
```
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$d(n) \leq \log_\varphi n$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
Lower Bounding Degrees of Children

We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[
d(n) \leq \log_\varphi n
\]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement: Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state.
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment.

![Diagram of a tree structure with nodes labeled x, y_1, y_2, y_3, y_4, \ldots, y_k. The node y_2 has a cross mark indicating a special node.]

5.2: Fibonacci Heaps (Analysis)
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

$d(n) \leq \log_\varphi n$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state.
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment.
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

We have $d(n) \leq \log_\varphi n$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_\varphi n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree \(k \) contains at least \(\varphi^k \) nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node \(x \) of degree \(k \) (not necessarily a root) at the final state
- Let \(y_1, y_2, \ldots, y_k \) be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment
We will prove a stronger statement:
Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees
Lower Bounding Degrees of Children

We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

\[d(n) \leq \log_\varphi n \]

- Consider any node x of degree k (not necessarily a root) at the final state.
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees.

\[\forall 1 \leq i \leq k: \quad d_i \geq i - 2 \]
∀ 1 ≤ i ≤ k: \(d_i \geq i - 2 \)
From Degrees to Minimum Subtree Sizes

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

\[\forall 1 \leq i \leq k : \quad d_i \geq i - 2 \]
∀1 ≤ i ≤ k: d_i ≥ i - 2

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

N(0)
From Degrees to Minimum Subtree Sizes

\[\forall 1 \leq i \leq k : \quad d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\(N(0) \)

- 0
From Degrees to Minimum Subtree Sizes

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

\[\forall 1 \leq i \leq k : \quad d_i \geq i - 2 \]

Definition

$N(0) = 0$
$N(1) = 1$
$N(2) = 2$
$N(3) = 3$
$N(4) = 5$
$N(5) = 8$
$N(k) = F(k+2)$

5.2: Fibonacci Heaps (Analysis)
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{array}{ccc}
N(0) & N(1) \\
\bullet 0 & \bullet 1 \\
\end{array}
\]
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i ≥ i − 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).
From Degrees to Minimum Subtree Sizes

\[
\forall 1 \leq i \leq k: \quad d_i \geq i - 2
\]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) & = 0 \\
N(1) & = 1 \\
N(2) & = 5
\end{align*}
\]
From Degrees to Minimum Subtree Sizes

\[\forall 1 \leq i \leq k: \quad d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{array}{cccc}
N(0) & N(1) & N(2) \\
\bullet 0 & \bullet 1 & \bullet 2 \\
\end{array}
\]

...
From Degrees to Minimum Subtree Sizes

∀ \hspace{1em} 1 \leq i \leq k : \hspace{1em} d_i \geq i - 2

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{array}{ccc}
N(0) & N(1) & N(2) \\
\bullet \hspace{1em} 0 & \bullet \hspace{1em} 1 & \bullet \hspace{1em} 2 \\
\hspace{1em} \bullet \hspace{1em} 0 & \bullet \hspace{1em} 0 & \bullet \hspace{1em} 0 \\
\end{array}
\]
\[\forall 1 \leq i \leq k : \quad d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).
From Degrees to Minimum Subtree Sizes

\[\forall 1 \leq i \leq k: \quad d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition
Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) & = 0 \\
N(1) & = 1 \\
N(2) & = 2 \\
N(3) & = 3
\end{align*}
\]
\[\forall 1 \leq i \leq k: \quad d_i \geq i - 2 \]

Definition

Let \(N(k)\) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k\).
\begin{align*}
\forall 1 \leq i \leq k: \quad d_i \geq i - 2
\end{align*}

Definition

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

![Diagram of tree with nodes and edges]

- $N(0) = 0$
- $N(1) = 1$
- $N(2) = 2$
- $N(3) = 3$
- $N(4) = 5$

$N(k) = F(k+2)$
From Degrees to Minimum Subtree Sizes

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\forall 1 \leq i \leq k: \quad d_i \geq i - 2
\]
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: d_i ≥ i – 2

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{array}{c|c|c|c|c}
 k & N(0) & N(1) & N(2) & N(3) & N(4) \\
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 0 & 1 & 1 & 2 \\
3 & 0 & 0 & 1 & 1 & 2 \\
4 & 0 & 0 & 1 & 1 & 2 \\
\end{array}
\]
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

<table>
<thead>
<tr>
<th>(N(0))</th>
<th>(N(1))</th>
<th>(N(2))</th>
<th>(N(3))</th>
<th>(N(4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(y_1)</td>
<td>(y_2)</td>
<td>(y_3)</td>
<td>(y_4)</td>
<td>(y_k)</td>
</tr>
</tbody>
</table>

\(d_i \geq i - 2 \) for all \(1 \leq i \leq k \).
From Degrees to Minimum Subtree Sizes

\[\forall 1 \leq i \leq k: \quad d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) &= 1 & N(1) &= 1 & N(2) &= 2 & N(3) &= 3 & N(4) &= 4 \\
0 & & 1 & & 2 & & 3 & & 4 \\
0 & & 0 & & 0 & & 0 & & 0 \\
0 & & 1 & & 1 & & 0 & & 0 \\
0 & & 0 & & 0 & & 0 & & 0 \\
0 & & 0 & & 0 & & 0 & & 0
\end{align*}
\]

5.2: Fibonacci Heaps (Analysis)
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
N(0) = 1 \quad N(1) = 2 \quad N(2) = 3 \\
N(3) = 5 + 3 \quad N(4) = F(k+2)
\]
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) &= 1 \\
N(1) &= 2 \\
N(2) &= 3 \\
N(3) &= 5 \\
N(4) &= 8
\end{align*}
\]
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) &= 1 & N(1) &= 2 & N(2) &= 3 & N(3) &= 5 & N(4) \\
\end{align*}
\]
From Degrees to Minimum Subtree Sizes

∀1 \leq i \leq k: \quad d_i \geq i - 2

Definition

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$N(0) = 1 \quad N(1) = 2 \quad N(2) = 3 \quad N(3) = 5 \quad N(4) = 8$
From Degrees to Minimum Subtree Sizes

\[\forall 1 \leq i \leq k: \quad d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) &= 1 & N(1) &= 2 & N(2) &= 3 & N(3) &= 5 & N(4) &= 8 \\
\end{align*}
\]
From Degrees to Minimum Subtree Sizes

\[\forall 1 \leq i \leq k: \ d_i \geq i - 2 \]

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) &= 1 & N(1) &= 2 & N(2) &= 3 & N(3) &= 5 & N(4) &= 8 \\
\end{align*}
\]
Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$N(0) = 1 \quad N(1) = 2 \quad N(2) = 3 \quad N(3) = 5 \quad N(4) = 8$
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
\begin{align*}
N(0) &= 1 & N(1) &= 2 & N(2) &= 3 & N(3) &= 5 \\
N(4) &= 8 = 5 + 3
\end{align*}
\]
From Degrees to Minimum Subtree Sizes

∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

Definition

Let \(N(k) \) be the minimum possible number of nodes of a subtree rooted at a node of degree \(k \).

\[
N(k) = F(k + 2)\ ?
\]

\[
\begin{align*}
N(0) &= 1 & N(1) &= 2 & N(2) &= 3 & N(3) &= 5 & N(4) &= 8 = 5 + 3
\end{align*}
\]
∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

\(N(k) = F(k + 2) \)?
\(\forall 1 \leq i \leq k : \quad d_i \geq i - 2 \)

\(N(k) = F(k + 2) ? \)
∀1 ≤ i ≤ k: \(d_i \geq i - 2 \)

\[N(k) = F(k + 2) \]

\[N(k) = 1 + 1 + N(2 - 2) + N(3 - 2) + \cdots + N(k - 2) \]

\[= 1 + 1 + \sum_{\ell=0}^{k-3} N(\ell) + N(k - 2) \]

\[= N(k - 1) + N(k - 2) \]

\[= F(k + 1) + F(k) = F(k + 2) \]
Lemma 19.3

For all integers $k \geq 0$, the $(k + 2)$nd Fib. number satisfies $F(k + 2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots$.
Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers $k \geq 0$, the $(k + 2)$nd Fib. number satisfies $F(k + 2) \geq \phi^k$, where $\phi = (1 + \sqrt{5})/2 = 1.61803\ldots$.

$\phi^2 = \phi + 1$

Fibonacci Numbers grow at least exponentially fast in k.

ϕ is essentially the golden ratio, which is the solution to the equation $x^2 = x + 1$. This equation is derived from the Fibonacci sequence's recurrence relation and represents the ratio of successive Fibonacci numbers as k tends to infinity.
Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers \(k \geq 0 \), the \((k + 2)\)nd Fib. number satisfies \(F(k + 2) \geq \varphi^k \), where \(\varphi = (1 + \sqrt{5})/2 = 1.61803... \).

\[\varphi^2 = \varphi + 1 \]

Fibonacci Numbers grow at least exponentially fast in \(k \).

Proof by induction on \(k \):
Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers \(k \geq 0 \), the \((k+2)\)nd Fib. number satisfies \(F(k+2) \geq \varphi^k \), where \(\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots \).

\[\varphi^2 = \varphi + 1 \]

Fibonacci Numbers grow at least exponentially fast in \(k \).

Proof by induction on \(k \):
- **Base** \(k = 0 \): \(F(2) = 1 \) and \(\varphi^0 = 1 \)
Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$th Fibonacci number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots$.

$\varphi^2 = \varphi + 1$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k:

- Base $k = 0$: $F(2) = 1$ and $\varphi^0 = 1$.
Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k + 2)$nd Fib. number satisfies $F(k + 2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803 \ldots$

Proof by induction on k:

- **Base $k = 0$:** $F(2) = 1$ and $\varphi^0 = 1 \checkmark$
- **Base $k = 1$:** $F(3) = 2$ and $\varphi^1 \approx 1.619 < 2$

$\varphi^2 = \varphi + 1$

Fibonacci Numbers grow at least exponentially fast in k.
Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$nd Fib. number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots$

Proof by induction on k:

- **Base $k = 0$:** $F(2) = 1$ and $\varphi^0 = 1 \checkmark$
- **Base $k = 1$:** $F(3) = 2$ and $\varphi^1 \approx 1.619 < 2 \checkmark$
Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$nd Fib. number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots$.

$\varphi^2 = \varphi + 1$

Proof by induction on k:

- Base $k = 0$: $F(2) = 1$ and $\varphi^0 = 1$ ✓
- Base $k = 1$: $F(3) = 2$ and $\varphi^1 \approx 1.619 < 2$ ✓
- Inductive Step ($k \geq 2$):

 $$F(k + 2) =$$

Fibonacci Numbers grow at least exponentially fast in k.
Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers $k \geq 0$, the $(k+2)$nd Fib. number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots$

Proof by induction on k:
- Base $k = 0$: $F(2) = 1$ and $\varphi^0 = 1$ ✓
- Base $k = 1$: $F(3) = 2$ and $\varphi^1 \approx 1.619 < 2$ ✓
- Inductive Step ($k \geq 2$):
 \[
 F(k + 2) = F(k + 1) + F(k)
 \]
Lemma 19.3

For all integers \(k \geq 0 \), the \((k+2)\)th Fib. number satisfies \(F(k+2) \geq \varphi^k \), where \(\varphi = \frac{1 + \sqrt{5}}{2} = 1.61803 \ldots \).

\[\varphi^2 = \varphi + 1 \]

Fibonacci Numbers grow at least exponentially fast in \(k \).

Proof by induction on \(k \):

- **Base \(k = 0 \):** \(F(2) = 1 \) and \(\varphi^0 = 1 \) ✓
- **Base \(k = 1 \):** \(F(3) = 2 \) and \(\varphi^1 \approx 1.619 < 2 \) ✓
- **Inductive Step (\(k \geq 2 \)):**

\[
F(k+2) = F(k+1) + F(k) \\
\geq \varphi^{k-1} + \varphi^{k-2} \quad \text{(by the inductive hypothesis)}
\]
Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$nd Fib. number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803 \ldots$

$\varphi^2 = \varphi + 1$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k:

- Base $k = 0$: $F(2) = 1$ and $\varphi^0 = 1 \checkmark$
- Base $k = 1$: $F(3) = 2$ and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step ($k \geq 2$):

\[
F(k+2) = F(k+1) + F(k) \\
\geq \varphi^{k-1} + \varphi^{k-2} \quad \text{(by the inductive hypothesis)} \\
= \varphi^{k-2} \cdot (\varphi + 1)
\]
Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers $k \geq 0$, the $(k+2)$nd Fib. number satisfies $F(k+2) \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803\ldots$.

Proof by induction on k:
- Base $k = 0$: $F(2) = 1$ and $\varphi^0 = 1 \sqrt$
- Base $k = 1$: $F(3) = 2$ and $\varphi^1 \approx 1.619 < 2 \sqrt$
- Inductive Step ($k \geq 2$):

\[
F(k+2) = F(k+1) + F(k)
\geq \varphi^{k-1} + \varphi^{k-2} \quad \text{(by the inductive hypothesis)}
= \varphi^{k-2} \cdot (\varphi + 1)
= \varphi^{k-2} \cdot \varphi^2
= \varphi^k \quad (\varphi^2 = \varphi + 1)
\]
Lemma 19.3

For all integers \(k \geq 0 \), the \((k+2)\)th Fib. number satisfies \(F(k+2) \geq \varphi^k \), where \(\varphi = (1 + \sqrt{5})/2 = 1.61803 \ldots \).

\[\varphi^2 = \varphi + 1 \]

Fibonacci Numbers grow at least exponentially fast in \(k \).

Proof by induction on \(k \):
- Base \(k = 0 \): \(F(2) = 1 \) and \(\varphi^0 = 1 \) \(\checkmark \)
- Base \(k = 1 \): \(F(3) = 2 \) and \(\varphi^1 \approx 1.619 < 2 \) \(\checkmark \)
- Inductive Step (\(k \geq 2 \)):

\[
F(k+2) = F(k+1) + F(k) \\
\geq \varphi^{k-1} + \varphi^{k-2} \quad \text{(by the inductive hypothesis)} \\
= \varphi^{k-2} \cdot (\varphi + 1) \\
= \varphi^{k-2} \cdot \varphi^2 \\
= \varphi^k \\
= \varphi^k \]

\(\square \)
Amortized Analysis

- **INSERT**: amortized cost $O(1)$
- **EXTRACT-MIN**: amortized cost $O(d(n))$
- **DECREASE-KEY**: amortized cost $O(1)$
Amortized Analysis

- **INSERT**: amortized cost $O(1)$
- **EXTRACT-MIN** amortized cost $O(d(n))$
- **DECREASE-KEY** amortized cost $O(1)$

$$N(k)$$
Amortized Analysis

- **INSERT**: amortized cost $\mathcal{O}(1)$
- **EXTRACT-MIN**: amortized cost $\mathcal{O}(d(n))$
- **DECREASE-KEY**: amortized cost $\mathcal{O}(1)$

\[
N(k) = F(k + 2)
\]
Amortized Analysis

- **INSERT**: amortized cost $O(1)$
- **EXTRACT-MIN** amortized cost $O(d(n))$
- **DECREASE-KEY** amortized cost $O(1)$

$$N(k) = F(k + 2) \geq \varphi^k$$
Putting the Pieces Together

Amortized Analysis
- **INSERT**: amortized cost $\mathcal{O}(1)$
- **EXTRACT-MIN** amortized cost $\mathcal{O}(d(n))$
- **DECREASE-KEY** amortized cost $\mathcal{O}(1)$

\[
n \geq N(k) = F(k + 2) \geq \varphi^k
\]
Putting the Pieces Together

Amortized Analysis

- **INSERT:** amortized cost $O(1)$
- **EXTRACT-MIN** amortized cost $O(d(n))$
- **DECREASE-KEY** amortized cost $O(1)$

\[
 n \geq N(k) = F(k + 2) \geq \phi^k \\
\Rightarrow \quad \log_{\phi} n \geq k
\]
Amortized Analysis

- **INSERT**: amortized cost $O(1)$
- **EXTRACT-MIN** amortized cost $O(d(n)) \neq O(\log n)$
- **DECREASE-KEY** amortized cost $O(1)$

\[
\begin{align*}
 n \geq N(k) &= F(k + 2) \geq \varphi^k \\
 \Rightarrow \quad \log_\varphi n &\geq k
\end{align*}
\]
What if we don’t have marked nodes?

- **INSERT**: actual $O(1)$
- **EXTRACT-MIN**: actual $O(\text{trees}(H) + d(n))$
- **DECREASE-KEY**: actual $O(1)$
What if we don’t have marked nodes?

- **INSERT**: actual $O(1)$
- **EXTRACT-MIN**: actual $O(\text{trees}(H) + d(n))$
- **DECREASE-KEY**: actual $O(1)$

\[\Phi(H) = \text{trees}(H) \]
What if we don’t have marked nodes?

- **INSERT:** actual $\mathcal{O}(1)$
- **EXTRACT-MIN:** actual $\mathcal{O}(\text{trees}(H) + d(n))$
- **DECREASE-KEY:** actual $\mathcal{O}(1)$

$$\Phi(H) = \text{trees}(H)$$
What if we don’t have marked nodes?

- **INSERT**: actual $O(1)$
- **EXTRACT-MIN**: actual $O(\text{trees}(H) + d(n))$
- **DECREASE-KEY**: actual $O(1)$

$$\Phi(H) = \text{trees}(H)$$
What if we don’t have marked nodes?

- **INSERT:** actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$
- **EXTRACT-MIN:** actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n))$
- **DECREASE-KEY:** actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$$\Phi(H) = \text{trees}(H)$$
What if we don’t have marked nodes?

- **INSERT:** actual $O(1)$ amortized $O(1)$
- **EXTRACT-MIN:** actual $O(\text{trees}(H) + d(n))$ amortized $O(d(n)) \neq O(\log n)$
- **DECREASE-KEY:** actual $O(1)$ amortized $O(1)$

$$\Phi(H) = \text{trees}(H)$$

![Fibonacci Heap Diagram](image)
Summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

$\text{DELETE = DECREASE-KEY + EXTRACT-MIN}$

Crucial for many applications including shortest paths and minimum spanning trees!

Can we perform **EXTRACT-MIN** in $O(\log n)$? If this was possible, then there would be a sorting algorithm with runtime $O(n \log n)$!
Summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

- **Crucial for many applications including shortest paths and minimum spanning trees!**

- **Can we perform **Extract-Min** in $o(\log n)$?**
Summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

Can we perform **EXTRACT-MIN** in $o(\log n)$?

If this was possible, then there would be a sorting algorithm with runtime $o(n \log n)$!
<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

Summary

5.2: Fibonacci Heaps (Analysis)
T.S.
15
Summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

\[
\text{DELETE} = \text{DECREASE-KEY} + \text{EXTRACT-MIN}
\]

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including shortest paths and minimum spanning trees!
<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibonacci heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

Crucial for many applications including shortest paths and minimum spanning trees!

Can we perform **EXTRACT-MIN** in $O(\log n)$?

If this was possible, then there would be a sorting algorithm with runtime $O(n \log n)$!
Summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
</tr>
</tbody>
</table>

\[\text{DELETE} = \text{DECREASE-KEY} + \text{EXTRACT-MIN} \]

Crucial for many applications including shortest paths and minimum spanning trees!
Summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked list</th>
<th>Binary heap</th>
<th>Binomial heap</th>
<th>Fibon. heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

- **DELETE** = **DECREASE-KEY** + **EXTRACT-MIN**
- **EXTRACT-MIN** = **MIN** + **DELETE**

Crucial for many applications including shortest paths and minimum spanning trees!

If this was possible, then there would be a sorting algorithm with runtime $O(n \log n)$!
Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984
Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

- Queries to marked bits are intercepted and responded with a random bit
Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
 ⇒ less efficient than the original Fibonacci heap
Recent Studies of Fibonacci Heaps

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but **actual costs**!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxiv:1407.2569, 2014)

- Queries to **marked bits** are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap **and** the number of operations
 ⇒ less efficient than the original Fibonacci heap
 ⇒ **marked bit** is not redundant!
Outlook: A More Efficient Priority Queue for fixed Universe

<table>
<thead>
<tr>
<th>Operation</th>
<th>Fibonacci heap amortized cost</th>
<th>Van Emde Boas Tree actual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(\log n)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>MERGE/UNION</td>
<td>$O(1)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(\log n)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>SUCC</td>
<td>-</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>PRED</td>
<td>-</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>-</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Outlook: A More Efficient Priority Queue for fixed Universe

<table>
<thead>
<tr>
<th>Operation</th>
<th>Fibonacci heap amortized cost</th>
<th>Van Emde Boas Tree actual cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>$O(1)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>Minimum</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Extract-Min</td>
<td>$O(\log n)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>Merge/Union</td>
<td>$O(1)$</td>
<td>$-$</td>
</tr>
<tr>
<td>Decrease-Key</td>
<td>$O(1)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(\log n)$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>Succ</td>
<td>$-$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>Pred</td>
<td>$-$</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>Maximum</td>
<td>$-$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

All this requires key values to be in a universe of size u!