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Disjoint Sets (aka Union Find)

Handle makeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle findSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure
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First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FIND takes constant time

FIND-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!
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First Attempt: List Implementation (Analysis)

d = DisjointSet()

h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer  Weighted-Union Heuristic
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Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).
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Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of the backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation
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How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND

MAKE-SET: O(1)

FIND-SET: O(n)

UNION: O(1)

Doubly-Linked List

MAKE-SET: O(1)

FIND-SET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic
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Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank
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Path Compression during FIND-SET

f
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hb
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f

b h c f

Maintaining the exact height would be
costly, hence rank is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p
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Combining Union by Rank and Path Compression

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed inO(m ·α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the number of atoms in the universe!log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.
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Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FIND(i), FIND(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900} many FIND(r), where
1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12
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Union by Rank without Path Compression
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Union by Rank with Path Compression
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After 100 additional FINDs
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After 200 additional FINDs
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After 300 additional FINDs
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After 600 additional FINDs
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After 900 additional FINDs
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Outline

Disjoint Sets

Introduction to Graphs and Graph Searching
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Origin of Graph Theory

Leonhard Euler (1707-1783)

Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia

Source: Wikipedia
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What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)

Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)

Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between
two vertices forms a path

If each pair of vertices has a
path linking them, then G is
connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not a DAG

G is not (strongly)
connected

G is connected

Later: edge-weighted graphs G = (V ,E ,w)

5.3: Disjoint Sets T.S. 22



Representations of Directed and Undirected Graphs590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is
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