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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
* Goal: Find a subset S C S which maximizes 3, , .o xi < t.

-.,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 3



The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S C S which maximizes 3, , .o xi < t.
N

This problem is NP-hardj
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
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The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < 1.

t =13 tons
X1:1O é A
Xo =4
| >
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;_;, Li, + x;) (S+x:={s+x:s€S})
5

6

remove from L; every element that is greater than ¢
return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

n =[S Returns the merged list (in sorted
Lo = {0) order and without duplicates)

1
2
3 fori =1ton P
4 L; = MERGE-LISTS(L;_,, Li_, + x;) (S+x:={s+x:s€ S}
5 remove from L; every element that is greater than ¢

6 return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

[ implementable in time O(|L;—+|) (like Merge-Sort) ]
EXACT-SUBSET-SUM (S, 1) ,

n =[S Returns the merged list (ir; sorted
Lo = {0) order and without duplicates)

1
2
3 fori =1ton P
4 L; = MERGE-LISTS(L;_y, Li_1 + X;) (S+x:={st+x:s€8}
5 remove from L; every element that is greater than ¢

6 return the largest element in L,
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

cs=(1.45, t=0
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* S={1,4,5}
= Lo =(0)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* §={1,45}
= Lo = <0>
- L1 = <07 1>
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
= S={1,4,5}
= Lo =(0)
= L4y =(0,1)
= [, =(0,1,4,5)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,4,5}

" Lo:<0>

= Li=(0,1)

= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,4,5}

" Lo:<0>

= Li=(0,1) D= 045=1+4
= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n =S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* S={1,4,5}

= Correctness: L, contains all sums of {xi, X2, ..

'vXn}

'Lo:<0>

* L1 =(0,1)

» L, =(0,1,4,5)
=(0,1,4,5,6,9,10)

ﬁlﬁ
'-.a»:.
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L, [can be shown by induction on nj
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example:
= S={1,4,5}
= Lo = <0>
= Li=(0,1)
. =(0,1,4,5)
- =(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example: Runtime: O(2' + 22 + ... + 2" = O(2")
= Runtime: 00 =
£ 5= {145 (
. Lo =(0)
" Li=(0,1)
. =(0,1,4,5)
- =(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* S={1,4,5}

= Runtime: O(2' +22 + ... +2") = O(2")

= Correctness: L, contains all sums of {xq, Xz, ...

aXn}

- LO =(0) [There are 2' subsets of {x, Xz, .. ., x,}.]

= Ly =(0,1)

. =(0,1,4,5)
—(0,1,4,5,6,9,10)
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example: Runtime: O(2' + 22 2" — 0(2")
= Runtime: FET e qE =
= S={1,45} -

= Ly = (0) (There are 2' subsets of {x, Xz, .. ., x,}.] Better runtime |]

= Ly =(0,1) an /or-are small

(0,
« L, =(0,1,4,5
- L3 =(0,1,4/5)6,9,10)

o
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.
y 6_z_y /

I V2
Qpproximate representafive
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

v
1+4

z<y

AN

<z
[ = [ =(10,11,12, 15,20, 21,22, 23, 24, 29)
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.

(10,11, 12, 15,20, 21, 22, 23, 24, 29)
0.1

(.,
L

V. Approximation via Exact Algorithms The Subset-Sum Problem 5



Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

L S V4 S y
1+6 /'\
[ == <10)eq 12, 15?}(‘82 23, X ,29
= 5=0.1
L = [’ =(10,12,15, 20, 23, 29)
The Subset-Sum Problem 5
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

I <z<y.

140

TRIM(L, )

let m be the length of L

L= (n)

last = y,

fori =2tom

if y; > last - (1 + 9) // yi > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

Y

— < z<y.

T i
TRIM(L, )
1 let m be the length of L
2 L= ()
3 last = y;
4 fori =2tom
5 if y; > last - (1 + 9) // yi > last because L is sorted . . . .
6 append y; onto the end of L’ maou nfq. h(_;L [vd“d-m@[
7 last = y; 3
8 return L’

(Trims list in time ©(m), if L is given in|sorted order.
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last =y,

return L’

0 J O WL AWK~
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lllustration of the Trim Operation

TRIM(L, §)

0 J O WL AWK~

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last =y,

return L’

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L=
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|

/
L'=(10)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10)
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lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
/
L"={10,12)
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1 let m be the length of L
2 L'={n)
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4 fori =2tom
5 if y; > last- (1 + 6) // y; > last because L is sorted
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TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
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8 return L’

6=01

last
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15)
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TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15,20)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15,20)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
[

L' = (10,12,15,20)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
[

L' = (10,12,15,20)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15,20)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[
m

L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
'=(10,12,15,20,23,29)
m
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lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
'=(10,12,15,20,23,29)
m

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem



The FPTAS

APPROX-SUBSET-SUM (S, 1, €)
n = |S|
Ly = (0)
fori = 1ton
L; = MERGE-LISTS (L;—y, L;i— + X;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

00 N NN —
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The FPTAS

APPROX-SUBSET-SUM (S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS (L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

00 2 || W —

remove from L; every element that is greater than ¢

let z* be the largest value in L,

return z*

EXACT-SUBSET-SUM(S, 1)

n =S|
Ly = (0)
fori = l1ton

L; = MERGE-LISTS(L;—1, L~ + X;)
remove from L; every element that is greater than ¢
return the largest element in L,

Lo R

V. Approximation via Exact Algorithms
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The FPTAS

APPROX-SUBSET-SUM(S, t,€)
n =S|
Ly = (0>
fori = 1ton
L; = MERGE-LISTS (L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

00 2 || W —

S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1 n=]S|

2 Ly =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—1, L~ + X;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

V. Approximation via Exact Algorithms
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The FPTAS

APPROX-SUBSET-SUM(S, t,€)
n =S|
Ly = (0>
fori = 1ton
L; = MERGE-LISTS (L;_y, Li—1 + X;)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

1
2
3
4
5 L; = TRIM(L;,€/2n)
6
7
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

n = |S|
Ly = (0)
fori = l1ton

L; = MERGE-LISTS(L;—1, Li—y + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

Lo e T R S N

= We must bound the inaccuracy introduced by repeated trimming

.-,,!.-, V. Approximation via Exact Algorithms
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The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=]|S| 1 n=]S|
2 Lo ={0) 2 Ly =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;_y, L;i—1 + X;) 4 L; = MERGE-LISTS(L;—1, L~ + X;)
[5 L; = TRIM(L;]e/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

Repeated application of TRIM m'\o(’f o‘noicc O'F C‘S WJ"S

to make sure L;'s remain short. E‘i&L confl jcés'nj jom{ S

= We must bound the inaccuracy introduced by repeated trimming
* We must show that the algorithm is polynomial time

V. Approximation via Exact Algorithms The Subset-Sum Problem 7



Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

V. Approximation via Exact Algorithms
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|
Ly = (0)
fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢

let z* be the largest value in L,

return z*

= Input: S = (104,102,201,101), t = 308,

*
> Z Slnow[c/l bt
at lea st A times
AL
'{'J\t o'laéirhurn

V. Approximation via Exact Algorithms
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

-,,a,;, V. Approximation via Exact Algorithms
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2: Ly = (0)

= line 4: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)
*= line 5: L, = (0,102, 206)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

* line 5: L, = (0, 102, 206)

(
(
(
* line 4: L, = (0,102, 104, 206)
(
* line 6: Ly = (0, 102, 206)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

* line 5: L, = (0, 102, 206)
* line 6: Ly = (0, 102, 206)

(
(
(
* line 4: L, = (0,102, 104, 206)
(
(
= line 4: Ly = (0,102,201, 206, 303, 407)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)

*= line 5: L, = (0,102, 206)

*= line 6: L, = (0,102, 206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: L3 = (0,102,201, 303, 407)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)

*= line 5: L, = (0,102, 206)

*= line 6: L, = (0,102, 206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: Ly = (0,102,201, 303 407)

= line 6: L3 = (0,102,201 303)
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:

.

Ls = (0,102,201, 303 407)
Lg = (0,102,201 303)

Ly = (0,101,102,201, 203, 302, 303, 404)

Lo = (0)
Ly = (0,104)
Ly = (0,104)
Ly = (0,104)
Ly = (0,102, 104, 206)
L5 = (0,102, 206)
L5 = (0,102, 206)
L3 = (0,102,201, 206, 303, 407)
(
(
(
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:

= line 5: L,

.

J‘I%

Lo = (0)

Ly = (0,104)

Ly = (0,104)

Ly = (0,104)

Ly = (0,102, 104, 206)

L> — (0,102, 206)

L5 = (0,102, 206)

L3 = (0,102,201, 206, 303, 407)

L3 = (0,102,201, 303 407>

Ls = (0,102,201, 303)

L4 = (0,101,102,201,203, 302, 303, 404)
— (0,101,201, 302, 404)
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102, 206)

= line 4: Ly = (0,102,201, 206, 303, 407)

= line 5: L = (0,102,201, 303, 407)

= line 6: L3 = (0,102,201, 303)

* line 4: L, = (0,101,102, 201, 203,302, 303, 404)
* line 5: Ly = (0,101,201, 302, 404)

* line 6: Ly = (0,101,201 =) ou-[-lmf
n
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Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, c =[0.4 |
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

» line 4: Lp = (0,102, 104, 206)

* line 5: Ly = (0, 102, 206)

= line 6: L, = (0,102, 206) hnb\t‘n [DL‘HZ&“ 'HnoW\ l
» line 4: Ly = (0,102,201, 206, 303, 407) _ : :

= line 5: Ly — (0,102, 201, 303, 407) Ag app roximation |
» line 6: Ly = (0,102, 201, 303)

» line 4: Ly = (0,101,102, 201, 203, 302, 303, 404)

* line 5: L4 = (0,101,201, 302, 404) Returned solution z* — 302, which is]2%

* line 6: L, = (0,101,201, 302) <{within the optimum 307 = 104 + 102 m

1
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Approximation Ratio):

= Returned solution z* is a valid solution v*

Y .
allelements (n the Trimmed
Ligts ove So[ ud:,\‘onj
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
y

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem 9



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Approximation Ratio): . . .
= Returned solution z* is a valid solution v/ l_,l St OL”& {‘nnm.rn
= Let y* denote an optimal solution T
= For every possible sum y < tof xq, ..., X;, there exists an element z € L,-'s.t.:

(Can be shown by induction on i)
;‘:/fi C{Car Kq
. Tyt xaEL 33l 2, 2 F
2,4 €L, D326, 2y 2ata

Da > Ra_ Ko x,tx, (I
- 2 7 (Ms)* (4d) =~ (/H‘J)zz “(__7,%;;}
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Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
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Theorem 35.8
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Proof (Running Time):
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g

[Need log(t) bits to represent ¢ and n bits to represent S.]
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
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= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which
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The Knapsack Problem

-
LAIgorithm very similar to APPROX-SUBSET-SUM. '_

— Theorem 7
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Parallel Machine Scheduling

Machine Scheduling Problem

Given: njobs Ji, Jz, . . ., Jo with processing times p1, P, . . .. by, and
m identical machines My, Mz, ..., Mn,
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Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, s, . .., Jn with processing times p;, P2, -...Pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

For the analysis, it will be convenient to denote
by Ci the completion time of a machine /.
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.
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1: while there exists an unassigned job
2: Schedule job on the machine with the least load
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Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.
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Equivalent to the following Online Algorithm [CLRS]:
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LIST SCHEDULING(J1, Jo, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?j
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Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,
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max Z 1§k§np
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Proof:
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V. Approximation via Exact Algorithms Parallel Machine Scheduling 14




List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Cinax < E;pk + max pg.

1<k<n

\

Hence list scheduling is a poly-time(2-approximation\algorithm.
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= When J; was scheduled to machine M;, C; — p, < Ck forall1 <k<m
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For the schedule returned by the greedy algorithm it holds that
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1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over K yields: [Using Ex 355 a. &b.]
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For the schedule returned by the greedy algorithm it holds that
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k=1

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
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= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
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Improving Greedy

Analysis can be shown to be almost tight. Is there a betier algorithm?
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Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
cforj=1ton
i =argmin, ., ., Ck
Si=SuU{j},C=Ci+p
: end for
creturn Sy, ..., Sp
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: end for
cforj=1ton
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Runtime:
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Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
cforj=1ton
i =argmin, ., ., Ck
Si=SuU{j},C=Ci+p
: end for
return S, ..., Sy

QO NOA RN

—_

O\

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting the minimum (use priority queue).
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
N

[This can be shown to ben{ight (see next inde).J
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Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

> a bt eagier to prove
Proof (of approximation ratio 3/2).
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
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Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
—_—

J
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Analysis of Improved Greedy
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| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling
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= Observation 1: If there are at most m jobs, then the solution is optimal.
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| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then

= As in the analysis for list scheduling, we have

ool o} B i) (G- G FK)

(Tms is for the case i > m + 1 (otherwise, an even stronger inequality holds)
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| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

* 1 * 3
CM‘R:C/ = (Cj - pi) +pi < Crmax + ECmax = ECmaX- O
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
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Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2, ..., m and one job of length m
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| The LPT algorithm has an approximation ratio of 4/3 —1/(3m). ]
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A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.
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Proof (using Key Lemma):
PTAS(J1, 2, ..., Jdn,m)
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2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 19



A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\.

~—— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3"7_, px.

5

\.

Since 0 < Chax < P and G is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(J1, o, ..., Jn, m) —
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 19



A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\.

~—— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := S"7_, px.

5

\.

Since 0 < Chax < P and G is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(J1, o, ..., Jn, m) —
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 19



A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
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Key Lemma We will prove this on the next slides.
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U
SUBROUTINE can be implemented in time n°(/<").

~—— Theorem (Hochbaum, Shmoys’87)

oot/ - log P), where P:= 32, pi.

There exists a PTAS for Parallel Machine Scheduling which runs in time

5

(polynomial in the size of the input

Since 0 < Chax < P and G is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(Ji, b, ..., Jn,m) =

1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)
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Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 21



Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

= Let b be the smallest integer with 1/b < e.

-.,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 21



Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

. ib?
= Let b be the smallest integer with 1/b < e. Define processing times p; = ['J’T] .

-,,a,-,, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

T

b2



Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

. ib?
= Let b be the smallest integer with 1/b < e. Define processing times p; = ['J’T] . b—TZ

P1
P2
Ps
Illﬁaa
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T " e=05
125.T

1.7 "b=2
0.75- T + |ps

05.T H
0.25-3

.
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.
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= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
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125.7
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Proof of Key Lemma
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)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] L

b2
= Every pI{ = - b_T2 fora=b,b+1,..., b2 {Can assume there are no jobs with p; > T!J
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
f(0,0,...,0) =0
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= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] . b—z
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 )
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T: [ assign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

. /
f(Nps Nty Mp2) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf ) - - 05T ph
025-T s 0.25-T
0 0-—— —
] Jlarge Jsmall Jlarge
]
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sb’nb+1_sb+15"'?nb2_sb2)‘
(SbsSp415---,5,2)EC

» Number of table entries is at most n®, hence filling all entries takes nO®*)
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sb’nb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

» Number of table entries is at most n®, hence filling all entries takes nO®*)
= If f(np, Np41, . . ., Np2) < m (for the jobs with p’), then return yes, otherwise no.
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [”’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,
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[ Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge
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[ Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.
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b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge

.
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Final Remarks

Graham 1966
| List scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).
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Final Remarks

~——— Graham 1966

List scheduling has an approximation ratio of 2.

——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\

~——— Theorem (Hochbaum, Shmoys’87)

There exists a_PTAS for Parallel Machine Scheduling which runs in time
O(n2/L) . 1og P), where P := 37 px.
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~——— Graham 1966
List scheduling has an approximation ratio of 2.

\

——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/<) .1og P), where P := 37 px.

\

Can we find a FPTAS (for polynomially bounded processing times)?
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Final Remarks

——— Graham 1966 N\
List scheduling has an approximation ratio of 2.

——— Graham 1966 \
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

~——— Theorem (Hochbaum, Shmoys’87) N\

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/<) .1og P), where P := 37 px.

\ J

Can we find a FPTAS (for polynomially bounded processing times)? No!
=

Because for sufficiently small approximation ratio
1+ ¢, the computed solution has to be optimal,
1. o | " o\ i At ——1
and: Par Hodn. Sdhed. 1 ¢ 5tro@la NF-harol !
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