1 Original Questions

Question 1 (CLRS, Question 27.2-2). Prove that a comparison network with n inputs
correctly sorts the input sequence (n,n—1,...,1) if and only if it correctly sorts the n—1
zero-one sequences (1,0,0,...,0,0),(1,1,0,...,0,0),...,(1,1,1,...,1,0).

Question 2. [CLRS, Question 27.2-5] Prove that an n-input sorting network must contain
at least one comparator between the i-th and (i + 1)-st lines for all i = 1,2,...,n — 1.

Question 3. [CLRS, Question 27.4-3] Show that any network that can merge 1 item with
n — 1 sorted items to produce a sorted sequence of length n must have depth at least
log n.

Question 4. [CLRS, Problem 27-1] An odd-even-sorting network on n inputs (a1, as, . . .

is a transposition sorting network with n levels of comparators connected in the “brick-
like” pattern illustrated below.

ay ® ® ® ® b1

@ —o—9—0—¢—6—¢—0—0—— |
a3 —o—e—9—e—9—0—¢—0— |3
Qg —o—¢—0—¢0—0—9—0—¢— |,
a5 —o—e—9—e—9—0—¢—0— |

g ——0—0—0—0—0—0—0— b6

A7 ——0—¢0—0—90—0—0—¢ b?

as ® ® ® ® bg

As can be seen in the figure, for i = 1,2,...,nand d = 1,2,...,n, line ¢ is connected
by a depth-d comparator to line j =i 4+ (—1)™*?if 1 < j < n.
Prove that odd-even sorting networks actually sort.

Question 5. [CLRS, Question 4.2-7] Show how to multiply the complex numbers a + bi
and ¢ + di using only three multiplications of real numbers. The algorithm should take
a, b, c, and d as input and produce the real component ac—bd and the imaginary component
ad + bc separately.

Question 6. What can be said about the relation between the time complexity for mul-
tiplying two arbitrary square matrices A and B and the time complexity for multiplying
a matrix C' with itself?

Question 7. [CLRS, Question 4.2-2] Write pseudocode for Strassen’s algorithm.

Question 8. [CLRS: 29.1-5] Convert the following linear program into slack form:

maximize 2z — bz3

subject to
. + w2 - xz3 < 7
3$1 - €To > 8
—x1 + 2x9 + 2z3 > 0
x1, T2, T3 > 0

What are the basic and non-basic variables?

Question 9. [CLRS: 29.1-6] Show that the following linear program is infeasible:

maximize 3T — 2x9
subject to
I + xTo < 2
—2r1 — 2x9 < —10
T1, X9 > 0

Question 10. [CLRS: 29.1-7] Show that the following linear program is unbounded:

maximize T — Iy
subject to
21 4+ xx < -1
—X — 2$2 S -2
I1,X2 Z 0

Question 11. [CLRS: 29.1-8] Suppose that we have a general linear program with n
variables and m constraints, and suppose we convert it into standard form. Give an upper
bound on the number of variables and constraints in the resulting linear program.

Question 12. [CLRS: 29.1-9] Give an example of a linear program for which the feasible
region is not bounded, but the optimal objective value is finite.

Question 13. [CLRS: 29.2-5] Rewrite the linear program for maximum flow so that it
uses only O(V + E) constraints.

Question 14. [CLRS: 29.3-6] Solve the following linear program using SIMPLEX:

maximize bxy — 329
subject to
r, - x99 < 1
2c1 + 2 <2
T1,T2 Z 0

Question 15. [CLRS: 29.5-5] Solve the following linear program using SIMPLEX:

maximize x7 + 3x9

subject to
T — x5 < 8
—r1 — T < =3
—z1 + 4z < 2
T1, X2 > 0

Question 16. Let G = (V, E) be an undirected graph with maximum degree A. A
dominating set is a subset of vertices S C V so that for every vertex u € V there exists
a vertex v € S with {u,v} € E(G). The goal is to find a dominating set as small
as possible. Design an approximation algorithm based on greedy for the problem and
analyse the quality of its solution.

Question 17. Given an undirected graph G = (V, E), a vertex cover of G is a set of
vertices C' C V so that each edge in G is incident to at least one vertex in C. A minimum
vertex cover is a vertex cover with smallest possible size |C|. Consider a greedy approach
which iteratively adds the vertex with the highest degree to C' and then removes all covered
edges from E. Find an example that shows that this greedy algorithm does not always
find the optimum solution.

Question 18. [CLRS: 35.1-3, this one improves on the previous question and is marked
with a “4” in CLRS] Professor Biindchen proposes the following heuristic to solve the
vertex-cover problem. Repeatedly select a vertex of highest degree, and remove all of its
incident edges. Give an example to show that the professor’s heuristic does not have an
approximation ratio of 2. (Hint: Try a bipartite graph with vertices of uniform degree on
the left and vertices of varying degree on the right.)

Question 19. [CLRS: 35.3-3] Show how to implement GREEDY-SET-COVER in such a
way that it runs in time O(D_ g 7 15]).

Question 20. [CLRS: 35.2-1] Suppose that a complete undirected graph G = (V, E) with
at least 3 vertices has a cost function that satisfies the triangle inequality. Prove that
c(u,v) >0 for all u,v e V.

Question 21. [CLRS: 35.2-5] Suppose that the vertices for an instance of the travelling-
salesman problem are points in the plane and that the cost ¢(u, v) is the euclidean distance
between points u and v. Show that an optimal tour never crosses itself.

Question 22. [CLRS: 35.2-3] Show how in polynomial time we can transform one instance
of the travelling-salesman problem into another instance whose cost function satisfies the
triangle inequality. The two instances must have the same set of optimal tours. Explain
why such a polynomial-time transformation does not contradict the inapproximability
result (Theorem 35.3), assuming that P # NP.

Question 23. [CLRS: 35.4-2] The MAX-CNTF satisfiability problem is like the MAX-
3-CNF satisfiability problem, except that it does not restrict each clause to have exactly
3 literals. Give a randomized 2-approximation algorithm for the MAX-CNF satisfiability
problem.

Question 24. [CLRS: Problem 35-1] Suppose that we are given a set of n objects, where
the size s; of the ith object satisfies 0 < s; < 1. We wish to pack all the objects into the
minimum number of unit-size bins. Each bin can hold any subset of the objects whose
total size does not exceed 1.

The first-fit heuristic takes each object in turn and places it into the first bin that

can accommodate it. Let S := " | s;.

1. Argue that the optimal number of bins required is at least [.S].

2. Argue that the first-fit heuristic leaves at most one bin less than half full.

3. Prove that the number of bins used by the first-fit heuristic is never more than [257].
4. Prove an approximation ratio of 2 for the first-fit heuristic.

5. Give an efficient implementation of the first-fit heuristic, and analyse its running
time.

Question 25. Consider the following algorithm for MAX-CUT on an unweighted, undi-
rected graph G = (V, F'), which can be regarded as an iterative colouring procedure with
three colors possible, grey (=unassigned), red (assigned to S) and blue (assigned to V'\).
Initially, all vertices are grey. Then the algorithm does the following in each step: If there
is a grey vertex u which has more blue than red neighbours color it blue, if there is a grey
vertex u which has more red than blue neighbours color it red. Otherwise, take a grey
vertex and color it arbitrarily. Prove that this algorithm returns a 2-approximation.

2 Additional Questions

Question 26. Prove that any sorting network must have depth Q(logn).

Question 27. Prove that the set of feasible solutions of a linear program in standard
form forms a convex set.

Question 28. [Thanks to the student for mentioning this question (and answer).] Find
a linear program which has at least one optimal solution that is not a vertex.

Question 29. [Thanks to the student for mentioning this question.] Consider the linear
program for the minimum-weight shortest-path from s to ¢ from the lecture notes (Slide
23 from III Linear Programming).

1. What happens if there exists a negative-weight cycle?

2. Prove that, if there are no negative-weight cycles, the optimal solution d; of the
linear program equals the correct distance dy.

3. Find a counter-example in which the linear program does not compute all values
d, correctly. How would you formulate the single-source-shortest path problem as a
linear program?

Question 30. How can you implement APPROX-VERTEX-COVER in time O(V + E)?

Question 31. [CLRS: Problem 35.3-3] Consider the analysis of GREEDY-SET-COVER
(Theorem 35.4). Show that the following weaker form of Theorem 35.4 is trivially true:

IC] < |C*|- max{|S|: S € F}

Question 32. Consider the problem SUBSET-SUM. Design a simple Greedy algorithm
which runs in polynomial-time and achieves an approximation ratio of 2.

Question 33. Consider the algorithm APPROX-SUBSET-SUM from the lecture. Prove
formally that for every element y, at most ¢, which can be written as a sum of a subset of
{z1,29,...,2,}, there exists an element z € L,, (the list in iteration n after the trimming
operation), such that

Y
— 2z <
1+om =7

where 0 < § < 1 is the trimming parameter.

Question 34. Recall the subtour elimination procedure from Lecture 10: In order to
eliminate a subtour going through cities in .S only, we add the following constraint:

> w(max(i, j), min(i, j)) > 2.

1€85,5¢S

Prove that adding this constraint to the linear program is equivalent to adding the con-
straint

> a(if) <|S -1

i€S,ES,i<]

Question 35. Consider the following problem. Given an undirected, connected graph
G = (V, E) with non-negative, integral edge capacities c¢(u,v) for each edge (u,v) € E(G)
and |E| > |V| = n, the goal is to find a subset E/ C E with |E’| = n so that (i) E’
connects all vertices and (i)) v c(e) is minimized. Either prove that this problem is
NP-hard or design a polynomial-time algorithm.

Question 36. Find an example of a graph in the Euclidean space, with as few vertices
as possible, so that the optimal TSP tour does not include a minimum spanning tree.

Last updated: May 26, 2015

	Original Questions
	Additional Questions

