5.1: Amortized Analysis

Frank Stajano

Thomas Sauerwald

Lent 2015

T.S.

Motivating Example: Stack

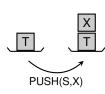
Stack Operations –

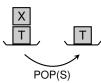
- PUSH(S,x)
 - pushes object x onto stack S
 - total cost of 1
- POP (S)
 - pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP(S,k)
 - pops the k top objects (S non-empty)
 - \Rightarrow total cost of min{|S|, k}

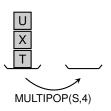
What is the largest possible cost of a sequence of *n* stack operations?

Simple Worst-Case Bound:

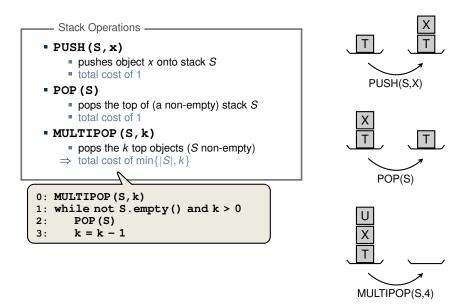
- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)





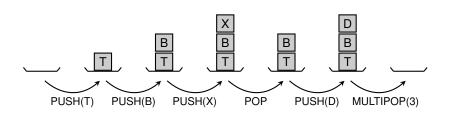


Motivating Example: Stack



Sequence of Stack Operations

5.1: Amortized Analysis



A new Analysis Tool: Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small

concrete techniques

Aggregate Analysis

Potential Method

This is **not** average case analysis!

Aggregate Analysis

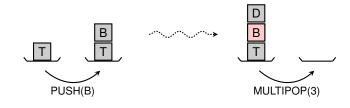
Determine an upper bound T(n) for the total cost of any sequence of n operations

amortized cost of each operation is the average $\frac{T(n)}{n}$ Even though operations may be of different types/costs

Aggregate Analysis of the STACK

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)



MULTIPOP(k) contributes $min\{k, |S|\}$ to $T_{POP}(n)$

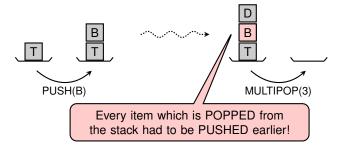
$$T(n) \leq T_{POP}(n) + T_{PUSH}(n)$$

〜 開 〜 Ma → Ma 会 〜

Aggregate Analysis of the STACK

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)



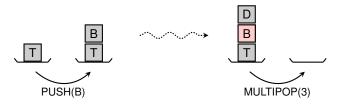
5.1: Amortized Analysis

T.S.

Aggregate Analysis of the STACK

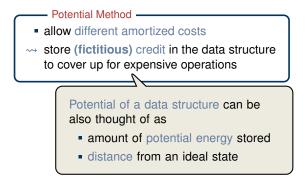
Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)



Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$

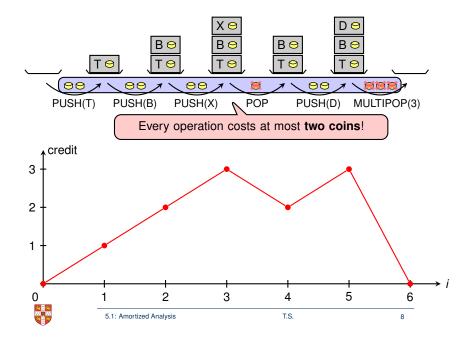
$$T(n) \leq T_{POP}(n) + T_{PUSH}(n) \leq 2 \cdot T_{PUSH}(n) \leq 2 \cdot n$$
.

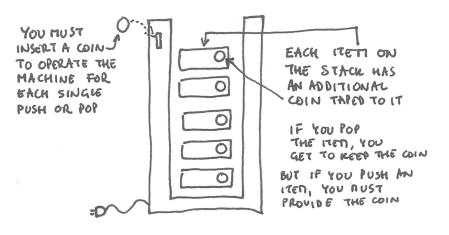


5.1: Amortized Analysis

S.

Stack and Coins





5.1: Amortized Analysis

T.S.

7

Potential Method in Detail

 $c_i < \widetilde{c}_i, c_i = \widetilde{c}_i \text{ or } c_i > \widetilde{c}_i \text{ are all possible!}$

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

Function that maps states of the data structure to some value

Potential Method in Detail

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

$$\widetilde{c}_i = c_i + (\Phi_i - \Phi_{i-1})$$

PUSH(): $c_i = 1$
POP: $c_i = 1$

5.1: Amortized Analysis

T.S.

0

Potential Method in Detail

• c_i is the actual cost of operation i

5.1: Amortized Analysis

- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

$$\widetilde{c}_i = c_i + (\Phi_i - \Phi_{i-1})$$

$$\Phi_1 - \Phi_0 + \Phi_2 - \Phi_1 + \dots + \Phi_n - \Phi_{n-1}$$

$$\sum_{i=1}^n \widetilde{c}_i = \sum_{i=1}^n (c_i + \Phi_i - \Phi_{i-1})$$

$$= \sum_{i=1}^n c_i + \Phi_n$$

If $\Phi_n \geq 0$ for all n, sum of amortized costs is an upper bound for the sum of actual costs!

Potential Method in Detail

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

$$\widetilde{\textit{c}}_{\textit{i}} = \textit{c}_{\textit{i}} + \left(\Phi_{\textit{i}} - \Phi_{\textit{i}-1}\right)$$

- PUSH(): $\Phi_i \Phi_{i-1} = 1$
- POP: $\Phi_i \Phi_{i-1} = -1$

5.1: Amortized Analysis

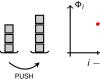
TS

Stack: Analysis via Potential Method

 $\Phi_i = \#$ objects in the stack after *i*th operation

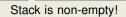
- PUSH -

- actual cost: c_i = 1
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$



- POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$



MULTIPOP(k) —

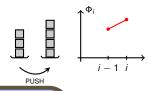
- $c_i = \min\{k, |\mathcal{S}|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = \min\{k, |S|\} \min\{k, |S|\} = 0$

Stack: Analysis via Potential Method

 $\Phi_i = \#$ objects in the stack after *i*th operation

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$



- POP -

•
$$c_i = 1$$
 Amortized Cost $\leq 2 \Rightarrow T(n) \leq 2n$

$$\Phi_i - \Phi_{i-1} = -1$$

•
$$\widehat{c}_i = c_i + (\Phi_i - \Phi_{i-1}) = 1 - 1 = 0$$

Stack is non-empty!

MULTIPOP(k)

- $c_i = \min\{k, |\mathcal{S}|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = \min\{k, |S|\} \min\{k, |S|\} = 0$

10

i-1 i

5.1: Amortized Analysis

T.S.

Second Example: Binary Counter

Binary Counter -

- Array A[k-1], A[k-2], ..., A[0] of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: ≤ k

A[3]A[2]A[1]A[0] 0

A[3] A[2] A[1] A[0]

12

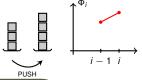
11

Stack: Analysis via Potential Method

 Φ_i = # objects in the stack after *i*th operation

- PUSH -

- actual cost: c_i = 1
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$



- POP -

- $c_i = 1$
- n/2 PUSH, n/2 POP $\Rightarrow T(n) < n$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

Stack is non-empty!

MULTIPOP(k)

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = \min\{k, |S|\} \min\{k, |S|\} = 0$

5.1: Amortized Analysis

T.S.

Second Example: Binary Counter

Binary Counter —

- Array A[k-1], A[k-2],..., A[0] of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: number of bit flips

- 1: i = 0
- 2: while i < k and A[i]==1
- A[i] = 0
- i = i + 1
- 5: A[i] = 1

A[3]A[2]A[1]A[0]

0

A[3] A[2] A[1] A[0]

INC

1 0 0

12

Second Example: Binary Counter

Binary Counter —

- Array A[k-1], A[k-2], ..., A[0] of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: number of bit flips

What is the total cost of a sequence of *n* INC operations?

Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$ (correct, but not tight!)

5.1: Amortized Analysis

T.S.

11

Incrementing a Binary Counter: Aggregate Analysis

Counter	A[3]	A[2]	Λ[1]	<i>A</i> [0]	Total
Value	A[O]	المارك	A[1]	A[U]	Cost
0	0	0	0	0	0
1	0 1	0	0	1	1
2	0	0	1 1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0 ;	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2ⁱ increments
- In a sequence of *n* increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2i} \rfloor$ times

Incrementing a Binary Counter (k = 8)

Counter									Total
Value	<i>A</i> [7]	<i>A</i> [6]	<i>A</i> [5]	<i>A</i> [4]	<i>A</i> [3]	<i>A</i> [2]	<i>A</i> [1]	<i>A</i> [0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

5.1: Amortized Analysis

T.S.

Incrementing a Binary Counter: Aggregate Analysis

Countar	r = = =.	r = = =.	r = = =,	r = = =.	Total
Counter	' <i>A</i> [3]	1 A[2]	<i>A</i> [1]	A[0]	Total
Value	, .[0]	7 -[-]	7 1[1]	7.[0]	Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	<u> </u>	0	3
3	0	0	1 1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1 1	1 1 ;	0	10
7	0	1	1 1	1	11

Bit A[i] is only flipped every 2ⁱ increments

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$.

$$T(n) \leq \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^i} = n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^{k-1}}\right) \leq 2 \cdot n.$$

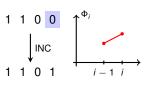
Binary Counter: Analysis via Potential Function

 Φ_i = # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \geq 0 \checkmark$$

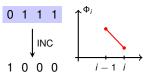
Increment without Carry-Over

- actual cost: c_i = 1
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$



Increment with Carry-Over

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\hat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1 = 2$



5.1: Amortized Analysis

1.3.

14

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis ———

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

T(*n*)

T(n)

Full power of this method will become clear later!

- Potential Method -

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost

15

5.1: Amortized Analysis T.S.

Binary Counter: Analysis via Potential Function

 $\Phi_i = \#$ ones in the binary representation of i

$$\Phi_0 = 0 \ \checkmark \quad \Phi_i \geq 0 \ \checkmark$$

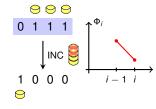
Increment without Carry-Over

Amortized Cost =
$$2 \Rightarrow T(n) \le 2n$$

- actual cost: c_i = 1
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

Increment with Carry-Over ——

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1 = 2$



5.1: Amortized Analysis

T.S

5.2 Fibonacci Heaps

Frank Stajano

Thomas Sauerwald

Lent 2015

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap	Fibonacci heap	
	actual cost	amortized cost	
MAKE-HEAP	O(1)	<i>O</i> (1)	
INSERT	$\mathcal{O}(\log n)$	<i>O</i> (1)	
Мінімим	$\mathcal{O}(\log n)$	<i>O</i> (1)	
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	
Union	$\mathcal{O}(\log n)$	<i>O</i> (1)	
DECREASE-KEY	$\mathcal{O}(\log n)$	<i>O</i> (1)	
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	

Binomial Heap: *n* Inserts

Fibonacci Heap: n Inserts

•
$$c_1 = c_2 = \cdots = c_n = \mathcal{O}(\log n)$$

•
$$\widetilde{c_1} = \widetilde{c_2} = \cdots = \widetilde{c_n} = \mathcal{O}(1)$$

$$\Rightarrow \sum_{i=1}^{n} c_i = \mathcal{O}(n \log n)$$

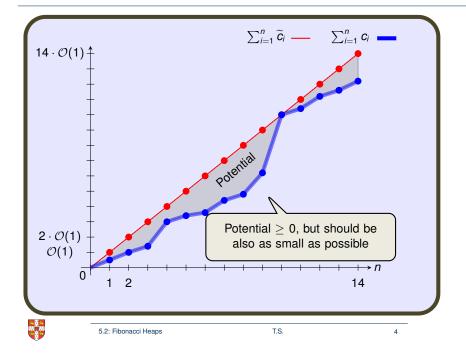
$$\Rightarrow \sum_{i=1}^n c_i \leq \sum_{i=1}^n \widetilde{c_i} = \mathcal{O}(n)$$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
INSERT	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

5.2: Fibonacci Heaps

T.S.

Actual vs. Amortized Cost



Outline

Binomial heap Fibonacci heap Operation actual cost amortized cost MAKE-HEAP $\mathcal{O}(1)$ $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $\mathcal{O}(1)$ INSERT $\mathcal{O}(1)$ MINIMUM $\mathcal{O}(\log n)$ EXTRACT-MIN $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(1)$ UNION $\mathcal{O}(1)$ **DECREASE-KEY** $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ DELETE $\mathcal{O}(\log n)$

Can we perform EXTRACT-MIN better than $\mathcal{O}(\log n)$?

If this was possible, then there would be a sorting algorithm with runtime $o(n \log n)!$

5.2: Fibonacci Heaps

を開た 開始 を整ち

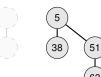
5.2: Fibonacci Heaps

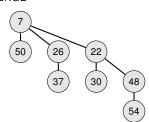
Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:

- consists of binomial trees, and every order appears at most once
- immediately tidy up after INSERT or MERGE

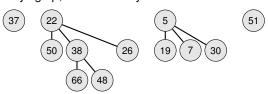
5.2: Fibonacci Heaps





Fibonacci Heap:

- forest of MIN-HEAPs
- lazily defer tidying up; do it on-the-fly when search for the MIN



T.S.

Structure

Operations

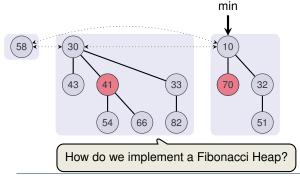
Glimpse at the Analysis

T.S.

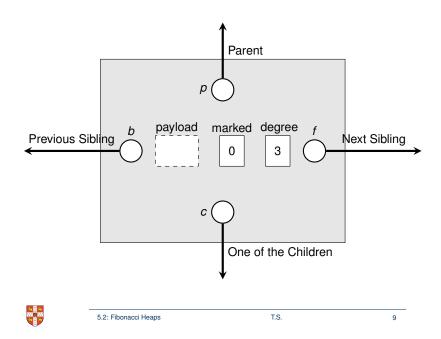
Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked [slides/handout: roots are always unmarked, CLRS: roots can be marked, but have to be unmarked once they become a child.]
- Tree roots are stored in a circular, doubly-linked list
- Min-Pointer pointing to the smallest element



A single Node



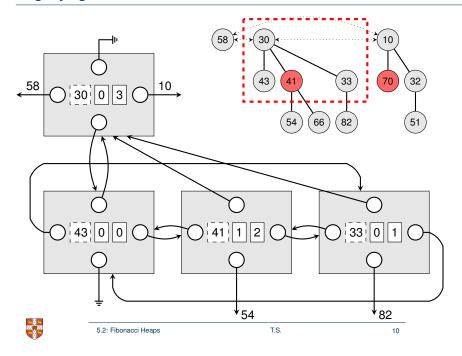
Outline

Structure

Operations

Glimpse at the Analysis

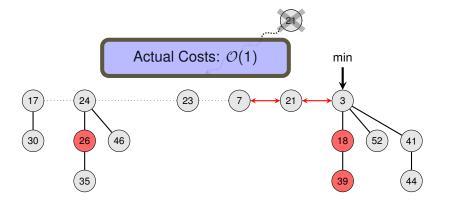
Magnifying a Four-Node Portion



Fibonacci Heap: INSERT

- INSERT -

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)



Fibonacci Heap: EXTRACT-MIN

– Extract-Min –

Delete min

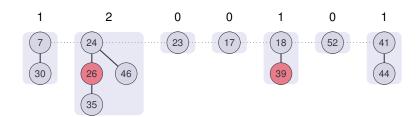


Fibonacci Heap: EXTRACT-MIN

5.2: Fibonacci Heaps

– Extract-Min –

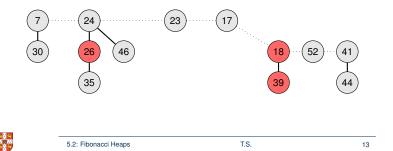
- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)



Fibonacci Heap: EXTRACT-MIN

— EXTRACT-MIN —

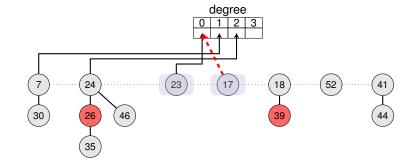
- Delete min ✓
- Meld childen into root list and unmark them



Fibonacci Heap: EXTRACT-MIN

– Extract-Min –

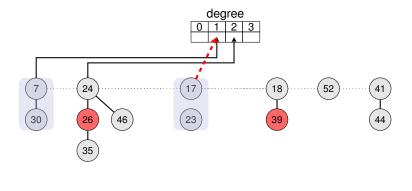
- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)



Fibonacci Heap: EXTRACT-MIN

- EXTRACT-MIN -

- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

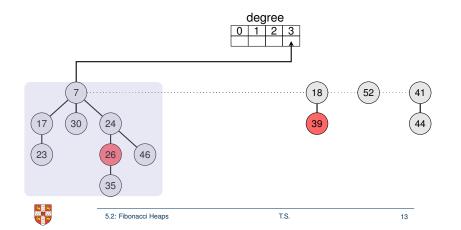


Fibonacci Heap: EXTRACT-MIN

5.2: Fibonacci Heaps

- Extract-Min -

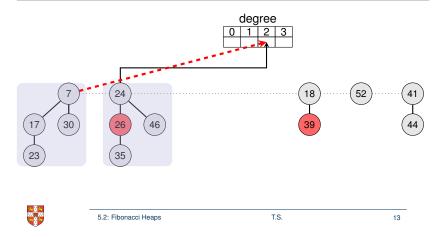
- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)



Fibonacci Heap: EXTRACT-MIN

- EXTRACT-MIN -

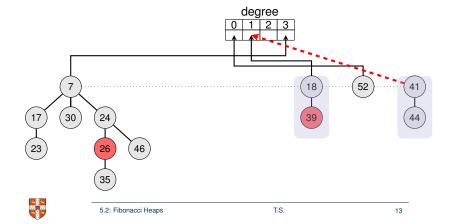
- Delete min √
- Meld childen into root list and unmark them
- Consolidate so that no roots have the same degree (# children)



Fibonacci Heap: EXTRACT-MIN

- EXTRACT-MIN -

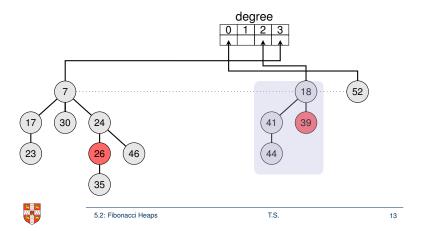
- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)



Fibonacci Heap: EXTRACT-MIN

- EXTRACT-MIN -

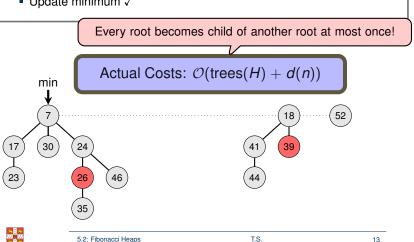
- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)



Fibonacci Heap: EXTRACT-MIN

- EXTRACT-MIN -

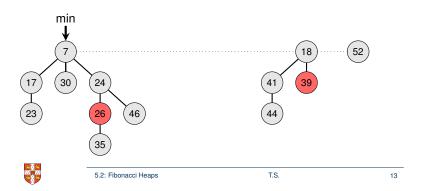
- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)
- Update minimum ✓



Fibonacci Heap: EXTRACT-MIN

- EXTRACT-MIN -

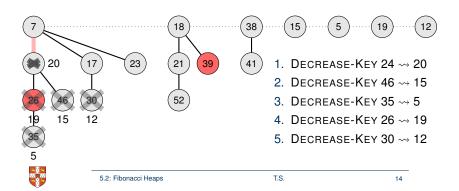
- Delete min ✓
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children) √
- Update minimum



Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x —

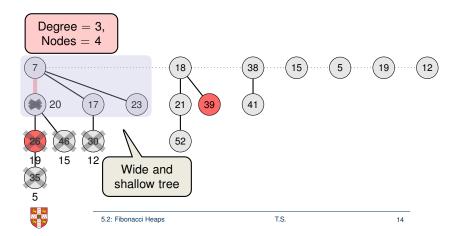
- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
 - If not, then done.
 - Otherwise, cut tree rooted at x and meld into root list.



Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x —

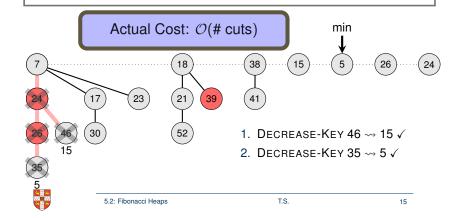
- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
 - If not, then done.
 - Otherwise, cut tree rooted at x and meld into root list.



Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x =

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, and meld into root list and:
- Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

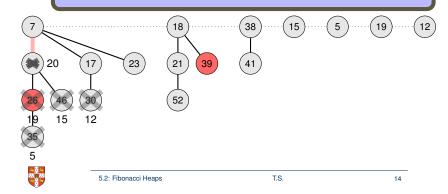


Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x —

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
 - If not, then done.
 - Otherwise, cut tree rooted at x and meld into root list.

Peculiar Constraint: Make sure that each non-root node loses at most one child before becoming root



Outline

Structure

Operations

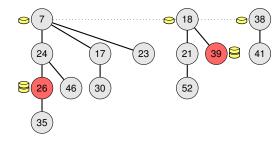
Glimpse at the Analysis

Amortized Analysis via Potential Method

■ INSERT: $actual \mathcal{O}(1)$ $amortized \mathcal{O}(1)$ ■ EXTRACT-MIN: $actual \mathcal{O}(trees(H) + d(n))$ $amortized \mathcal{O}(d(n))$

• DECREASE-KEY: actual $\mathcal{O}(\# \text{ cuts})$ amortized $\mathcal{O}(1)$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$



5.2: Fibonacci Heaps T.S.

5.2 Fibonacci Heaps (Analysis)

Frank Stajano

Thomas Sauerwald

Lent 2015

Amortized Analysis of Decrease-Key

- Actual Cost -

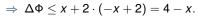
• DECREASE-KEY: $\mathcal{O}(x)$, where x is the number of cuts.

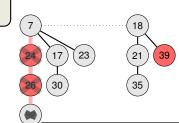
$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

First Coin \rightsquigarrow pays cut Second Coin \rightsquigarrow increase of trees(H)

Change in Potential -

- trees(H') = trees(H) + x
- $marks(H') \le marks(H) x + 2$





Amortized Cost

Scale up potential units

$$\widetilde{c}_i = c_i + \Delta \Phi = \mathcal{O}(x) + 4 - x = \mathcal{O}(1)$$

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis)

T.S.

.

Amortized Analysis of EXTRACT-MIN

Actual Cost —

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

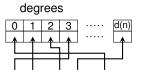
$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

- Change in Potential

marks(H') ≤ marks(H) trees(H') ≤ d(n) + 1

- Amortized Cost -

 $\Rightarrow \Delta \Phi = d(n) + 1 - \text{trees}(H)$



$$\widetilde{c}_i = c_i + \Delta \Phi = \mathcal{O}(\operatorname{trees}(\mathsf{H}) + d(n)) + d(n) + 1 - \operatorname{trees}(\mathsf{H}) = \mathcal{O}(d(n))$$

How to bound d(n)?

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis)

T.S.

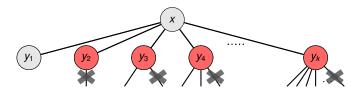
Lower Bounding Degrees of Children

We will prove a stronger statement: A tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_{\varphi} n$$

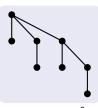
- Consider any node x (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees

$$\Rightarrow \quad \forall 1 \leq i \leq k \colon \quad d_i \geq i-2$$



Binomial Heap ____

Every tree is a binomial tree $\Rightarrow d(n) \le \log_2 n$.



$$d = 3, n = 2^3$$

- Fibonacci Heap -

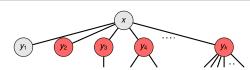
Not all trees are binomial trees, but still $d(n) \leq \log_{\varphi} n$, where $\varphi \approx 1.62$.

5.2: Fibonacci Heaps (Analysis)

T.S.

_

From Degrees to Minimum Subtree Sizes



$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

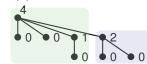
N(k) = F(k+2)?!

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$

$$N(3) = 5$$

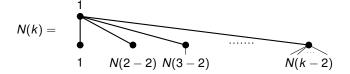
$$V(4) = 8 = 5 + 3$$

• 0



From Minimum Subtree Sizes to Fibonacci Numbers

$\forall 1 \leq i \leq k$: $d_i \geq i - 2$



$$N(k) = 1 + 1 + N(2 - 2) + N(3 - 2) + \dots + N(k - 2)$$

$$= 1 + 1 + \sum_{\ell=0}^{k-2} N(\ell)$$

$$= 1 + 1 + \sum_{\ell=0}^{k-3} N(\ell) + N(k - 2)$$

$$= N(k - 1) + N(k - 2)$$

$$= F(k + 1) + F(k) = F(k + 2)$$

5.2: Fibonacci Heaps (Analysis)

Putting the Pieces Together

Amortized Analysis —

- INSERT: amortized cost O(1)
- EXTRACT-MIN amortized cost O(d(n)) O(log n)
- DECREASE-Key amortized cost $\mathcal{O}(1)$

5.2: Fibonacci Heaps (Analysis)

$$n \ge N(k) = F(k+2) \ge \varphi^k$$

$$\Rightarrow \log_{\varphi} n \ge k$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the (k+2)nd Fib. number satisfies $F_{k+2} \geq \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$ $\varphi^2 = \varphi + 1$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on *k*:

- Base k = 0: $F_2 = 1$ and $\varphi^0 = 1$
- Base k = 1: $F_3 = 2$ and $\varphi^1 < 1.619$ \checkmark
- Inductive Step (k > 2):

$$F_{k+2} = F_{k+1} + F_k$$

$$\geq \varphi^{k-1} + \varphi^{k-2} \qquad \text{(by the inductive hypothesis)}$$

$$= \varphi^{k-2} \cdot (\varphi + 1)$$

$$= \varphi^{k-2} \cdot \varphi^2 \qquad (\varphi^2 = \varphi + 1)$$

$$= \varphi^k \qquad \square$$

5.2: Fibonacci Heaps (Analysis)

Summary

- Fibonacci Heaps were developed by Fredman and Tarjan in 1984
- Fibonacci Numbers were discovered >800 years ago

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
INSERT	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	<i>O</i> (1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Operation	Fibonacci heap	Van Emde Boas Tree	
	amortized cost	actual cost	
INSERT	O(1)	$\mathcal{O}(\log\log u)$	
Мінімим	<i>O</i> (1)	$\mathcal{O}(1)$	
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log\log u)$	
Merge/Union	<i>O</i> (1)	-	
DECREASE-KEY	O(1)	$\mathcal{O}(\log\log u)$	
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log\log u)$	
Succ	-	$\mathcal{O}(\log\log u)$	
PRED	-	$\mathcal{O}(\log\log u)$	
Махімим	-	<i>O</i> (1)	

all this requires key values to be in a universe of size u!

5.3: Disjoint Sets

Frank Stajano

Thomas Sauerwald

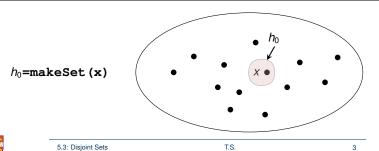
Lent 2015

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure -

Handle makeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle



Disjoint Sets

Graph Representations

5.3: Disjoint Sets

TS

Disjoint Sets (aka Union Find)

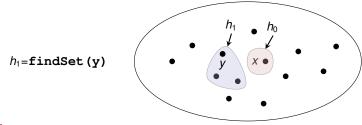
Disjoint Sets Data Structure -

Handle makeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle findSet(Item x)

Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x



Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure -

Handle makeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Handle findSet(Item x)

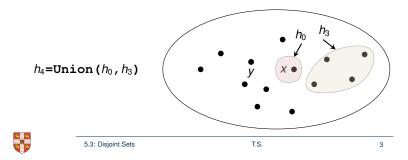
Precondition: there exists a set that contains *x* (given pointer to *x*)

Behaviour: return the handle of the set that contains *x*

• Handle union (Handle h, Handle g)

Precondition: $h \neq g$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

Handle makeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

• Handle findSet(Item x)

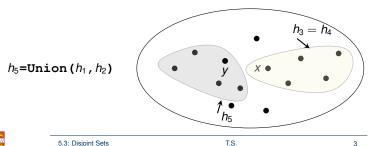
Precondition: there exists a set that contains *x* (given pointer to *x*)

Behaviour: return the handle of the set that contains *x*

• Handle union (Handle h, Handle g)

Precondition: $h \neq g$

Behaviour: merge two disjoint sets and return handle of new set



Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure -

Handle makeSet(Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

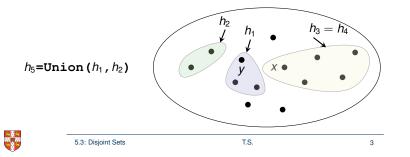
Handle findSet(Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle union (Handle h, Handle g)

Precondition: $h \neq q$

Behaviour: merge two disjoint sets and return handle of new set

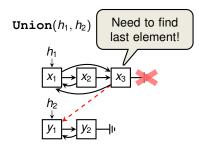


First Attempt: List Implementation

UNION-Operation —

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

5.3: Disjoint Sets



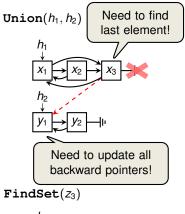
First Attempt: List Implementation

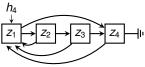
UNION-Operation -

- Add extra pointer to the last element in each list
- ⇒ UNION takes constant time

FIND-Operation —

- Add backward pointer to the list head from everywhere
- ⇒ FIND takes constant time





5.3: Disjoint Sets

Weighted-Union Heuristic

Weighted-Union Heuristic -

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

Theorem 21.1 —

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKE-SET operations, takes $\mathcal{O}(m + n \cdot \log n)$ time.

Amortized Analysis: Every operation has amortized cost $\mathcal{O}(\log n)$, but there may be operations with total cost $\Theta(n)$.

First Attempt: List Implementation (Analysis)

d = DisjointSet() $h_0 = d.$ MakeSet (x_0)

 $h_1 = d.$ MakeSet (x_1)

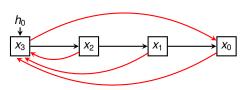
 $h_0 = d.union(h_1, h_0)$

 $h_2 = d.$ MakeSet (x_2)

 $h_0 = d.union(h_2, h_0)$

 $h_3 = d.$ MakeSet (x_3)

 $h_0 = d.union(h_3, h_0)$

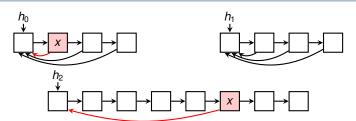


better to append shorter list to longer --- Weighted-Union Heuristic

Cost for *n* UNION operations: $\sum_{i=1}^{n} i = \Theta(n^2)$

5.3: Disjoint Sets

Analysis of Weighted-Union Heuristic



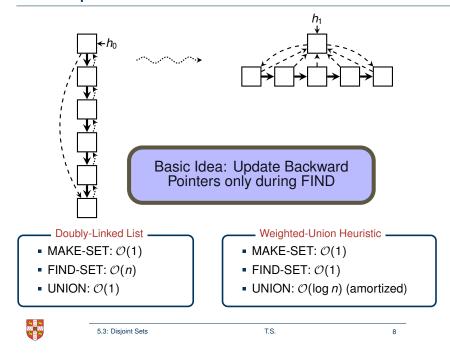
Using the weighted-union heuristic, any sequence of *m* operations, *n* of which are MAKE-SET operations, takes $\mathcal{O}(m + n \cdot \log n)$ time.

Proof:

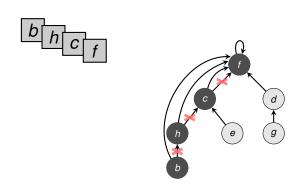
Can we improve on this further?

- n MAKE-SET operations \Rightarrow at most n-1 UNION operations
- Consider element x and the number of updates of the backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most $\log_2 n$ times
- Other updates for UNION, MAKE-SET & FIND-SET take $\mathcal{O}(1)$ time per operation

How to Improve?



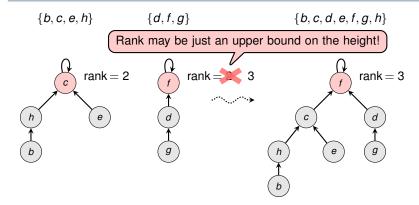
Path Compression during FIND-SET



0: FIND-SET(x)
1: if $x \neq x.p$ 2: x.p = FIND-SET(x.p)

3: return x.p

Disjoint Sets via Forests



Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

Append tree of smaller height → Union by Rank

5.3: Disjoint Sets

Combining Union by Rank and Path Compression

Data Structure is essentially optimal! (for more details see CLRS)

- Theorem 21.14 -

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

More than the number of atoms in the universe!

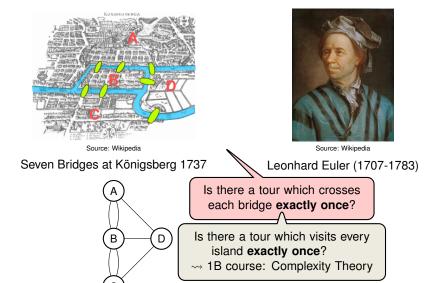
6.1 & 6.2: Graph Searching

Frank Stajano

Thomas Sauerwald

28 February 2014

Origin of Graph Theory



Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching

T.S

What is a Graph?

Directed Graph —

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- E: the set of (undirected) edges

Paths and Connectivity -

 A sequence of edges between two vertices forms a path

Path p = (1, 2, 3, 4)

$$V = \{1,2,3,4\} \\ E = \{(1,2),(1,3),(2,3),(3,1),(3,4)\}$$

$$V = \{1,2,3,4\}$$

$$E = \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}$$

6.1 & 6.2: Graph Searching

T.S

What is a Graph?

Directed Graph

Path p = (1, 2, 3, 1), which is a cycle

A graph G = (V, E) consists of:

G is not a DAG

- V: the set of vertices
- E: the set of edges (arcs)

Undirected Graph

A graph G = (V, E) consists of:

- V: the set of vertices
- *E*: the set of (undirected) edges

Paths and Connectivity -

 A sequence of edges between two vertices forms a path

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)\}$

$$V = \{1, 2, 3, 4\}$$

 $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}\}$

6.1 & 6.2: Graph Searching

V: the set of vertices

Directed Graph

What is a Graph?

• E: the set of edges (arcs)

A graph G = (V, E) consists of:

G is not (strongly) connected

Undirected Graph -

A graph G = (V, E) consists of:

- V: the set of vertices
- *E*: the set of (undirected) edges

 $V = \{1, 2, 3, 4\}$ $E = \{(1,2), (1,3), (2,3), (3,1), (3,4)\}$

Paths and Connectivity -

G is connected A sequence of edges between

 If each pair of vertices has a path linking them, then *G* is connected

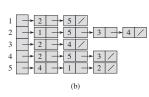
two vertices forms a path

 $V = \{1, 2, 3, 4\}$ $E = \{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}$

6.1 & 6.2: Graph Searching

6.1 & 6.2: Graph Searching

Representations of Directed and Undirected Graphs



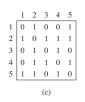
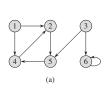


Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation



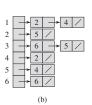
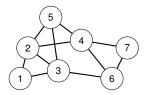




Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Graph Searching



- Graph searching means taversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.
- Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of *V* and *E* (often write just V instead of |V|, and E instead of |E|)

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching

T.S.

Vertex Colours:

White = Unvisited

Basic Idea

Grey = Visited, but not all neighbors (=adjacent vertices)

• Given an undirected/directed graph G = (V, E) and source vertex s

■ BFS sends out a wave from $s \leadsto$ compute distances/shortest paths

Black = Visited and all neighbors

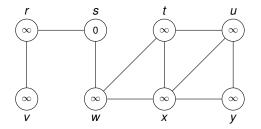
6.1 & 6.2: Graph Searching

T.S.

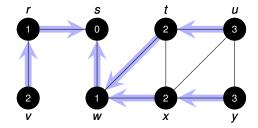
8

Complete Execution of BFS (Figure 22.3)

Queue:



Complete Execution of BFS (Figure 22.3)



Breadth-First-Search: Pseudocode

```
0: def bfs(G)
1: Run BFS on the given graph G
      starting from source s
 4: assert(s in G.vertices()) 5:
 6: # Initialize graph and queue
 7: for v in G.vertices():
                                              • From any vertex, visit all adjacent
 8: v.predecessor = None
     v.d = Infinity # .d = distance from s
                                                vertices before going any deeper
 10: v.colour = "white"
                                             Vertex Colours:
 11: Q = Queue()
 12:
 13: # Visit source vertex
                                                 White = Unvisited
 14: s.d = 0
                                                 Grey = Visited, but not all neighbors
 15: s.colour = "grey"
 16: Q.insert(s)
 17:
                                                 Black = Visited and all neighbors
 18: # Visit the adjacents of each vertex in Q
 19: while not Q.isEmpty():
                                              ■ Runtime O(V + E)
 20: u = Q.extract()
 21: assert (u.colour == "grey")
       for v in u.adjacent()
                                     Assuming that all executions of the FOR-loop
 23:
        if v.colour = "white"
24:
25:
           v.colour = "grey"
                                    for u takes O(|u.adj|) (adjacency list model!)
           v.d = u.d+1
 26:
27:
28:
           v.predecessor = u
           Q.insert(v)
                                                 \sum_{u \in V} |u.adj| = 2|E|
       u.colour = "black"
6.1 & 6.2: Graph Searching
                                                            T.S.
                                                                                       10
```

Depth-First Search: Basic Ideas

Basic Idea

- Given an undirected/directed graph G = (V, E) and source vertex s
- As soon as we discover a vertex, explore from it ¬¬→ Solving Mazes
- Two time stamps for every vertex: Discovery Time, Finishing Time

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

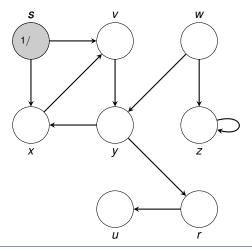
6.1 & 6.2: Graph Searching

T.S.

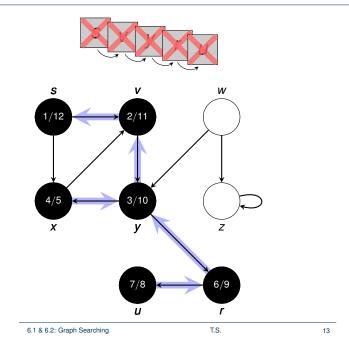
11

Complete Execution of DFS

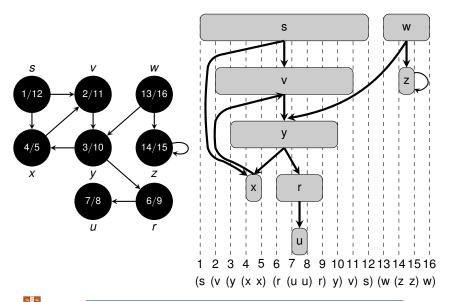
S



Complete Execution of DFS



Paranthesis Theorem (Theorem 22.7)



Complete Execution of DFS



Depth-First-Search: Pseudocode

- 0: def dfs(G):
 1: Run DFS on the given graph G
 2: starting from the given source s
 3:
 4: assert(s in G.vertices())
 5:
 6: # Initialize graph
 7: for v in G.vertices():
 8: v.predecessor = None
 9: v.colour = "white"
 10: dfsRecurse(G,s)
- 0: def dfsRecurse(G,s):
 1: s.colour = "grey"
 2: s.d = time() # .d = discovery time
 3: for v in s.adjacent()
 4: if v.colour = "white"
 5: v.predecessor = s
 6: dfsRecurse(G,v)
 7: s.colour = "black"
 8: s.f = time() # .f = finish time
- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .v
- Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

• Runtime O(V + E)

T.S.

Introduction to Graphs and Graph Searching

Breadth-First Search

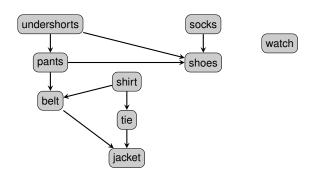
Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching

T.S.

Solving Topological Sort



- Knuth's Algorithm (1968) -

- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time

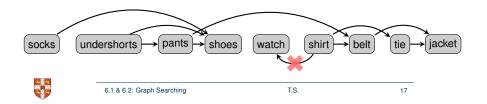
Runtime O(V + E)

6.1 & 6.2: Graph Searching

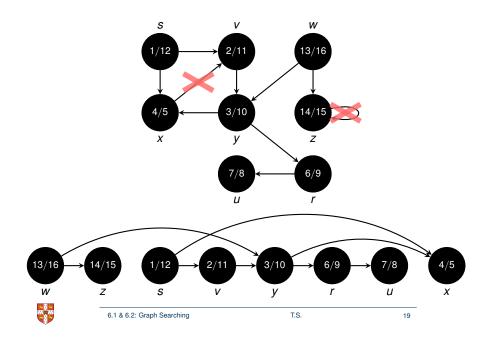
Don't need to sort the vertices – use DFS directly!

T.S.

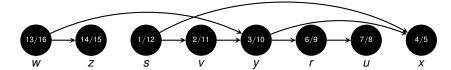
pants shoes shirt pants shoes Problem Given: a directed acyclic graph (DAG) a Goal: Output a linear ordering of all vertices



Execution of Knuth's Algorithm



Correctness of Topological Sort using DFS

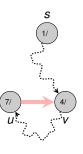


Theorem 22.12 -

If the input graph is a DAG, then the algorithm computes a linear order.

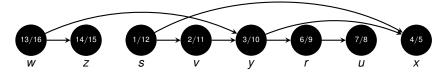
Proof:

- Consider any edge $(u, v) \in E(G)$ being explored, \Rightarrow *u* is grey and we have to show that *v.f* < *u.f*
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).



6.1 & 6.2: Graph Searching

Correctness of Topological Sort using DFS

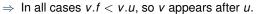


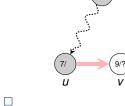
Theorem 22.12 -

If the input graph is a DAG, then the algorithm computes a linear order.

Proof:

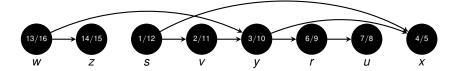
- Consider any edge $(u, v) \in E(G)$ being explored, \Rightarrow *u* is grey and we have to show that *v*. *f* < *u*. *f*
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.
 - 3. If v is white, we call DFS(v) and v.f < u.f.





6.1 & 6.2: Graph Searching

Correctness of Topological Sort using DFS

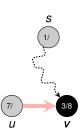


Theorem 22.12 -

If the input graph is a DAG, then the algorithm computes a linear order.

Proof:

- Consider any edge $(u, v) \in E(G)$ being explored, \Rightarrow *u* is grey and we have to show that *v.f* < *u.f*
 - 1. If v is grey, then there is a cycle (can't happen, because G is acyclic!).
 - 2. If v is black, then v.f < u.f.



6.1 & 6.2: Graph Searching

Summary of Graph Searching

Breadth-First-Search -

- vertices are processed by a queue
- computes distances and shortest paths → similar idea used later in Prim's and Dijkstra's algorithm
- Runtime $\mathcal{O}(V+E)$

Depth-First-Search -

- vertices are processed by recursive calls (≈ stack)
- discovery and finishing times
- application: Topogical Sorting of DAGs
- Runtime $\mathcal{O}(V+E)$

Outline

6.3: Minimum Spanning Tree

Frank Stajano

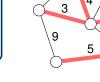
Thomas Sauerwald

Lent 2015

Minimum Spanning Tree Problem

Minimum Spanning Tree Problem -

- Given: undirected, connected graph *G* = (*V*, *E*, *w*) with non-negative edge weights
- Goal: Find a subgraph ⊆ E of minimum total weight that links all vertices



Must be necessarily a tree!

Applications

- Street Networks, Wiring Electronic Components, Laying Pipes
- Weights may represent distances, costs, travel times, capacities, resistance etc.

Minimum Spanning Tree Problem

Single-Source Shortest Path

6.3: Minimum Spanning Tree

TS

Generic Algorithm

```
0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
```

Definition -

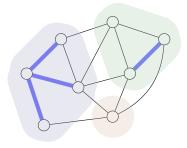
A edge of G is safe if by adding the edge to A, the resulting subgraph is still a subset of a minimum spanning tree.

How to find a safe edge?

Finding safe edges

Definitions —

- a cut is a partition of V into at least two disjoint sets
- a cut respects $A \subseteq E$ if no edge of A goes across the cut



Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of *G* that goes across the cut is safe.

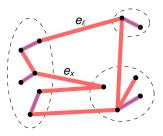
6.3: Minimum Spanning Tree

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of *G* that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \not\in T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_ℓ and another edge e_x



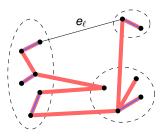
Proof of Theorem

Theorem —

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of *G* that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done



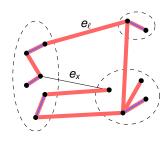
6.3: Minimum Spanning Tree

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of *G* that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \not\in T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_ℓ and another edge e_x
- Consider now the tree $T \cup e_{\ell} \setminus e_x$:
 - This tree must be a spanning tree
 - If $w(e_{\ell}) < w(e_{x})$, then this spanning tree has smaller cost than T (can't happen!)
 - If $w(e_{\ell}) = w(e_x)$, then $T \cup e_{\ell} \setminus e_x$ is a MST.

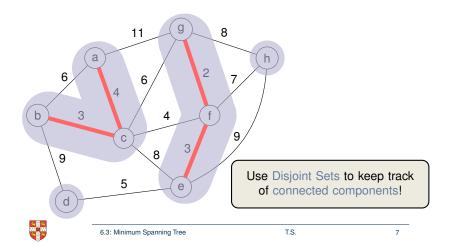


6.3: Minimum Spanning Tree

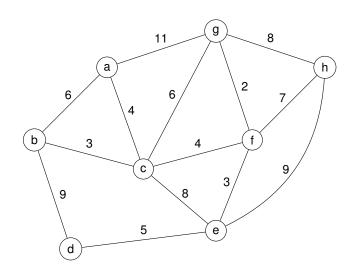
Glimpse at Kruskal's Algorithm

Basic Strategy –

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:
 Add lightest edge to A that does not introduce a cycle



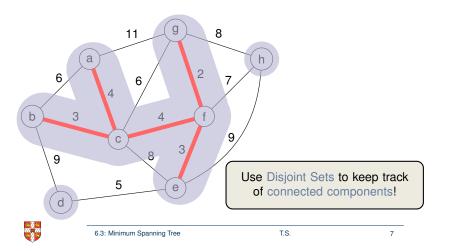
Complete Run of Kruskal's Algorithm



Glimpse at Kruskal's Algorithm

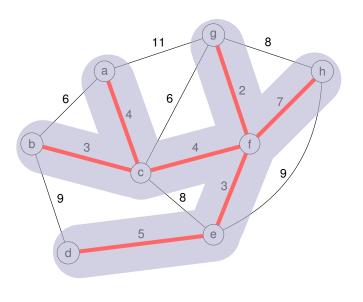
Basic Strategy —

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:Add lightest edge to A that does not introduce a cycle



Complete Run of Kruskal's Algorithm

6.3: Minimum Spanning Tree



Details of Kruskal's Algorithm

```
0: def kruskal(G)
      Apply Kruskal's algorithm to graph G
2:
       Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeset(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
11: for edge in E:
12: startSet = D.findSet(edge.start)
13:
      endSet = D.findset(edge.end)
     if startSet != endSet:
14:
15:
         A. append (edge)
         D.union(startSet, endSet)
16:
17: return A
```

— Time Complexity —

- Initialization (I. 4-9): $\mathcal{O}(V + E \log E)$
- Main Loop (l. 11-16): $\mathcal{O}(E \cdot \alpha(n))$
- \Rightarrow Overall: $\mathcal{O}(E \log E) = \mathcal{O}(E \log V)$

If edges are already sorted, runtime becomes $O(E \cdot \alpha(n))!$

6.3: Minimum Spanning Tree

Q

Prim's Algorithm

Basic Strategy -

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \setminus Q$
- At each step:
 - 1. extract vertex from Q with smallest key \Leftrightarrow safe edge of cut $(V \setminus Q, Q)$
 - 2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Assign every vertex not connected to A a key which is at all stages equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6.3: Minimum Spanning Tree

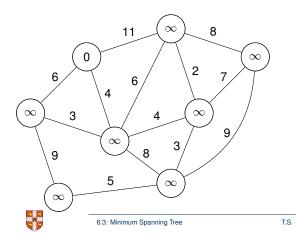
T.S.

10

Prim's Algorithm

Basic Strategy -

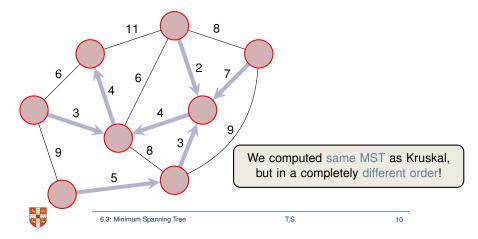
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle



Prim's Algorithm

- Basic Strategy -

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle



6.3: Minimum Spanning Tree T.S.

11

Details of Prim's Algorithm

```
0: def prim(G,r)
      Apply Prim's Algorithm to graph G and root r
1:
2:
       Return result implicitly by modifying G:
3:
      MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
       v.predecessor = None
       if v == r:
8:
9:
           v.kev = 0
10:
       else:
           v.key = Infinity
11:
12:
       Q.insert(v)
13:
14:
       while not Q.isEmpty():
15:
           u = Q.extractMin()
16:
           for v in u.adjacent():
17:
               w = G.weightOfEdge(u, v)
18:
               if Q.hasItem(v) and w < v.key:</pre>
19:
                  v.predecessor = u
20:
                  Q.decreaseKey(item=v, newKey=v)
```

Time Complexity -

```
Init (I. 6-13): \mathcal{O}(V), ExtractMin (15): \mathcal{O}(V \cdot \log V), DecreaseKey (16-20): \mathcal{O}(E \cdot 1) \Rightarrow Overall: \mathcal{O}(V \log V + E)
```


6.3: Minimum Spanning Tree

T.S.

. . .

Outline

6.4: Single-Source Shortest Paths

Frank Stajano

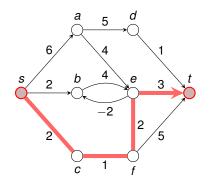
Thomas Sauerwald

Lent 2015

Shortest Path Problem

- Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G



Introduction

Bellman-Ford Algorithm

Dijkstra's Algorithm

6.4: Single-Source Shortest Paths

TS

Variants of Shortest Path Problems

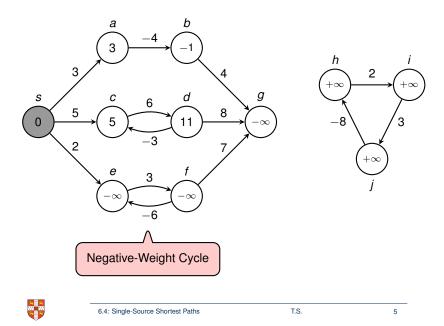
Single-source shortest-paths problem (SSSP)

- Bellman-Ford Algorithm
- Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)

- Shortest Paths via Matrix Multiplication
- Johnson's Algorithm

Distances and Negative-Weight Cycles



Relaxing Edges

Fix the source vertex $s \in V$

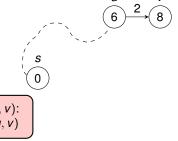
- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

Given estimates u.d and v.d, can we find a better path from v using the edge (u, v)?

$$v.d \stackrel{?}{>} u.d + w(u, v)$$

After relaxing (u, v): v.d < u.d + w(u, v)



- Definition -

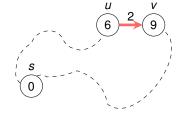
Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- *v.d* is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

Given estimates u.d and v.d, can we find a better path from v using the edge (u, v)?

$$v.d \stackrel{?}{>} u.d + w(u,v)$$



6.4: Single-Source Shortest Paths

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

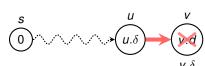
• For any edge $(u, v) \in E$, we have $v.\delta < u.\delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d \ge v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \rightsquigarrow u \rightarrow v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.



$$v.d \le u.d + w(u, v)$$

= $u.\delta + w(u, v)$
= $v.\delta$

Since $v.d > v.\delta$, we have $v.d = v.\delta$. \square

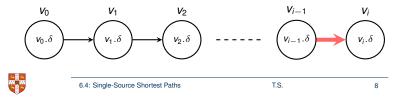
Path-Relaxation Property

- Path-Relaxation Property (Lemma 24.15) -

If $p = (v_0, v_1, \dots, v_k)$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = v_k.\delta$ (regardless of the order of other relaxation steps).

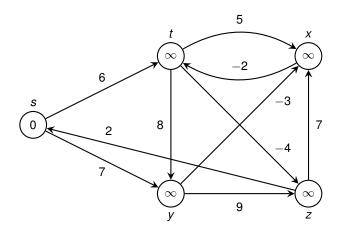
Proof:

- By induction on i, $0 \le i \le k$: After the ith edge of p is relaxed, we have $v_i \cdot d = v_i \cdot \delta$.
- For i = 0, by the initialization $s.d = s.\delta = 0$. Upper-bound Property \Rightarrow the value of s.d never changes after that.
- Inductive Step $(i-1 \rightarrow i)$: Assume $v_{i-1}.d = v_{i-1}.\delta$ and relax (v_{i-1}, v_i) . Convergence Property $\Rightarrow v_i.d = v_i.\delta$ (now and at all later steps)



Complete Run of Bellman-Ford (Figure 24.4)

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



The Bellman-Ford Algorithm

```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
      v.predecessor = None
      v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
      for e in G.edges()
      Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
      if e.start.d + e.weight.d < e.end.d:</pre>
          e.end.d = e.start.d + e.weight
10:
11:
          e.end.predecessor = e.start
12:
13: for e in G.edges()
      if e.start.d + e.weight.d < e.end.d:
          return FALSE
16: return TRUE
```

Time Complexity -

- A single call of line 9-11 costs $\mathcal{O}(1)$
- In each pass every edge is relaxed $\Rightarrow \mathcal{O}(E)$ time per pass
- Overall (V-1)+1=V passes $\Rightarrow \mathcal{O}(V\cdot E)$ time

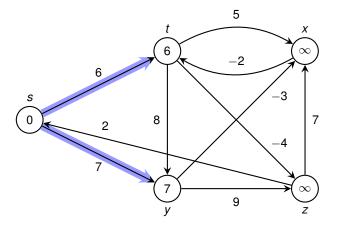
6.4: Single-Source Shortest Paths

T.S.

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

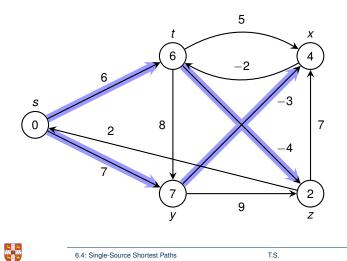


10

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 2

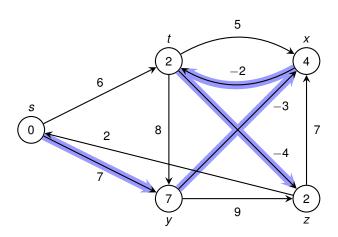
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



Complete Run of Bellman-Ford (Figure 24.4)

Pass: 4

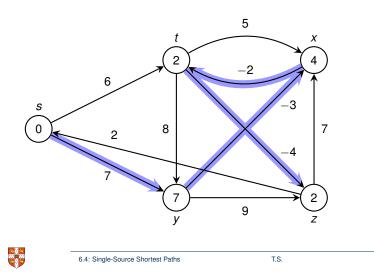
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



Complete Run of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



The Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3

Assume that *G* contains no negative-weight cycles that are reachable from s. Then after |V| - 1 passes, we have $v.d = v.\delta$ for all vertices $v \in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v \cdot d = v \cdot \delta$

Proof that Bellman-Ford returns TRUE

• Let $(u, v) \in E$ be any edge. After |V| - 1 passes:

$$v.d = v.\delta \le u.\delta + w(u, v) = u.d + w(u, v)$$

⇒ Bellman-Ford returns TRUE

The Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3 -

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_{i}.d \leq v_{i-1}.d + w(v_{i-1}, v_{i})$$

$$\Rightarrow \sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

$$0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

• This contradicts the assumption that *c* is a negative-weight cycle!

6.4: Single-Source Shortest Paths

Outline

Bellman-Ford Algorithm

Dijkstra's Algorithm

6.4: Single-Source Shortest Paths

Relaxing Edges

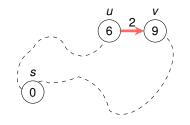
Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

Given estimates u.d and v.d, can we find a better path from v using the edge (u, v)?

$$v.d \stackrel{?}{>} u.d + w(u, v)$$



Relaxing Edges

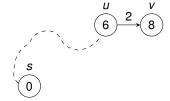
Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

Given estimates u.d and v.d, can we find a better path from v using the edge (u, v)?

$$v.d \stackrel{?}{>} u.d + w(u,v)$$



After relaxing (u, v), regardless of whether we found a shortcut: $v.d \leq u.d + w(u, v)$

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

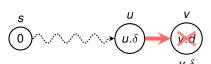
• For any edge $(u, v) \in E$, we have $v \cdot \delta < u \cdot \delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d > v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \rightsquigarrow u \rightarrow v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.



$$v.d \le u.d + w(u, v)$$

= $u.\delta + w(u, v)$
= $v.\delta$

Since $v.d > v.\delta$, we have $v.d = v.\delta$. \square

6.4: Single-Source Shortest Paths

The Bellman-Ford Algorithm

```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
     v.d = Infinity
4: s.d = 0
6: repeat |V|-1 times
7: for e in G.edges()
    Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9:
     if e.start.d + e.weight.d < e.end.d:</pre>
10:
          e.end.d = e.start.d + e.weight
11:
          e.end.predecessor = e.start
12:
13: for e in G.edges()
      if e.start.d + e.weight.d < e.end.d:</pre>
          return FALSE
16: return TRUE
```

Time Complexity -

- A single call of line 9-11 costs O(1)
- In each pass every edge is relaxed $\Rightarrow \mathcal{O}(E)$ time per pass
- Overall (V-1)+1=V passes $\Rightarrow \mathcal{O}(V\cdot E)$ time

Path-Relaxation Property

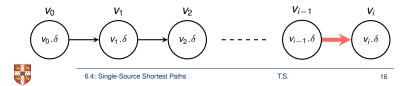
"Propagation": By relaxing proper edges, set of vertices with $v.\delta = v.d$ gets larger

Path-Relaxation Property (Lemma 24.15) -

If $p = (v_0, v_1, \dots, v_k)$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = v_k.\delta$ (regardless of the order of other relaxation steps).

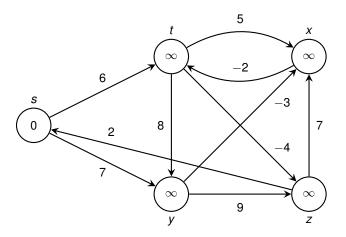
Proof:

- By induction on i, 0 < i < k: After the *i*th edge of p is relaxed, we have $v_i \cdot d = v_i \cdot \delta$.
- For i = 0, by the initialization $s.d = s.\delta = 0$. Upper-bound Property \Rightarrow the value of *s.d* never changes after that.
- Inductive Step $(i-1 \rightarrow i)$: Assume $v_{i-1}.d = v_{i-1}.\delta$ and relax (v_{i-1}, v_i) . Convergence Property $\Rightarrow v_i.d = v_i.\delta$ (now and at all later steps)



Complete Run of Bellman-Ford (Figure 24.4)

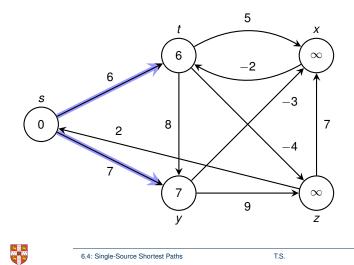
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



Complete Run of Bellman-Ford (Figure 24.4)

Pass: 1

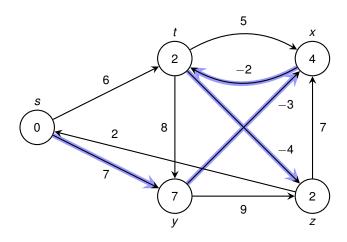
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



Complete Run of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

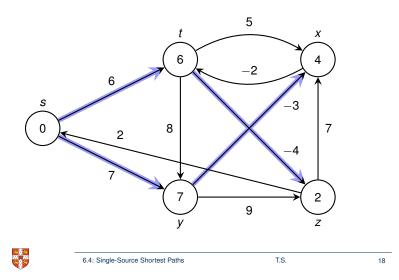


6.4: Single-Source Shortest Paths

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 2

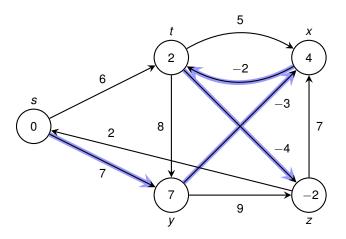
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



Complete Run of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)



18

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

Proof that Bellman-Ford returns TRUE

- Need to prove: $v.d \le u.d + w(u, v)$ for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

$$v.d = v.\delta \leq u.\delta + w(u,v) = u.d + w(u,v)$$
 Triangle inequality (holds even if $w(u,v) < 0!$)
$$\hline 6.4: Single-Source Shortest Paths$$
 T.S. 19

Outline

Introduction

Bellman-Ford Algorithm

Dijkstra's Algorithm

Bellman-Ford Algorithm: Correctness (2/2)

— Theorem 24.3 —

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_{i}.d \leq v_{i-1}.d + w(v_{i-1}, v_{i})$$

$$\Rightarrow \sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

$$0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

This contradicts the assumption that c is a negative-weight cycle!

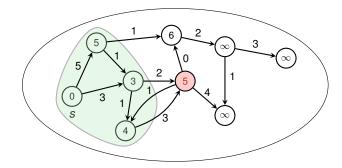
6.4: Single-Source Shortest Paths

TS

Dijkstra's Algorithm

Overview of Dijkstra —

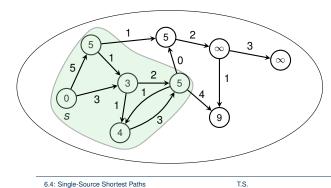
- Requires that all edges have non-negative weights
- Use a special order for relaxing edges
- The order follows a greedy-strategy (similar to Prim's algorithm):
 - 1. Maintain set *S* of vertices *u* with $u.\delta = v.d$
 - 2. At each step, add a vertex $v \in V \setminus S$ with minimal $v \cdot \delta$



Dijkstra's Algorithm

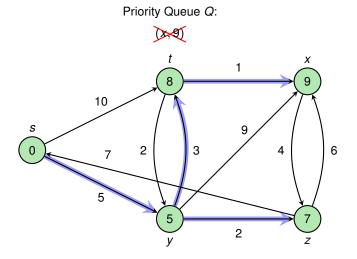
Overview of Dijkstra -

- Requires that all edges have non-negative weights
- Use a special order for relaxing edges
- The order follows a greedy-strategy (similar to Prim's algorithm):
 - 1. Maintain set *S* of vertices *u* with $u.\delta = v.d$
 - 2. At each step, add a vertex $v \in V \setminus S$ with minimal $v \cdot \delta$
 - 3. Relax all edges leaving *v*



6.4: Single-Source Shortest Paths

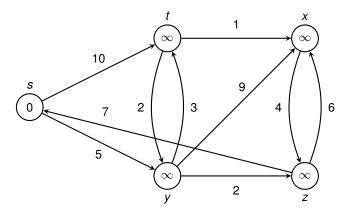
Complete Run of Dijkstra (Figure 24.6)



Complete Run of Dijkstra (Figure 24.6)

Priority Queue Q:

$$(s,0),(t,\infty),(x,\infty),(y,\infty),(z,\infty)$$



6.4: Single-Source Shortest Paths

Runtime of Dijkstra's Algorithm

DIJKSTRA(G,w,s)

- 0: INITIALIZE(G,s)
- 1: *S* = ∅
- 2: Q = V
- 3: while $Q \neq \emptyset$ do
- u = Extract-Min(Q)
- $S = S \cup \{u\}$ for each $v \in G.Adj[u]$ do
- RELAX(u, v, w)
- end for
- 9: end while

Runtime (using Fibonacci Heaps)

23

- Initialization (I. 0-2): $\mathcal{O}(V)$
- ExtractMin (I. 4): $\mathcal{O}(V \cdot \log V)$
- DecreaseKey (I. 7): O(E ⋅ 1)
- \Rightarrow Overall: $\mathcal{O}(V \log V + E)$

Correctness of Dijkstra's Algorithm

Theorem 24.6 -

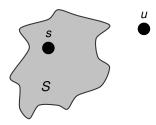
For any directed graph G = (V, E, w) with non-negative edge weights and source s, Dijkstra terminates with $u.d = u.\delta$ for all $u \in V$.

Proof: Invariant: If v is extracted, $v.d = v.\delta$

• Suppose there is $u \in V$, when extracted,

$$u.d > u.\delta$$

• Let u be the first vertex with this property



6.4: Single-Source Shortest Paths

Correctness of Dijkstra's Algorithm

- Theorem 24.6 -

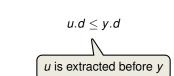
For any directed graph G = (V, E, w) with non-negative edge weights and source s, Dijkstra terminates with $u.d = u.\delta$ for all $u \in V$.

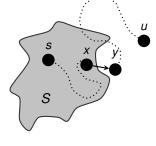
Proof: Invariant: If v is extracted, $v.d = v.\delta$

• Suppose there is $u \in V$, when extracted,

$$u.d > u.\delta$$

- Let *u* be the first vertex with this property
- Take a shortest path from s to u and let (x, y) be the first edge from S to $V \setminus S$





Correctness of Dijkstra's Algorithm

Theorem 24.6 —

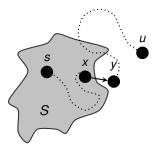
For any directed graph G = (V, E, w) with non-negative edge weights and source s, Dijkstra terminates with $u.d = u.\delta$ for all $u \in V$.

Proof: Invariant: If v is extracted, $v.d = v.\delta$

• Suppose there is $u \in V$, when extracted,

$$u.d > u.\delta$$

- Let u be the first vertex with this property
- Take a shortest path from s to u and let (x, y) be the first edge from S to $V \setminus S$



6.4: Single-Source Shortest Paths

Correctness of Dijkstra's Algorithm

Theorem 24.6 —

For any directed graph G = (V, E, w) with non-negative edge weights and source s, Dijkstra terminates with $u.d = u.\delta$ for all $u \in V$.

Proof: Invariant: If v is extracted, $v.d = v.\delta$

• Suppose there is $u \in V$, when extracted,

$$u.d > u.\delta$$

- Let *u* be the first vertex with this property
- Take a shortest path from s to u and let (x, y) be the first edge from S to $V \setminus S$



$$u.d \leq y.d = y.\delta$$

since $x.d = x.\delta$ when x is extracted, and then (x, y) is relaxed \Rightarrow Convergence Property

Correctness of Dijkstra's Algorithm

- Theorem 24.6 -

For any directed graph G=(V,E,w) with non-negative edge weights and source s, Dijkstra terminates with $u.d=u.\delta$ for all $u\in V$.

Proof: Invariant: If v is extracted, $v.d = v.\delta$

There are edge cases like s = x and/or y = u!

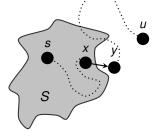
• Suppose there is $u \in V$, when extracted,

$$u.d > u.\delta$$

- Let *u* be the first vertex with this property
- Take a shortest path from s to u and let (x, y) be the first edge from S to $V \setminus S$

$$u.\delta < u.d \le y.d = y.\delta$$

This contradicts that y is on a shortest path from s to u.



6.4: Single-Source Shortest Paths

T.S.

Outline

6.5: All-Pairs Shortest Paths

Frank Stajano

Thomas Sauerwald

Lent 2015

Formalizing the Problem

All-Pairs Shortest Path Problem

• Given: directed graph $G = (V, E), V = \{1, 2, ..., n\}$, with edge weights represented by a matrix W:

$$\textit{w}_{i,j} = \begin{cases} \text{weight of edge } (i,j) & \text{for an edge } (i,j) \in \textit{E}, \\ \infty & \text{if there is no edge from } i \text{ to } j, \\ 0 & \text{if } i = j. \end{cases}$$

■ Goal: Obtain a matrix of shortest path weights *L*, that is

$$I_{i,j} = egin{cases} ext{weight of a shortest path from } i ext{ to } j, & ext{if } j ext{ is reachable from } i \ \infty & ext{otherwise.} \end{cases}$$

Here we will only compute the weight of the shortest path without keeping track of the edges of the path!

6.5: All-Pairs Shortest Paths

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson's Algorithm

6.5: All-Pairs Shortest Paths

T.S.

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson's Algorithm

A Recursive Approach

- Basic Idea -

- Any shortest path from i to j of length k ≥ 2 is the concatenation of a shortest path of length k − 1 and an edge
- Let $\ell_{i,i}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i,j}^{(1)} = W_{i,j}$, so $L^{(1)} = W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

$$\ell_{i,j}^{(2)} = \min\left(\ell_{i,j}^{(1)}, \min_{1 \leq k \leq n} \ell_{i,k}^{(1)} + \textit{w}_{k,j}\right) \text{ Recall that } \textit{w}_{j,j} = 0!$$

$$\ell_{i,j}^{(m)} = \min(\ell_{i,j}^{(m-1)}, \min_{1 \le k \le n} \ell_{i,k}^{(m-1)} + w_{k,j}) = \min_{1 \le k \le n} (\ell_{i,k}^{(m-1)} + w_{k,j})$$

6.5: All-Pairs Shortest Paths

Computing $L^{(m)}$

$$\ell_{i,j}^{(m)} = \min_{1 \le k \le n} \left(\ell_{i,k}^{(m-1)} + \mathbf{w}_{k,j} \right)$$

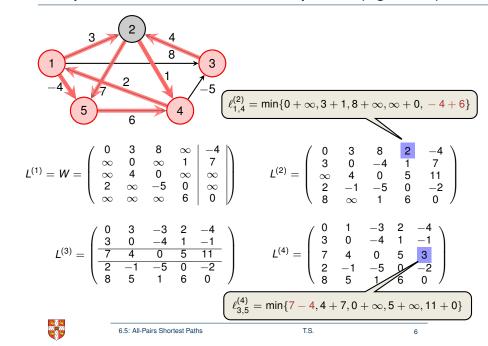
- $L^{(n-1)} = L^{(n)} = L^{(n+1)} = \dots = L$, since every shortest path uses at most n-1 = |V| 1 edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$\ell_{i,j}^{(m)} = \min_{1 \le k \le n} \left(\ell_{i,k}^{(m-1)} + w_{k,j} \right) \le \underbrace{\begin{pmatrix} L^{(m)} \text{ can be computed in } \mathcal{O}(n^3) \\ C(L^{(m-1)} \cdot W)_{i,j} = \sum_{1 \le k \le n} \left(\ell_{i,k}^{(m-1)} \times w_{k,j} \right)}_{1 \le k \le n}$$

• The correspondence is as follows:

$$\begin{array}{ccc}
\text{min} & \Leftrightarrow & \sum \\
+ & \Leftrightarrow & \times \\
\infty & \Leftrightarrow & 0 \\
0 & \Leftrightarrow & 1
\end{array}$$

Example of Shortest Path via Matrix Multiplication (Figure 25.1)



Computing $L^{(n-1)}$ efficiently

$$\ell_{i,j}^{(m)} = \min_{1 \le k \le n} \left(\ell_{i,k}^{(m-1)} + \mathbf{w}_{k,j} \right)$$

Takes
$$\mathcal{O}(n \cdot n^3) = \mathcal{O}(n^4)$$

■ For, say, *n* = 738, we subsequently compute

$$L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \dots, L^{(737)} = L$$

• Since we don't need the intermediate matrices, a more efficient way is

$$L^{(1)}, L^{(2)}, L^{(4)}, \dots, L^{(512)}, L^{(1024)} = L$$
We need $L^{(4)} = L^{(2)} \cdot L^{(2)} = L^{(3)} \cdot L^{(1)}!$ (see Ex. 25.1-4)

Takes $\mathcal{O}(\log n \cdot n^3)$.

All-Pairs Shortest Path

APSP via Matrix Multiplication

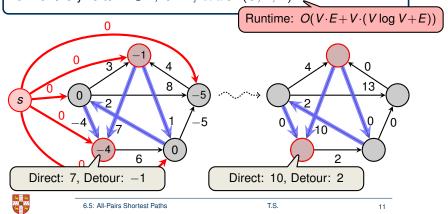
Johnson's Algorithm

6.5: All-Pairs Shortest Paths

How Johnson's Algorithm works

Johnson's Algorithm

- 1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
- 2. Run Bellman-Ford on this augmented graph with source s
 - If there are negative weight cycles, abort
 - Otherwise:
 - 1) Reweight every edge (u, v) by $\widetilde{w}(u, v) = w(u, v) + u.\delta v.\delta$
 - 2) Remove vertex s and its incident edges
- 3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

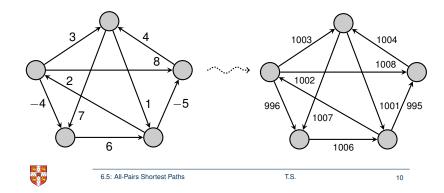


Johnson's Algorithm

Overview –

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and |V| passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
 - all edge weights are non-negative `
 - shortest paths are maintained

Adding a constant to every edge doesn't work!



Correctness of Johnson's Algorithm

$$\widetilde{w}(u, v) = w(u, v) + u.\delta - v.\delta$$

For any graph G = (V, E, w) without negative-weight cycles:

- 1. After reweighting, all edges are non-negative
- 2. Shortest Paths are preserved

Proof of 1. Let $u.\delta$ and $v.\delta$ be the distances from the fake source s

$$\begin{array}{ll} u.\delta + w(u,v) \geq v.\delta & \text{(triangle inequality)} \\ \Rightarrow & \widetilde{w}(u,v) + u.\delta + w(u,v) \geq w(u,v) + u.\delta - v.\delta + v.\delta \\ \Rightarrow & \widetilde{w}(u,v) \geq 0 \end{array}$$

Correctness of Johnson's Algorithm

$$\widetilde{w}(u, v) = w(u, v) + u.\delta - v.\delta$$

Theorem

For any graph G = (V, E, w) without negative-weight cycles:

- 1. After reweighting, all edges are non-negative
- 2. Shortest Paths are preserved

Proof of 2.

Let $p = (v_0, v_1, \dots, v_k)$ be any path

- In the original graph, the weight is $\sum_{i=1}^{k} w(v_{i-1}, v_i)$.
- In the reweighted graph, the weight is

$$\sum_{i=1}^{k} \widetilde{w}(v_{i-1}, v_i) = \sum_{i=1}^{k} (w(v_{i-1}, v_i) + v_{i-1}.\delta - v_i.\delta) = w(p) + v_0.\delta - v_k.\delta \quad \Box$$

6.5: All-Pairs Shortest Paths T.S.

12

Comparison of all Shortest-Path Algorithms

	Algorithm	SSSP		APSP		negative
		sparse	dense	sparse	dense	weights
	Bellman-Ford	V^2	<i>V</i> ³	<i>V</i> ³	V^4	✓
	Dijkstra	V log V	V^2	$V^2 \log V$	<i>V</i> ³	Х
	Matrix Mult.	_	_	$V^3 \log V$	$V^3 \log V$	(√)
	Johnson	_	-	$V^2 \log V$	<i>V</i> ³	✓

6.5: All-Pairs Shortest Paths

T.S.

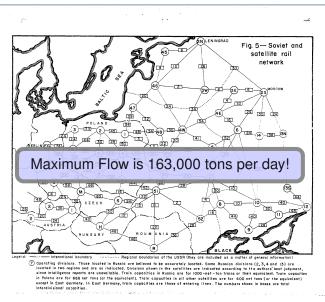
6.6: Maximum flow

Frank Stajano

Thomas Sauerwald

Lent 2015

History of the Maximum Flow Problem [Harris, Ross (1955)]



Ford-Fulkerson

Introduction

Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

6.6: Maximum flow

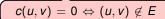
T.S.

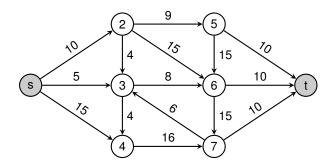
Flow Network

Flow Network

- Abstraction for material (one commodity!) flowing through the edges
- G = (V, E) directed graph without parallel edges
- distinguished nodes: source s and sink t
- every edge e has a capacity c(e)

Capacity function $c:V imes V o \mathbb{R}^+$





6.6: Maximum flow

Flow Network

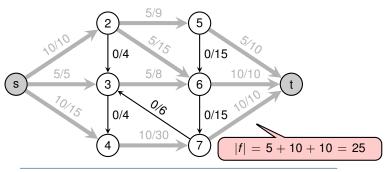
Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \le c(u, v)$ Flow Conservation
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u,v) = \sum_{(v,u) \in E} f(v,u)$
- f(u, v) = -f(v, u)

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

 $\sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$



6.6: Maximum flow

T.S.

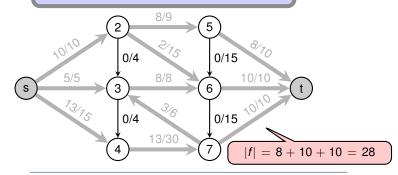
Flow Network

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s, t\}$, $\sum_{(u,v) \in E} f(u,v) = \sum_{(v,u) \in E} f(v,u)$
- f(u, v) = -f(v, u)

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

How to find a Maximum Flow?



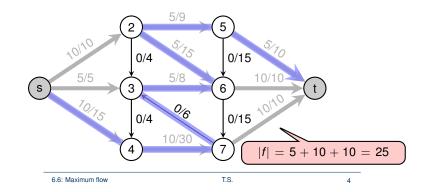
Flow Network

- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $v \in V \setminus \{s,t\}$, $\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$
- f(u, v) = -f(v, u)

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

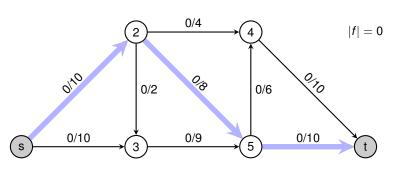


A First Attempt

大間 (5 100 大き (5

Greedy Algorithm -

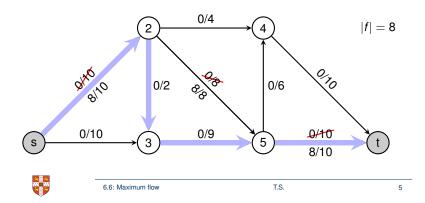
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



A First Attempt

- Greedy Algorithm -

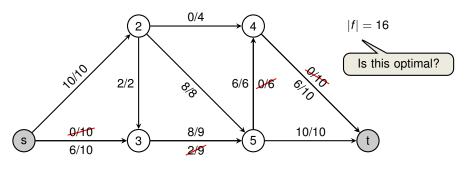
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



A First Attempt

Greedy Algorithm —

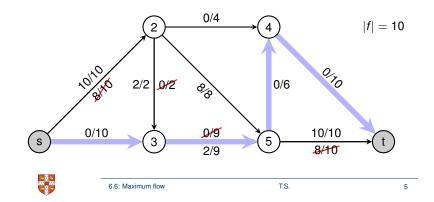
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



A First Attempt

- Greedy Algorithm -

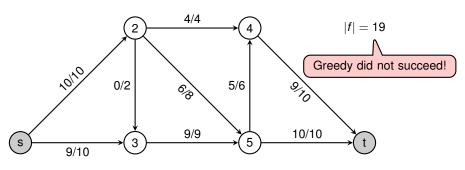
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



A First Attempt

Greedy Algorithm -

- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



Introduction

Ford-Fulkerson

Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

6.6: Maximum flow

T.

The Ford-Fulkerson Method ("Enhanced Greedy")

- 0: def fordFulkerson(G)
- 1: initialize flow to 0 on all edges
- 2: while an augmenting path in G_f can be found:
- 3: push as much extra flow as possible through it

Augmenting path: Path from source to sink in G_t

If f' is a flow in G_f and f a flow in G, then f + f' is a flow in G

Questions:

Using BFS or DFS, we can find an augmenting path in O(V + E) time.

- How to find an augmenting path?
- Does this method terminate?

6.6: Maximum flow

• If it terminates, how good is the solution?

Residual Graph

Original Edge -

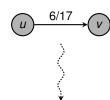
Edge
$$e = (u, v) \in E$$

• flow f(u, v) and capacity c(u, v)

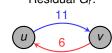
- Residual Capacity -

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ \frac{f(v,u)}{0} & \text{if } (v,u) \in E \\ 0 & \text{otherwise.} \end{cases}$$

Graph G:



Residual G_f :



- Residual Graph ----

•
$$G_f = (V, E_f, c_f), E_f := \{(u, v) : c_f(u, v) > 0\}$$

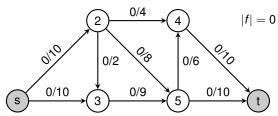
6.6: Maximum flow

T.S.

7

Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



Residual Graph $G_f = (V, E_f, c_f)$:

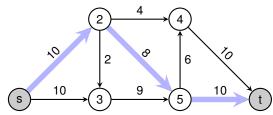
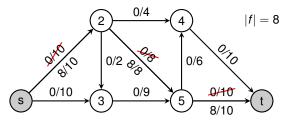
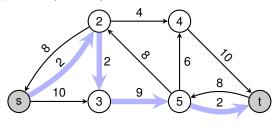


Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



Residual Graph $G_f = (V, E_f, c_f)$:

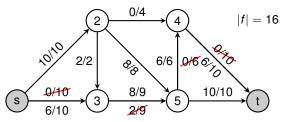


T.S.

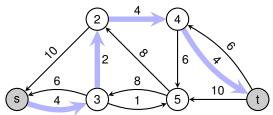
6.6: Maximum flow

Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



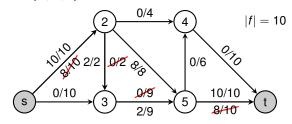
Residual Graph $G_f = (V, E_f, c_f)$:



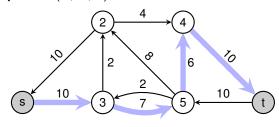
T.S.

Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



Residual Graph $G_f = (V, E_f, c_f)$:



6.6: Maximum flow

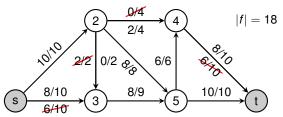
T.S.

9

9

Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



Residual Graph $G_f = (V, E_f, c_f)$:

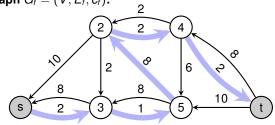
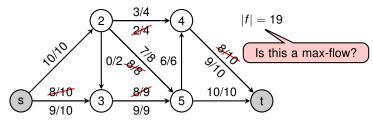


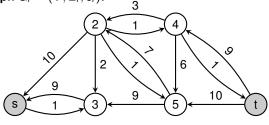
Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



T.S.

Residual Graph $G_f = (V, E_f, c_f)$:



6.6: Maximum flow

Outline

Introduction

Ford-Fulkerson

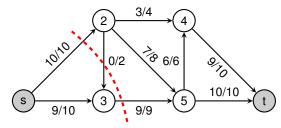
Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

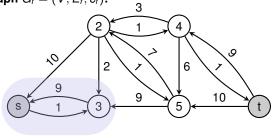
Matchings in Bipartite Graphs

Illustration of the Ford-Fulkerson Method

Graph G = (V, E, c):



Residual Graph $G_f = (V, E_f, c_f)$:



T.S.

6.6: Maximum flow

9

From Flows to Cuts

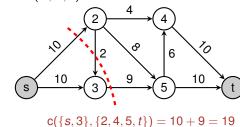
- Cut -

- A cut (S,T) is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.
- The capacity of a cut (S, T) is the sum of the capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(s,t).$$

 A mininum cut of a network is a cut whose capacity is minimum over all cuts of the network.

Graph G = (V, E, c):



T.S.

10

6.6: Maximum flow

T.S.

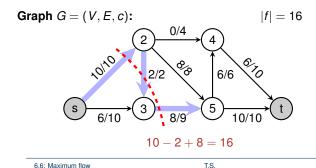
- 11

From Flows to Cuts

Flow Value Lemma (Lemma 26.4) —

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

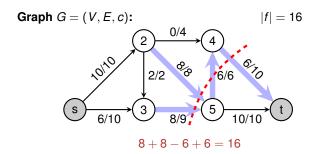
$$|f| = \sum_{(u,v)\in E(S,T)} f(u,v) - \sum_{(v,u)\in E(T,S)} f(v,u).$$



From Flows to Cuts

$$|f| = \sum_{(u,v)\in E(S,T)} f(u,v) - \sum_{(v,u)\in E(T,S)} f(v,u).$$

$$|f| = \sum_{(s,w)\in E} f(s,w) = \sum_{u\in S} \left(\sum_{(u,w)\in E} f(u,w) - \sum_{(w,u)\in E} f(w,u) \right)$$
$$= \sum_{(u,v)\in E(S,T)} f(u,v) - \sum_{(v,u)\in E(T,S)} f(v,u) \qquad \Box$$

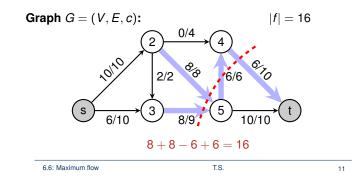


From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G. Then the value of the flow is equal to the net flow across the cut, i.e.,

$$|f| = \sum_{(u,v)\in E(S,T)} f(u,v) - \sum_{(v,u)\in E(T,S)} f(v,u).$$



Weak Duality betwen Flows and Cuts

Weak Duality (Corollary 26.5)

6.6: Maximum flow

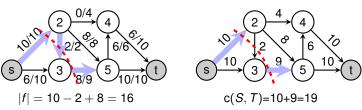
Let f be any flow and (S, T) be any cut. Then the value of f is bounded from above by the capacity of the cut (S, T), i.e.,

$$|f| \leq c(S, T).$$

$$|f| = \sum_{(u,v)\in E(S,T)} f(u,v) - \sum_{(v,u)\in E(T,S)} f(v,u)$$

$$\leq \sum_{(u,v)\in E(S,T)} f(u,v)$$

$$\leq \sum_{(u,v)\in E(S,T)} c(u,v) = c(S,T).$$



T.S.

Theorem

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

6.6: Maximum flow

T.S.

13

14

Key Lemma

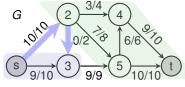
Key Lemma (Theorem 26.6)

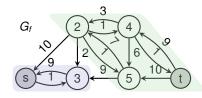
The following three conditions are all equivalent for any flow *f*:

- 1. *f* is a maximum flow
- 2. There is no augmenting path in G_f
- 3. There exists a cut (S, T) such that c(S, T) = |f|

Proof $2 \Rightarrow 3$:

- Let *f* be a flow with no augmenting paths.
- Let S be the nodes reachable from s in G_t , $T := V \setminus S \Rightarrow s \in S$, $t \notin S$.
- $(u, v) \in E(S, T) \Rightarrow f(u, v) = c(u, v)$.
- $(v, u) \in E(T, S) \Rightarrow f(v, u) = 0.$





6.6: Maximum flow

T.S.

Key Lemma

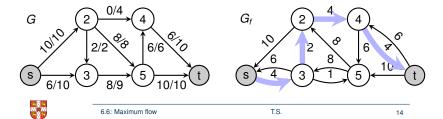
Key Lemma (Theorem 26.6) —

The following three conditions are all equivalent for any flow *f*:

- 1. f is a maximum flow
- 2. There is no augmenting path in G_f
- 3. There exists a cut (S, T) such that c(S, T) = |f|

Proof $1 \Rightarrow 2$:

- For the sake of contradicion, suppose there is an augmenting path with respect to *f*.
- Then we can improve *f* by increasing the flow along this path.
- Hence f cannot be a maximum flow.



Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow *f*:

- 1. f is a maximum flow
- 2. There is no augmenting path in G_f
- 3. There exists a cut (S, T) such that c(S, T) = |f|

Proof $2 \Rightarrow 3$:

- Let f be a flow with no augmenting paths.
- Let *S* be the nodes reachable from *s* in G_t , $T := V \setminus S \Rightarrow s \in S$, $t \notin S$.
- $(u, v) \in E(S, T) \Rightarrow f(u, v) = c(u, v)$.
- $(v, u) \in E(T, S) \Rightarrow f(v, u) = 0.$

$$|f| = \sum_{(u,v)\in E(S,T)} f(u,v) - \sum_{(v,u)\in E(T,S)} f(v,u)$$
$$= \sum_{(u,v)\in E(S,T)} c(u,v) = c(S,T) \qquad \Box$$

Key Lemma

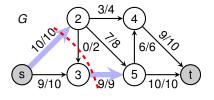
Key Lemma (Theorem 26.6)

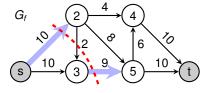
The following three conditions are all equivalent for any flow *f*:

- 1. f is a maximum flow
- 2. There is no augmenting path in G_f
- 3. There exists a cut (S, T) such that c(S, T) = |f|

Proof $3 \Rightarrow 1$:

- Suppose that (S, T) is a cut with c(S, T) = |f|
- By Corollary 26.5, for any flow \tilde{f} ,
- Hence f is a maximum flow.





6.6: Maximum flow

T.S.

14

Proof of the Max-Flow Min-Cut Theorem

Key Lemma

The following conditions are equivalent for any flow *f*:

- 1. There exists a cut (S, T) such that c(S, T) = |f|
- 2. f is a maximum flow
- 3. There is no augmenting path in G_f .

Theorem

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Proof of ">":

- Let f_{max} be a maximum flow
- Key Lemma \Rightarrow there is a cut (S, T) with $c(S, T) = |f_{max}|$.

 \Rightarrow

$$\max_{f} |f| = |f_{\max}| \ge c(S, T) \ge \min_{S, T \subset V} c(S, T)$$

Key Lemma –

The following conditions are equivalent for any flow *f*:

- 1. There exists a cut (S, T) such that c(S, T) = |f|
- 2. f is a maximum flow
- 3. There is no augmenting path in G_f .

Theorem

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Proof of "<":

• For any flow f and cut (S, T), $|f| \le c(S, T)$ (Corollary 26.5)

 \Rightarrow

$$\max_{f} |f| \leq \min_{S,T \subseteq V} c(S,T)$$

6.6: Maximum flow

T.S.

15

Outline

Introductior

Ford-Fulkerson

Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)

1: initialize flow to 0 on all edges

2: while an augmenting path in G_f can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Flow before iteration integral

- & capacities in G_f are integral
- ⇒ Flow after iteration integeral

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after $C := \max_{u,v} c(u, v)$ iterations and returns the maximum flow.

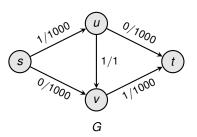
at the time of termination, no augmenting path ⇒ Ford-Fulkerson returns maxflow (Key Lemma)

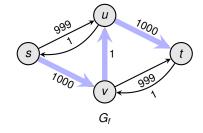
6.6: Maximum flow

1.5.

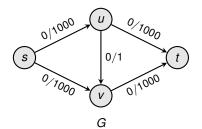
17

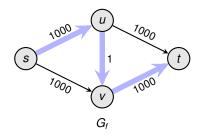
Slow Convergence of Ford-Fulkerson (Figure 26.7)





Slow Convergence of Ford-Fulkerson (Figure 26.7)



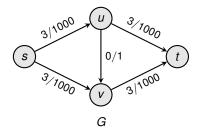


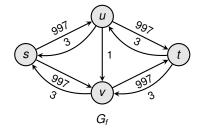
6.6: Maximum flow

T.S.

18

Slow Convergence of Ford-Fulkerson (Figure 26.7)





Number of iterations is $C := \max_{u,v} c(u,v)!$

For irrational capacities, Ford-Fulkerson may even fail to terminate!

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^*|) = O(E \cdot C)$

Capacity-Scaling Algorithm

- Idea: Find an augmenting path with high capacity
- Consider subgraph of G_f consisting of edges (u, v) with $c_f(u, v) > \Delta$
- scaling parameter Δ , which is initially $2^{\lceil \log_2 C \rceil}$ and 1 after termination
- Runtime: $O(E^2 \cdot \log C)$

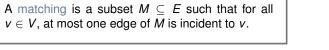
Edmonds-Karp Algorithm

- Idea: Find the shortest augmenting path in G_f
- Runtime: $O(E^2 \cdot V)$

6.6: Maximum flow

Application: Maximum-Bipartite-Matching Problem

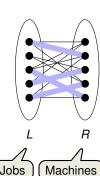
 $v \in V$, at most one edge of M is incident to v.



Bipartite Graph ——

A graph G is bipartite if V can be partitioned into Land R so that all edges go between L and R.

Given a bipartite graph $G = (V \cup L, E)$, find a matching of maximum cardinality.



6.6: Maximum flow

Ford-Fulkerson

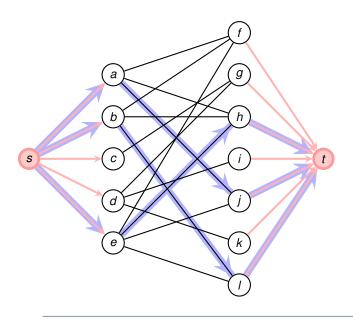
Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

6.6: Maximum flow

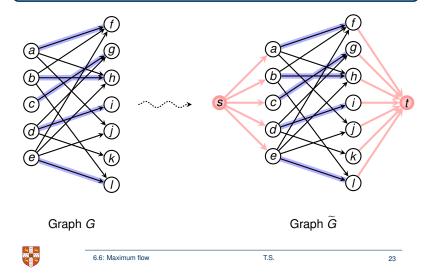
Matchings in Bipartite Graphs via Maximum Flows



Correspondence between Maximum Matchings and Max Flow

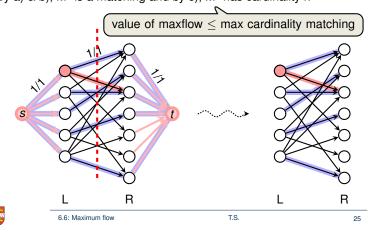
Theorem (Corollary 26.11)

The cardinality of a maximum matching M in a bipartite graph G equals the value of a maximum flow f in the corresponding flow network \widetilde{G} .



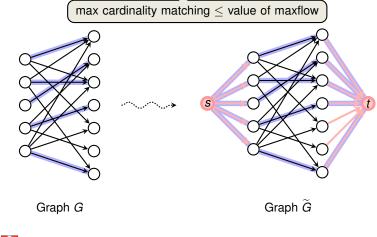
From Flow to Matching

- Let f be a maximum flow in G' of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L receives at most one unit
- b) Flow Conservation \Rightarrow every node in R sends at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges
- \Rightarrow By a) & b), M' is a matching and by c), M' has cardinality k



From Matching to Flow

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths
- \Rightarrow f is a flow and has value k



6.6: Maximum flow T.S. 24

7: Geometric Algorithms

Frank Stajano

Thomas Sauerwald

Lent 2015

Introduction

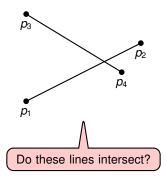
Computational Geometry —

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Applications -

- computer graphics
- computer vision
- textile layout
- VLSI design

:



Introduction and Line Intersection

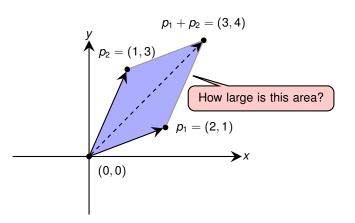
Convex Hull

Inside or Outside a Polygon?

7: Geometric Algorithms

T.S.

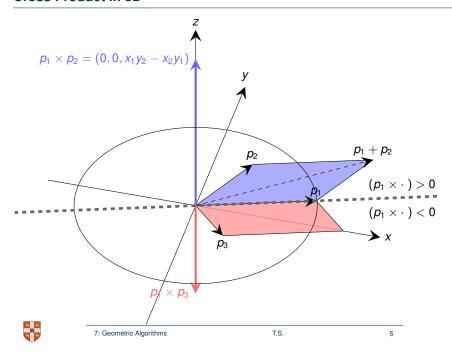
Cross Product (Area)



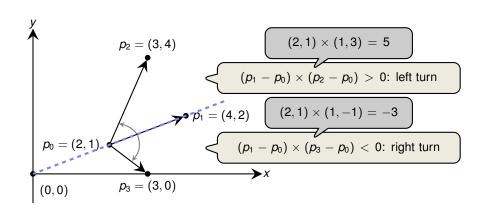
$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

$$p_2 \times p_1 = y_1 x_2 - y_2 x_1 = -p_1 \times p_2 = -5$$

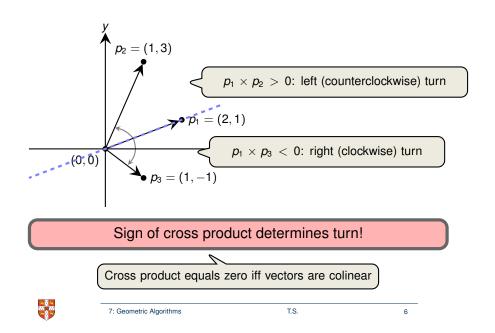
Cross Product in 3D



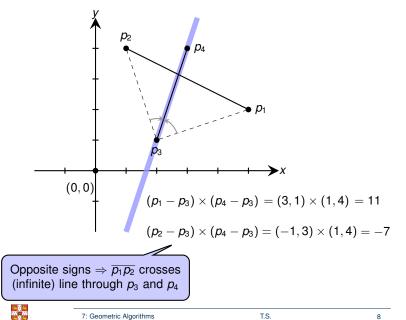
Using Cross product to determine Turns (2/2)



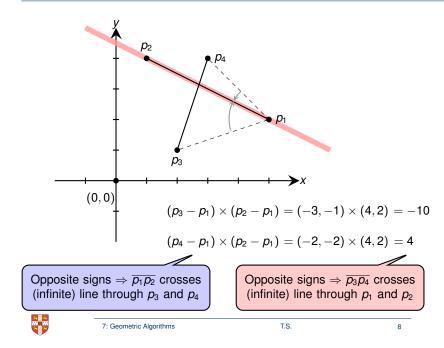
Using Cross product to determine Turns (1/2)



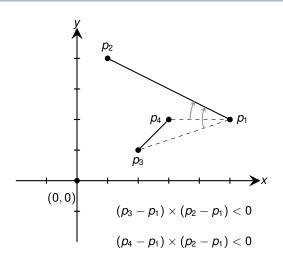
Solving Line Intersection (without Trigonometry and Division!)



Solving Line Intersection (without Trigonometry and Division!)



Solving Line Intersection (without Trigonometry and Division!)

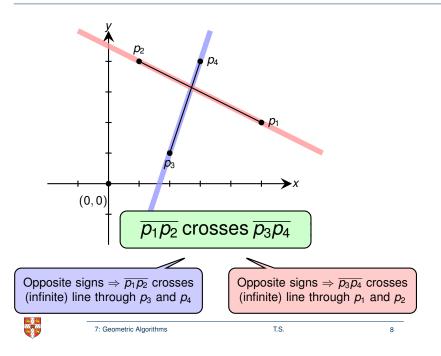


7: Geometric Algorithms

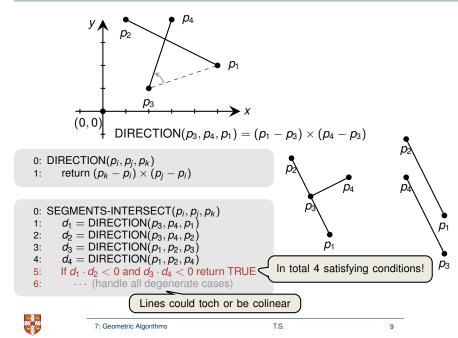
 $\overline{p_1p_2}$ does **not** cross $\overline{p_3p_4}$

T.S.

Solving Line Intersection (without Trigonometry and Division!)



Solving Line Intersection



Outline

Introduction and Line Intersection

Convex Hull

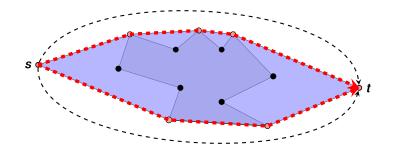
Inside or Outside a Polygon?

7: Geometric Algorithms

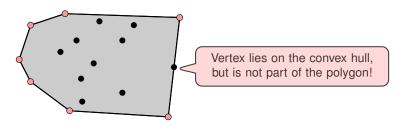
Application of Convex Hull

Find shortest path from *s* to *t* which avoids a polygonal obstacle.

can be solved by computing the Convex hull!



Convex Hull



- Definition -

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Smallest perimeter fence enclosing the points

Convex Hull Problem ——

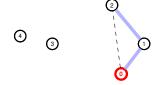
- Input: set of points Q in the Euclidean space
- Output: return points of the convex hull in counterclockwise order

7: Geometric Algorithms

T.S.

4.4

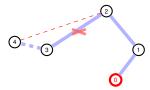
Graham's Scan



- Basic Idea -

- Start with the point with smallest *y*-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
 - If it does not introduce non-left turn, then fine

Graham's Scan

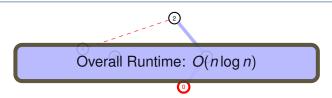


- Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
 - \blacksquare If it does not introduce non-left turn, then fine \checkmark
 - Otherwise, keep on removing recent points until point can be added

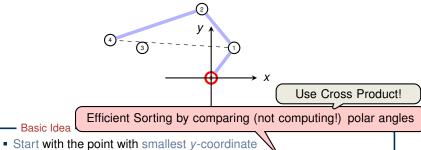
7: Geometric Algorithms

Graham's Scan



```
0: GRAHAM-SCAN(Q)
       Let p_0 be the point with minimum y-coordinate
       Let (p_1, p_2, \dots, p_n) be the other points sorted by polar angle w.r.t. p_0
3:
       If n < 2 return false
       S = \emptyset
                              Takes O(n \log n) time
       PUSH(p_0,S)
       PUSH(p_1,S)
7:
       PUSH(p_2,S)
       For i = 3 to n
8:
           While angle of NEXT-TO-TOP(S), TOP(S), p<sub>i</sub> makes a non-left turn
9:
               POP(S)
10:
           End While
11:
                                Takes O(n) time, since every point is
           PUSH(p_i,S)
12:
                               part of a PUSH or POP at most once.
       End For
13:
14:
       Return S
```

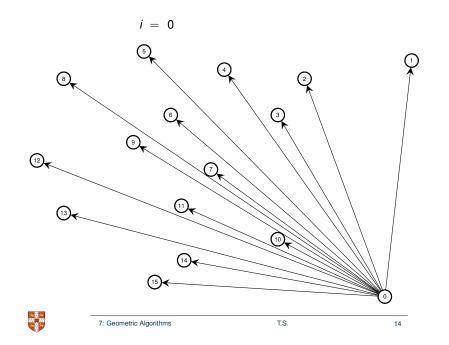
Graham's Scan



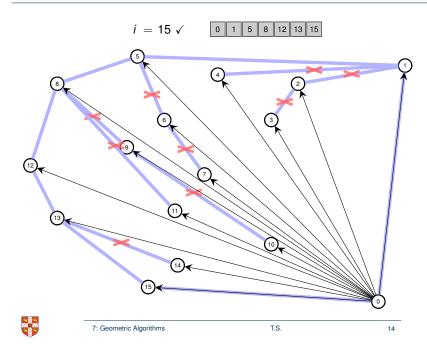
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
 - If it does not introduce non-left turn, then fine

7: Geometric Algorithms

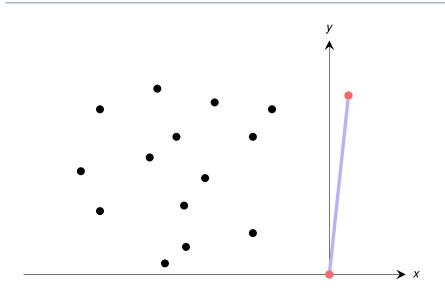
Complete Run of Graham's Scan



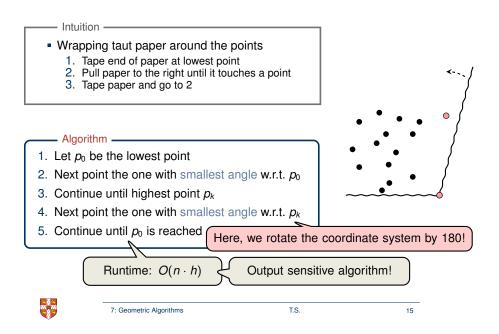
Complete Run of Graham's Scan



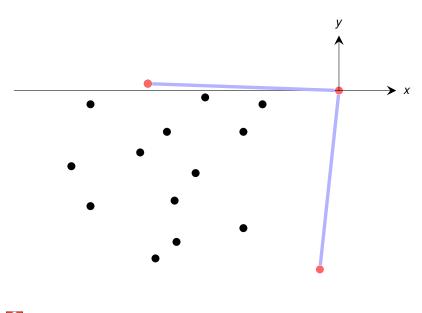
Execution of Jarvis' March



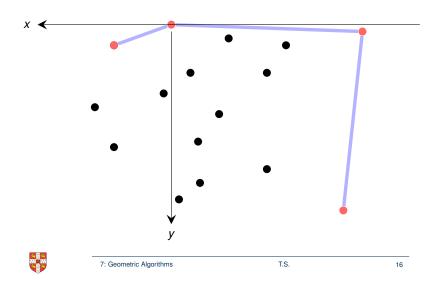
Jarvis' March (Gift wrapping)



Execution of Jarvis' March



7: Geometric Algorithms



Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

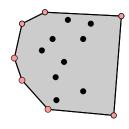
- proceeds like wrapping a gift
- Runtime $O(nh) \rightsquigarrow$ output-sensitive

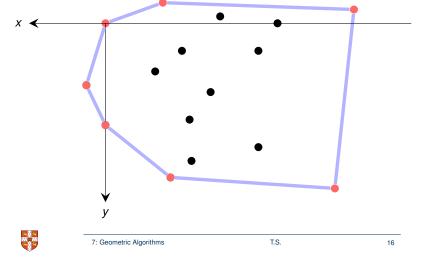
Improves Graham's scan only if $h = O(\log n)$

There exists an algorithm with $O(n \log h)$ runtime!

Lessons Learned

- cross product very powerful tool
- take care of degenerate cases, numerical precision





Outline

Introduction and Line Intersection

Convex Hull

Inside or Outside a Polygon?

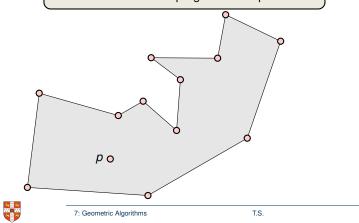
T.S.

Another Problem: The Inside-or-Outside a Polygon Problem

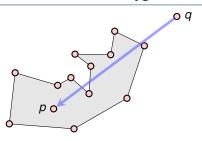
Problem

- Given: A polygon as list of edges $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, and another point $p = (p_1, p_2)$
- Question: Is the point $p = (p_1, p_2)$ inside or outside the polygon?

Two-year old human can do it, but it's not so obvious how to program a computer...



Solution to the Inside-or-Outside a Polygon Problem



But this is just the line segment intersection problem...

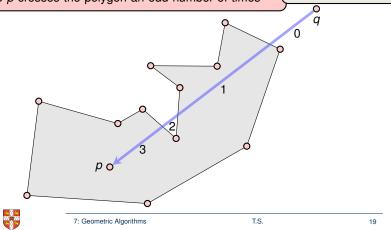
```
0: IsInside (point p, polygon G)
1: { let q be a point outside G ('infinity')
     int count = 0;
3:
     for E an edge of G do
          if (pq intersects E) count = count+1;
4:
     if (count is odd) return YES;
5:
      return NO;
6:
7: }
```

Another Problem: The Inside-or-Outside a Polygon Problem

- Given: A polygon as list of edges $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, and another point $p = (p_1, p_2)$
- Question: Is the point $p = (p_1, p_2)$ inside or outside the polygon?

Observation: p is inside if a line drawn from "infinity" to p crosses the polygon an odd number of times

"infinity": can take $(\max_i x_i + 1, \max_i y_i + 1)$

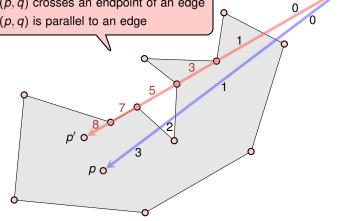


Inside-or-Outside the Polygon Problem: Are we done yet?

Some extra tweaks are needed to make our program (fully) correct...

"Unusual" (Degenerate) Cases:

- line (p,q) crosses an endpoint of an edge
- line (p, q) is parallel to an edge



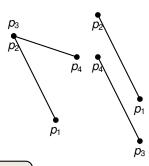
How likely are "unusual" cases?

- First Idea -

If we take four random points in a plane, then the mathematical probability of:

- two of them being identical; or
- any two lines connecting them being parallel

is vashingly small (even "probability zero")!



So, I don't have to worry about this when programming?

Wrong!

- Imagine people drawing squares or two objects together (Real examples may result in lots of horrible cases)
- Computer floating-point arithmetic is not exact (Problems when points are very close)

7: Geometric Algorithms T.S.

22

The End

Thank you for attending this course & Best wishes for the rest of your Tripos!

- Don't forget to visit the online feedback page!
- Please send comments on the slides (typos, criticsm, praise etc.) to: tms41@cam.ac.uk

7: Geometric Algorithms

T.S.