

5.3: Disjoint Sets

Frank Stajano

Thomas Sauerwald

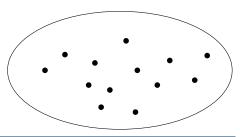
Lent 2015

Outline

Disjoint Sets

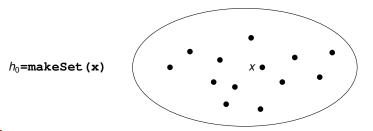
Introduction to Graphs and Graph Searching

—— Disjoint Sets Data Structure



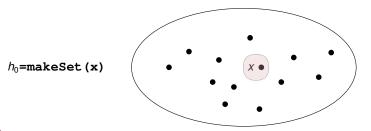
Disjoint Sets Data Structure -

• Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle



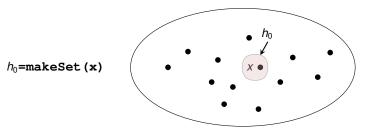
Disjoint Sets Data Structure -

• Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle



Disjoint Sets Data Structure -

• Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle



Disjoint Sets Data Structure -

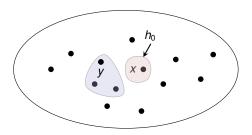
Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)

Behaviour: return the handle of the set that contains *x*



Disjoint Sets Data Structure -

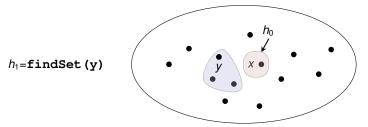
Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)

Behaviour: return the handle of the set that contains x



Disjoint Sets Data Structure -

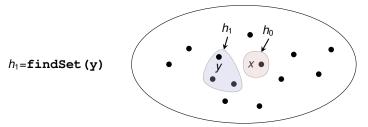
Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)

Behaviour: return the handle of the set that contains x



Disjoint Sets Data Structure

• Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

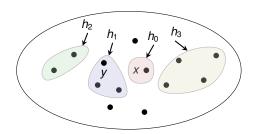
Handle FindSet(Item x)

Precondition: there exists a set that contains *x* (given pointer to *x*) Behaviour: return the handle of the set that contains *x*

Handle Union (Handle h, Handle g)

Precondition: $h \neq q$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets Data Structure

Handle MakeSet(Item x)

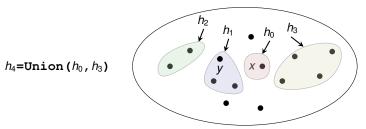
Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

• Handle Union (Handle h, Handle g)

Precondition: $h \neq g$



Disjoint Sets Data Structure

• Handle MakeSet(Item x)

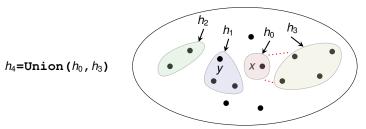
Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

• Handle Union (Handle h, Handle g)

Precondition: $h \neq q$



Disjoint Sets Data Structure

Handle MakeSet(Item x)

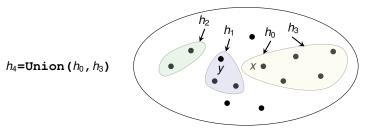
Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

• Handle Union (Handle h, Handle g)

Precondition: $h \neq g$



Disjoint Sets Data Structure

Handle MakeSet(Item x)

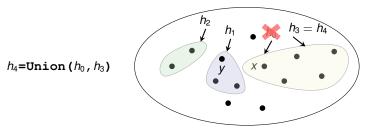
Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

• Handle Union (Handle h, Handle g)

Precondition: $h \neq g$



Disjoint Sets Data Structure

• Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

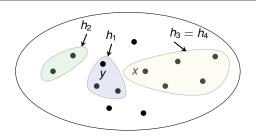
Handle FindSet(Item x)

Precondition: there exists a set that contains *x* (given pointer to *x*) Behaviour: return the handle of the set that contains *x*

Handle Union (Handle h, Handle g)

Precondition: $h \neq q$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets Data Structure

Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

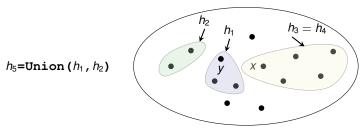
Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

• Handle Union (Handle h, Handle g)

Precondition: $h \neq g$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets Data Structure

Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

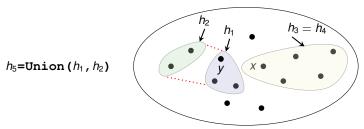
Handle FindSet(Item x)

Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x

Handle Union (Handle h, Handle g)

Precondition: $h \neq g$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets Data Structure

Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle FindSet(Item x)

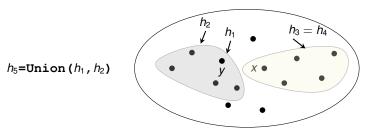
Precondition: there exists a set that contains *x* (given pointer to *x*)

Behaviour: return the handle of the set that contains *x*

• Handle Union (Handle h, Handle g)

Precondition: $h \neq g$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets Data Structure

Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

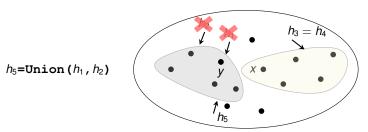
Handle FindSet(Item x)

Precondition: there exists a set that contains *x* (given pointer to *x*)

Behaviour: return the handle of the set that contains *x*

Handle Union (Handle h, Handle g)

Precondition: $h \neq g$



Disjoint Sets Data Structure

Handle MakeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

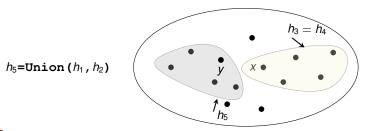
Handle FindSet(Item x)

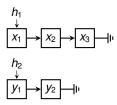
Precondition: there exists a set that contains *x* (given pointer to *x*)

Behaviour: return the handle of the set that contains *x*

• Handle Union (Handle h, Handle g)

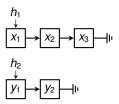
Precondition: $h \neq q$

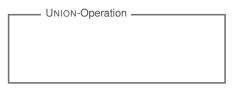


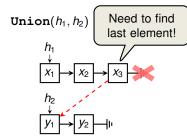


UNION-Operation —

Union (h_1, h_2)

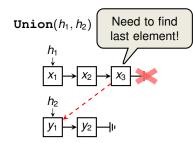






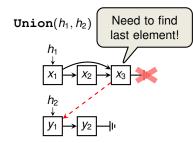
UNION-Operation -

 Add extra pointer to the last element in each list



UNION-Operation -

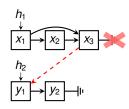
 Add extra pointer to the last element in each list



UNION-Operation -

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

Union (h_1, h_2)



UNION-Operation ———

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

Union (h_1, h_2)

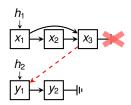


FIND-Operation —

UNION-Operation ———

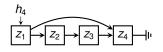
- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

Union (h_1, h_2)



FIND-Operation —

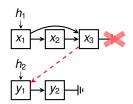
 $FindSet(z_3)$



UNION-Operation ———

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

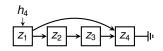
Union (h_1, h_2)



FIND-Operation -

 Add backward pointer to the list head from everywhere

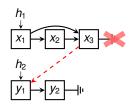
FindSet(Z₃)



UNION-Operation ———

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

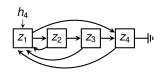
Union (h_1, h_2)



FIND-Operation -

 Add backward pointer to the list head from everywhere

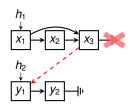
FindSet(Z₃)



UNION-Operation ———

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

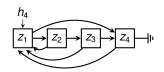
Union (h_1, h_2)



FIND-Operation -

- Add backward pointer to the list head from everywhere
- ⇒ FIND takes constant time

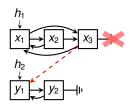
 $FindSet(z_3)$



UNION-Operation ———

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

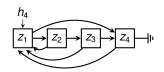
Union (h_1, h_2)



FIND-Operation —

- Add backward pointer to the list head from everywhere
- ⇒ FIND takes constant time

 $FindSet(z_3)$



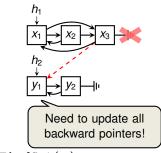
UNION-Operation —

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

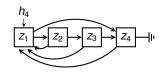
FIND-Operation -

- Add backward pointer to the list head from everywhere
- ⇒ FIND takes constant time

Union (h_1, h_2)



 $FindSet(z_3)$



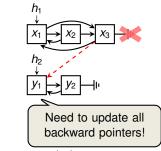
UNION-Operation —

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

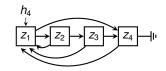
FIND-Operation -

- Add backward pointer to the list head from everywhere
- ⇒ FIND takes constant time

Union (h_1, h_2)



 $FindSet(z_3)$



First Attempt: List Implementation (Analysis)

d = DisjointSet()

First Attempt: List Implementation (Analysis)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

5

d = DisjointSet() $h_0 = d.MakeSet(x_0)$

 $h_1 = d.$ MakeSet (x_1)

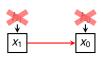

```
d = DisjointSet()
h_0 = d.MakeSet(x_0)
```

$$h_1 = d.$$
MakeSet (x_1)
 $h_0 = d.$ Union (h_1, h_0)

$$\begin{array}{ccc}
h_1 & h_0 \\
\downarrow & & \downarrow \\
\hline
x_1 & x_0
\end{array}$$

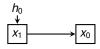
d = DisjointSet() $h_0 = d.MakeSet(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)



d = DisjointSet() $h_0 = d.MakeSet(x_0)$

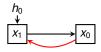
 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)



d = DisjointSet() $h_0 = d.MakeSet(x_0)$

 $h_1 = d.$ MakeSet (x_1)

 $h_0 = d.\mathtt{Union}(h_1, h_0)$



d = DisjointSet() $h_0 = d.MakeSet(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0) $h_2 = d.$ MakeSet (x_2)


```
d = \mathtt{DisjointSet}()

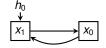
h_0 = d.\mathtt{MakeSet}(x_0)

h_1 = d.\mathtt{MakeSet}(x_1)

h_0 = d.\mathtt{Union}(h_1, h_0)

h_2 = d.\mathtt{MakeSet}(x_2)

h_0 = d.\mathtt{Union}(h_2, h_0)
```


```
h_0 = d.MakeSet(x_0)

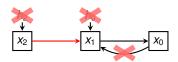
h_1 = d.MakeSet(x_1)

h_0 = d.Union(h_1, h_0)

h_2 = d.MakeSet(x_2)
```

 $h_0 = d.Union(h_2, h_0)$

d = DisjointSet()




```
d = \mathtt{DisjointSet}()

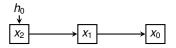
h_0 = d.\mathtt{MakeSet}(x_0)

h_1 = d.\mathtt{MakeSet}(x_1)

h_0 = d.\mathtt{Union}(h_1, h_0)

h_2 = d.\mathtt{MakeSet}(x_2)

h_0 = d.\mathtt{Union}(h_2, h_0)
```




```
d = \mathtt{DisjointSet}()

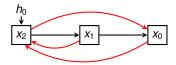
h_0 = d.\mathtt{MakeSet}(x_0)

h_1 = d.\mathtt{MakeSet}(x_1)

h_0 = d.\mathtt{Union}(h_1, h_0)

h_2 = d.\mathtt{MakeSet}(x_2)

h_0 = d.\mathtt{Union}(h_2, h_0)
```




```
d = \mathtt{DisjointSet}()

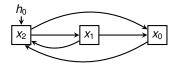
h_0 = d.\mathtt{MakeSet}(x_0)

h_1 = d.\mathtt{MakeSet}(x_1)

h_0 = d.\mathtt{Union}(h_1, h_0)

h_2 = d.\mathtt{MakeSet}(x_2)

h_0 = d.\mathtt{Union}(h_2, h_0)
```




```
d = \mathtt{DisjointSet}()

h_0 = d.\mathtt{MakeSet}(x_0)

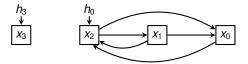
h_1 = d.\mathtt{MakeSet}(x_1)

h_0 = d.\mathtt{Union}(h_1, h_0)

h_2 = d.\mathtt{MakeSet}(x_2)

h_0 = d.\mathtt{Union}(h_2, h_0)

h_3 = d.\mathtt{MakeSet}(x_3)
```




```
d = \mathtt{DisjointSet}()

h_0 = d.\mathtt{MakeSet}(x_0)

h_1 = d.\mathtt{MakeSet}(x_1)

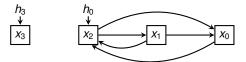
h_0 = d.\mathtt{Union}(h_1, h_0)

h_2 = d.\mathtt{MakeSet}(x_2)

h_0 = d.\mathtt{Union}(h_2, h_0)

h_3 = d.\mathtt{MakeSet}(x_3)

h_0 = d.\mathtt{Union}(h_3, h_0)
```




```
d = \texttt{DisjointSet}()
h_0 = d.\texttt{MakeSet}(x_0)
```

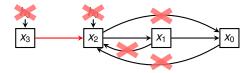
$$h_1 = d.$$
MakeSet (x_1)
 $h_0 = d.$ Union (h_1, h_0)

$$h_2 = d.$$
MakeSet (x_2)

$$h_0 = d.$$
Union (h_2, h_0)

$$h_3 = d.$$
MakeSet (x_3)

$$h_0 = d.\mathtt{Union}(h_3, h_0)$$

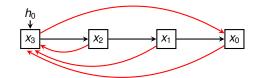



```
\begin{split} d &= \mathtt{DisjointSet}() \\ h_0 &= d.\mathtt{MakeSet}(x_0) \\ h_1 &= d.\mathtt{MakeSet}(x_1) \\ h_0 &= d.\mathtt{Union}(h_1,h_0) \\ h_2 &= d.\mathtt{MakeSet}(x_2) \\ h_0 &= d.\mathtt{Union}(h_2,h_0) \\ h_3 &= d.\mathtt{MakeSet}(x_3) \\ h_0 &= d.\mathtt{Union}(h_3,h_0) \end{split}
```



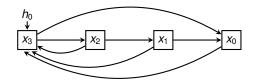
```
d = \texttt{DisjointSet}()
h_0 = d.\texttt{MakeSet}(x_0)
```

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0) $h_2 = d.$ MakeSet (x_2) $h_0 = d.$ Union (h_2, h_0) $h_3 = d.$ MakeSet (x_3) $h_0 = d.$ Union (h_3, h_0)




```
d = \texttt{DisjointSet}()
h_0 = d.\texttt{MakeSet}(x_0)
```

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0) $h_2 = d.$ MakeSet (x_2) $h_0 = d.$ Union (h_2, h_0) $h_3 = d.$ MakeSet (x_3) $h_0 = d.$ Union (h_3, h_0)



$$d = \texttt{DisjointSet}()$$

 $h_0 = d.\texttt{MakeSet}(x_0)$

$$h_1 = d.$$
MakeSet (x_1)

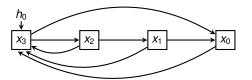
$$h_0 = d.Union(h_1, h_0)$$

$$h_2 = d.$$
MakeSet (x_2)

$$h_0 = d.$$
Union (h_2, h_0)

$$h_3 = d.$$
MakeSet (x_3)

$$h_0 = d.\mathtt{Union}(h_3, h_0)$$



5

Cost for *n* UNION operations: $\sum_{i=1}^{n} i = \Theta(n^2)$

$$d = \texttt{DisjointSet}()$$

 $h_0 = d.\texttt{MakeSet}(x_0)$

$$h_1 = d.$$
MakeSet (x_1)

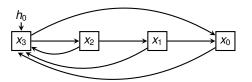
$$h_0 = d.$$
Union (h_1, h_0)

$$h_2 = d.$$
MakeSet (x_2)

$$h_0 = d.Union(h_2, h_0)$$

$$h_3 = d.$$
MakeSet (x_3)

$$h_0 = d.Union(h_3, h_0)$$



5

better to append shorter list to longer --> Weighted-Union Heuristic

Cost for *n* UNION operations: $\sum_{i=1}^{n} i = \Theta(n^2)$

5.3: Disjoint Sets T.S.

Weighted-Union Heuristic —————

Keep track of the length of each list

Weighted-Union Heuristic -

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic -

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

Weighted-Union Heuristic -

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

Weighted-Union Heuristic -

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

Amortized Analysis: Every operation has amortized cost $\mathcal{O}(\log n)$, but there may be operations with total cost $\Theta(n)$.

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

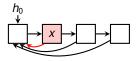
Proof:

• n MAKE-SET operations \Rightarrow at most n-1 UNION operations

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m + n \cdot \log n)$ time.

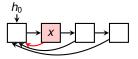
- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer

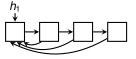


Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer

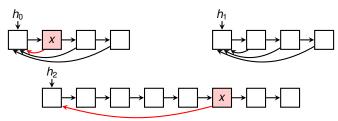




Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m + n \cdot \log n)$ time.

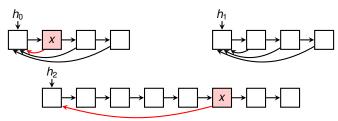
- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer



Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

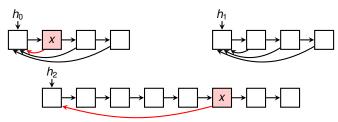
- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer



Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

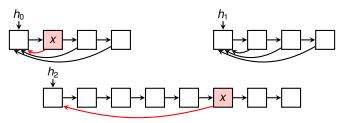
- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer
- After each update of x, its set increases by a factor of at least 2



Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

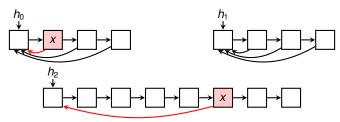
- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most $\log_2 n$ times



Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most $\log_2 n$ times
 - Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per operation



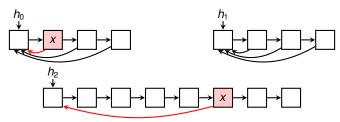
Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most $\log_2 n$ times
 - Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per operation

Analysis of Weighted-Union Heuristic



Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKE-SET operations, takes $\mathcal{O}(m+n\cdot\log n)$ time.

Proof:

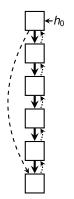
Can we improve on this further?

- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most $\log_2 n$ times
 - Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per operation

5.3: Disjoint Sets T.S.

7

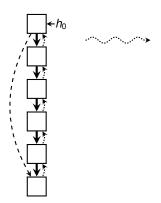
How to Improve?

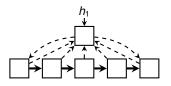


Doubly-Linked List

- MAKE-SET: *O*(1)
- FIND-SET: $\mathcal{O}(n)$
- UNION: *O*(1)

How to Improve?





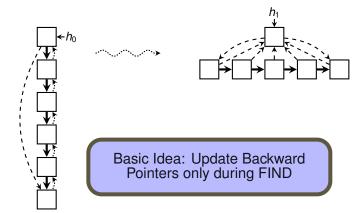
Doubly-Linked List

- MAKE-SET: O(1)
- FIND-SET: *O*(*n*)
- UNION: *O*(1)

Weighted-Union Heuristic

- MAKE-SET: O(1)
- FIND-SET: *O*(1)
- UNION: $\mathcal{O}(\log n)$ (amortized)

How to Improve?



Doubly-Linked List

- MAKE-SET: O(1)
- FIND-SET: $\mathcal{O}(n)$
- UNION: *O*(1)

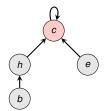
Weighted-Union Heuristic

- MAKE-SET: O(1)
- FIND-SET: O(1)
- UNION: $\mathcal{O}(\log n)$ (amortized)

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)

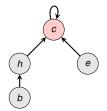
 $\{b, c, e, h\}$



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)

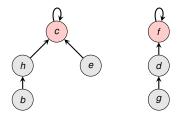
 $\{b, c, e, h\}$



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

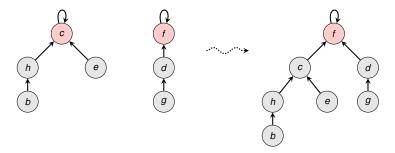
$$\{b,c,e,h\} \qquad \qquad \{d,f,g\}$$



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

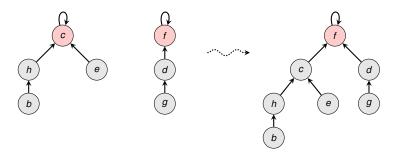
$$\{b, c, e, h\}$$
 $\{d, f, g\}$ $\{b, c, d, e, f, g, h\}$



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

 $\{b, c, e, h\}$ $\{d, f, g\}$ $\{b, c, d, e, f, g, h\}$

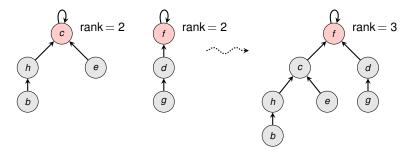


Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

Append tree of smaller height whion by Rank

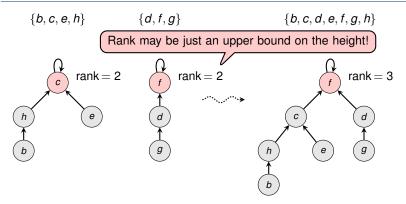
$$\{b, c, e, h\}$$
 $\{d, f, g\}$ $\{b, c, d, e, f, g, h\}$



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

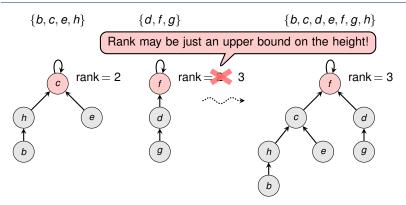
Append tree of smaller height whion by Rank



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

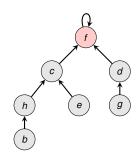
Append tree of smaller height whion by Rank



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

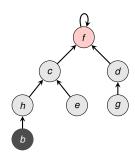
Append tree of smaller height → Union by Rank



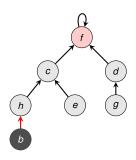
```
0: FindSet(X)
```

1: if $x \neq x.p$

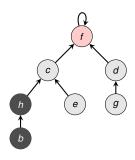
2: x.p =FindSet (x.p)



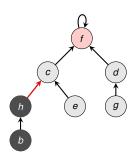
```
0: FindSet (x)
1:    if x ≠ x.p
2:        x.p = FindSet (x.p)
3:    return x.p
```

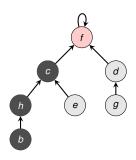
```
0: FindSet(x)
1:    if x ≠ x.p
2:        x.p = FindSet(x.p)
3:    return x.p
```

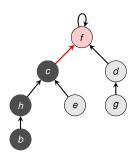
```
0: FindSet (x)
1:    if x ≠ x.p
2:        x.p = FindSet (x.p)
3:    return x.p
```

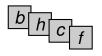
```
0: FindSet(x)
1:    if x ≠ x.p
2:        x.p = FindSet(x.p)
3:    return x.p
```

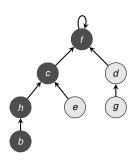



```
0: FindSet(x)
1: if x ≠ x.p
2: x.p = FindSet(x.p)
```

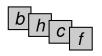



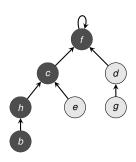
```
0: FindSet(x)
1:    if x ≠ x.p
2:    x.p = FindSet(x.p)
```



```
0: FindSet (x)
1:    if x ≠ x.p
2:        x.p = FindSet (x.p)
3:    return x.p
```

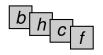



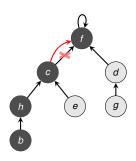


```
0: FindSet(X)
```

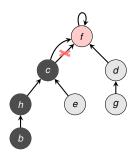
1: **if** $x \neq x.p$

2: x.p =FindSet (x.p)





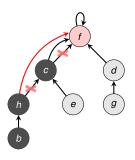
```
0: FindSet(x)
1:    if x ≠ x.p
2:       x.p = FindSet(x.p)
3:    return x.p
```

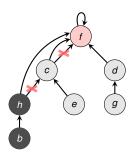
```
0: FindSet(X)
```

1: if $x \neq x.p$

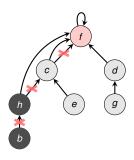
2: x.p =FindSet (x.p)



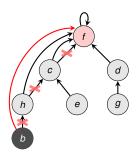
```
0: FindSet(x)
1:    if x ≠ x.p
2:    x.p = FindSet(x.p)
```

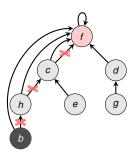
```
0: FindSet (x)
1:    if x ≠ x.p
2:        x.p = FindSet (x.p)
3:    return x.p
```

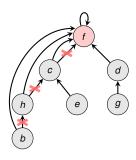
```
0: FindSet (x)
1:    if x ≠ x.p
2:        x.p = FindSet (x.p)
3:    return x.p
```

```
0: FindSet(x)
1:    if x ≠ x.p
2:        x.p = FindSet(x.p)
3:    return x.p
```

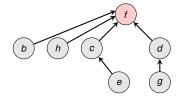



```
0: FindSet(x)
1:    if x ≠ x.p
2:        x.p = FindSet(x.p)
3:    return x.p
```

```
0: FindSet(x)
1: if x ≠ x.p
```

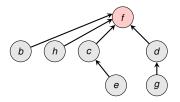
2: x.p =FindSet (x.p)



```
0: FindSet(X)
```

1: if $x \neq x.p$

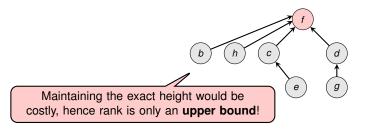
2: x.p =FindSet (x.p)



```
0: FindSet(X)
```

1: **if** $x \neq x.p$

2: x.p =FindSet (x.p)



```
0: FindSet(X)
```

1: if $x \neq x.p$

2: x.p =FindSet (x.p)

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

More than the number of atoms in the universe!

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

 $\log^*(n)$, the iterated logarithm, satisfies $\alpha(n) \leq \log^*(n)$, but still $\log^*(10^{80}) = 5$.

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

Combining Union by Rank and Path Compression

Data Structure is essentially optimal! (for more details see CLRS)

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

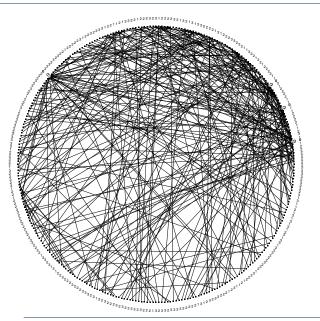
Simulating the Effects of Union by Rank and Path Compression

Simulating the Effects of Union by Rank and Path Compression

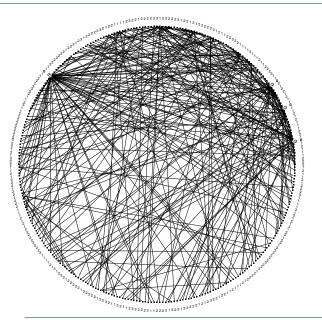
Experimental Setup -

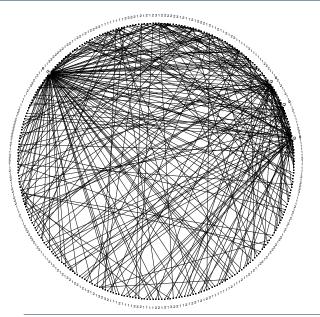
- 1. Initialise singletons 1, 2, ..., 300
- 2. For every $1 \le i \le 300$, pick a random $1 \le r \le 300$, $r \ne i$ and perform UNION(FIND(i), FIND(r))
- 3. Perform $j \in \{0, 100, 200, 300, 600, 900\}$ many FIND(r), where $1 \le r \le 300$ is random

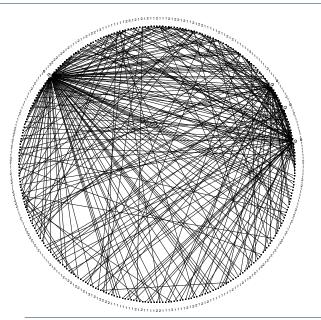
Union by Rank without Path Compression

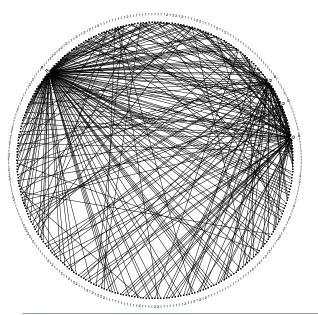


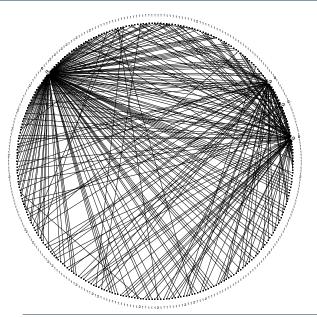
Union by Rank with Path Compression

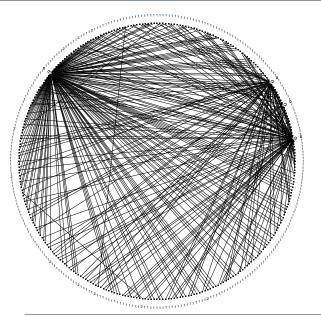












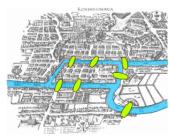
Outline

Disjoint Sets

Introduction to Graphs and Graph Searching

Source: Wikipedia

Seven Bridges at Königsberg 1737

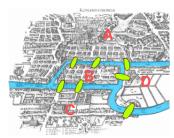


Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)

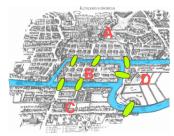


Source: Wikipedia

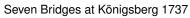
Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)

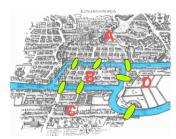


Source: Wikipedia



Source: Wikipedia

Leonhard Euler (1707-1783)

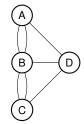


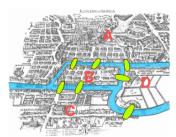
Source: Wikipedia

Seven Bridges at Königsberg 1737

Source: Wikipedia

Leonhard Euler (1707-1783)



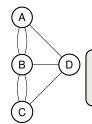


Source: Wikipedia

Seven Bridges at Königsberg 1737

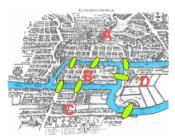
Source: Wikipedia

Leonhard Euler (1707-1783)



Is there a tour which crosses each bridge **exactly once**?

Is there a tour which visits every island **exactly once**?

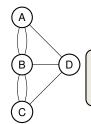


Source: Wikipedia

Source: Wikipedia

Seven Bridges at Königsberg 1737

Leonhard Euler (1707-1783)



Is there a tour which crosses each bridge exactly once?

Is there a tour which visits every island exactly once? → 1B course: Complexity Theory

Directed Graph -

- V: the set of vertices
- E: the set of edges (arcs)

Directed Graph -

- V: the set of vertices
- E: the set of edges (arcs)

Directed Graph -

- V: the set of vertices
- E: the set of edges (arcs)

$$V = \{1, 2, 3, 4\} \\ E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- *E*: the set of edges (arcs)

Undirected Graph

- V: the set of vertices
- E: the set of (undirected) edges

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

- V: the set of vertices
- E: the set of (undirected) edges

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$\begin{split} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{split}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity

 A sequence of edges between two vertices forms a path

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

$$V = \{1, 2, 3, 4\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity

 A sequence of edges between two vertices forms a path

Path p = (1, 2, 3, 4)

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$V = \{1, 2, 3, 4\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$$

5.3: Disjoint Sets

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity

 A sequence of edges between two vertices forms a path

Path p = (1, 2, 3, 1), which is a cycle

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$V = \{1, 2, 3, 4\}$$

 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$

5.3: Disjoint Sets

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity

 A sequence of edges between two vertices forms a path

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$$

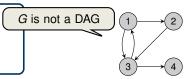
$$V = \{1, 2, 3, 4\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$$

Directed Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)



Undirected Graph –

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

$V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$V = \{1, 2, 3, 4\}$$

 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$

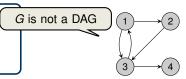
Paths and Connectivity

 A sequence of edges between two vertices forms a path

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)



Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

$V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

22

- A sequence of edges between two vertices forms a path
- If each pair of vertices has a path linking them, then G is connected

$$\begin{aligned} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{aligned}$$

Directed Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

G is not a DAG

G is not (strongly) connected

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

 $V = \{1, 2, 3, 4\}$

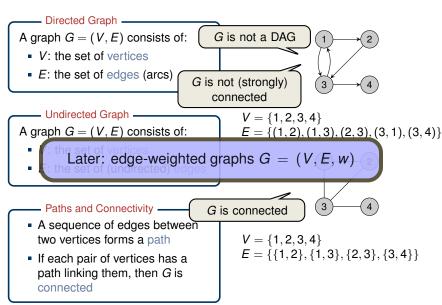
 $E = \{(1,2), (1,3), (2,3), (3,1), (3,4)\}$

Paths and Connectivity —

G is connected

- A sequence of edges between two vertices forms a path
- If each pair of vertices has a path linking them, then G is connected

$$\begin{aligned} V &= \{1,2,3,4\} \\ E &= \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\} \end{aligned}$$



22

Representations of Directed and Undirected Graphs

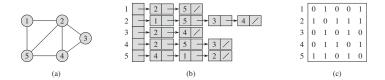


Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Representations of Directed and Undirected Graphs

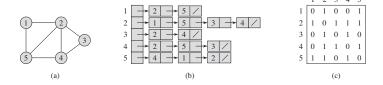


Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

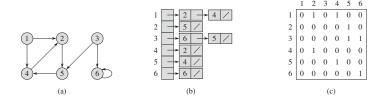


Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Representations of Directed and Undirected Graphs

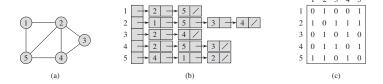


Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

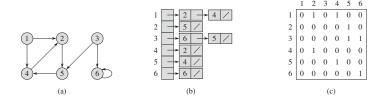


Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

