

5.2 Fibonacci Heaps (Analysis)

Thomas Sauerwald

Lent 2015

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

T.S.

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual O(trees(H) + d(n))
- DECREASE-KEY: actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$ amortized $\mathcal{O}(1)$

amortized $\mathcal{O}(1)$

Lifecycle of a node

amortized $\mathcal{O}(d(n))$

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

- INSERT: actual O(1)
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$ amortized $\mathcal{O}(1)$?

amortized $\mathcal{O}(1)$

Lifecycle of a node

amortized $\mathcal{O}(d(n))$?

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Actual Cost —

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

Actual Cost —

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

Actual Cost —

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

Actual Cost —

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

Actual Cost –

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

- Actual Cost -

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

Actual Cost –

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\widetilde{c}_i = c_i + \Delta \Phi$$

Actual Cost -

• DECREASE-KEY: $\mathcal{O}(x+1)$, where *x* is the number of cuts.

Actual Cost -

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

• DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\widetilde{c}_i = c_i + \Delta \Phi \leq \mathcal{O}(x+1) + 4 - x = \mathcal{O}(1)$$

- Actual Cost -

- Actual Cost -

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

- Actual Cost -

EXTRACT-MIN: O(trees(H) + d(n))

- Actual Cost -

- Actual Cost -

EXTRACT-MIN: O(trees(H) + d(n))

- Actual Cost -

EXTRACT-MIN: O(trees(H) + d(n))

$\Phi(H) = trees(H) + 2 \cdot marks(H)$

d(n)

- Actual Cost ·

EXTRACT-MIN: O(trees(H) + d(n))

- Actual Cost -

EXTRACT-MIN: O(trees(H) + d(n))

$$\widetilde{c}_i = c_i + \Delta \Phi$$

- Actual Cost -

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(\text{trees}(H) + d(n)) + d(n) + 1 - \text{trees}(H)$$

- Actual Cost -

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

$$\begin{array}{l} \hline \\ \widetilde{c}_i = c_i + \Delta \Phi \leq \mathcal{O}(\text{trees}(\mathsf{H}) + d(n)) + d(n) + 1 - \text{trees}(\mathsf{H}) = \mathcal{O}(d(n)) \end{array}$$

- Actual Cost ·

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Binomial Heap

Every tree is a binomial tree \Rightarrow $d(n) \le \log_2 n$.

Binomial Heap -

Every tree is a binomial tree $\Rightarrow d(n) \le \log_2 n$.

Not all trees are binomial trees, but still $d(n) \leq \log_{\varphi} n$, where $\varphi \approx 1.62$.

$$d(n) \leq \log_{\varphi} n$$

• Consider any node x of degree k (not necessarily a root) at the final state

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees

$$\Rightarrow | \forall 1 \leq i \leq k : \quad d_i \geq i - 2$$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

N(0)

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

N(0)

• 0

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

N(0) *N*(1)

• 0

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$N(0) = 1 \quad N(1) = 2 \quad N(2) = 3 \qquad N(3) = 5 \qquad N(4) = 8$$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

From Minimum Subtree Sizes to Fibonacci Numbers

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

$$N(k) = F(k+2)?$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

$$N(k) = F(k+2)?$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

$$N(k) = F(k+2)?$$

$$N(k) = 1 + 1 + N(2 - 2) + N(3 - 2) + \dots + N(k - 2)$$

= 1 + 1 + $\sum_{\ell=0}^{k-2} N(\ell)$
= 1 + 1 + $\sum_{\ell=0}^{k-3} N(\ell) + N(k - 2)$
= $N(k - 1) + N(k - 2)$
= $F(k + 1) + F(k) = F(k + 2)$

Lemma 19.3 -

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

Proof by induction on k:

Proof by induction on k:

• Base k = 0: F(2) = 1 and $\varphi^0 = 1$

Proof by induction on *k*:

• Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and φ¹ ≈ 1.619 < 2</p>

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step ($k \ge 2$):

F(k + 2) =

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step ($k \ge 2$):

F(k+2) = F(k+1) + F(k)

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step ($k \ge 2$):

$$egin{aligned} F(k+2) &= F(k+1) + F(k) \ &\geq arphi^{k-1} + arphi^{k-2} \end{aligned}$$

(by the inductive hypothesis)

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step ($k \ge 2$):

$$F(k+2) = F(k+1) + F(k)$$

$$\geq \varphi^{k-1} + \varphi^{k-2}$$

$$= \varphi^{k-2} \cdot (\varphi + 1)$$

(by the inductive hypothesis)

Lemma 19.3For all integers
$$k \ge 0$$
, the $(k+2)$ nd Fib. number satisfies $F(k+2) \ge \varphi^k$,
where $\varphi = (1 + \sqrt{5})/2 = 1.61803 \dots$ Fibonacci Numbers grow at
least exponentially fast in k .

Proof by induction on *k*:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step ($k \ge 2$):

$$F(k+2) = F(k+1) + F(k)$$

$$\geq \varphi^{k-1} + \varphi^{k-2} \qquad (k+1)$$

$$= \varphi^{k-2} \cdot (\varphi + 1)$$

$$= \varphi^{k-2} \cdot \varphi^{2}$$

(by the inductive hypothesis)

$$(\varphi^2 = \varphi + 1)$$

Lemma 19.3For all integers
$$k \ge 0$$
, the $(k+2)$ nd Fib. number satisfies $F(k+2) \ge \varphi^k$,
where $\varphi = (1 + \sqrt{5})/2 = 1.61803 \dots$ Fibonacci Numbers grow at
least exponentially fast in k .

Proof by induction on k:

- Base k = 0: F(2) = 1 and $\varphi^0 = 1 \checkmark$
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2 \checkmark$
- Inductive Step (k > 2):

$$F(k+2) = F(k+1) + F(k)$$

$$\geq \varphi^{k-1} + \varphi^{k-2} \qquad \text{(by the inductive hypothesis)}$$

$$= \varphi^{k-2} \cdot (\varphi + 1)$$

$$= \varphi^{k-2} \cdot \varphi^{2} \qquad (\varphi^{2} = \varphi + 1)$$

$$= \varphi^{k} \qquad \Box$$

 $(\varphi^2 = \varphi + 1)$

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n))
- DECREASE-KEY amortized cost O(1)

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n))
- DECREASE-KEY amortized cost O(1)

N(k)

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n))
- DECREASE-KEY amortized cost O(1)

$$N(k)=F(k+2)$$

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n))
- DECREASE-KEY amortized cost O(1)

$$N(k) = F(k+2) \ge \varphi^k$$

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n))
- DECREASE-KEY amortized cost O(1)

$$n \ge N(k) = F(k+2) \ge \varphi^k$$

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n))
- DECREASE-KEY amortized cost O(1)

$$egin{aligned} &n \geq {\sf N}(k) = {\sf F}(k+2) \geq arphi^k \ &\Rightarrow &\log_arphi n \geq k \end{aligned}$$

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n)) O(log n)
- DECREASE-KEY amortized cost O(1)

$$egin{aligned} &n \geq {\sf N}(k) = {\sf F}(k+2) \geq arphi^k \ &\Rightarrow &\log_arphi n \geq k \end{aligned}$$

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(1)

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(1)

$$\Phi(H) = trees(H)$$

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(1)

$$\Phi(H) = \text{trees}(H)$$

- INSERT: actual $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$
- DECREASE-KEY: actual O(1)

$$\Phi(H) = trees(H)$$

- INSERT: actual O(1) amortized O(1)
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n))$
- DECREASE-KEY: actual O(1)

$$\Phi(H) = trees(H)$$

amortized $\mathcal{O}(1)$

- INSERT: actual O(1) amortized O(1)
- EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n)) \neq \mathcal{O}(\log n)$
- DECREASE-KEY: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$$\Phi(H) = {\sf trees}(H)$$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μаке-Неар	$\mathcal{O}(1)$	$\mathcal{O}(1)$	<i>O</i> (1)	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μακε-Ηεάρ	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	0(n)	$\mathcal{O}(\log n)$	0(1)
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	Can we pe	
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	EXTRACT-MIN in	

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μаке-Неар	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	<i>O</i> (log <i>n</i>)	0(1)
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	Can we pe	
Delete	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	Extract-Min in	
		If this was possible, then there would be sorting algorithm with runtime $o(n \log n)$		

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μаке-Неар	$\mathcal{O}(1)$	$\mathcal{O}(1)$	<i>O</i> (1)	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Make-Heap	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	<i>O</i> (1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
MINIMUM	0(1) 0(n)	<i>O</i> (1)	$\mathcal{O}(\log n)$	<i>O</i> (1)
EXTRACT-MIN	. ,			. ,
	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	<i>O</i> (1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
DELETE	<i>O</i> (1)	<u>Crucial f</u>	$O(\log n)$	O(log n)
		Crucial for many applications including shortest paths and minimum spanning tree		-

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μακε-Ηεάρ	$\mathcal{O}(1)$	$\mathcal{O}(1)$	<i>O</i> (1)	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μακε-Ηεάρ	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
		,		

DELETE = DECREASE-KEY + EXTRACT-MIN

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Μακε-Ηεάρ	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Мілімим	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	<i>O</i> (1)	0(log n)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)
- Queries to marked bits are intercepted and responded with a random bit

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)
- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)
- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
- \Rightarrow less efficient than the original Fibonacci heap

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)
- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
- \Rightarrow less efficient than the original Fibonacci heap
- \Rightarrow marked bit is not redundant!

Operation	Fibonacci heap	Van Emde Boas Tree
	amortized cost	actual cost
INSERT	<i>O</i> (1)	$\mathcal{O}(\log \log u)$
Мілімим	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Extract-Min	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
Merge/Union	$\mathcal{O}(1)$	-
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
Delete	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
Succ	-	$\mathcal{O}(\log \log u)$
Pred	-	$\mathcal{O}(\log \log u)$
ΜΑΧΙΜυΜ	-	$\mathcal{O}(1)$

Operation	Fibonacci heap	Van Emde Boas Tree
	amortized cost	actual cost
INSERT	<i>O</i> (1)	$\mathcal{O}(\log \log u)$
Мілімим	$\mathcal{O}(1)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
Merge/Union	$\mathcal{O}(1)$	-
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
Delete	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
Succ	-	$\mathcal{O}(\log \log u)$
Pred	-	$\mathcal{O}(\log \log u)$
Μαχιμυμ	-	$\mathcal{O}(1)$
		1

all this requires key values to be in a universe of size u!

