V. Approximation Algorithms via Exact Algorithms

Thomas Sauerwald

Easter 2015

UNIVERSITY OF
CAMBRIDGE

Outline

The Subset-Sum Problem

-,,a,;, V. Approximation via Exact Algorithms The Subset-Sum Problem

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
* Goal: Find a subset S C S which maximizes 3, , .o xi < t.

-.,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

* Goal: Find a subset S C S which maximizes 3, , .o xi < t.
N

This problem is NP-hardj

V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons

x
I
—
o

R
I
A~

&
Il I
o)l o

E:g‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons

x
I
—
o

R
I
A~

&
Il I
o)l o

E:g‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
X1:1O r 1
[
Xo =4
| >
X5=1

E:g‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
X1:1O r 1
[
Xo =4
| >
X5=1

E:g‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢

» Goal: Find a subset S C S which maximizes 3, , .o Xi < t.

t =13 tons
X1:1O é A
Xo =4
| _—>
| _—>
| _—>

E:g‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 3

The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, ..., X»} and positive integer ¢
» Goal: Find a subset S C S which maximizes 3, , .o Xi < 1.

t =13 tons
X1:1O é A
Xo =4
| >
[
| >
X5=1

E:g‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 3

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

,,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

-.,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;_;, Li, + x;) (S+x:={s+x:s€S})
5

6

remove from L; every element that is greater than ¢
return the largest element in L,

-.,a,,, V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

n =[S Returns the merged list (in sorted
Lo = {0) order and without duplicates)

1
2
3 fori =1ton P
4 L; = MERGE-LISTS(L;_,, Li_, + x;) (S+x:={s+x:s€ S}
5 remove from L; every element that is greater than ¢

6 return the largest element in L,

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

[implementable in time O(|L;—+|) (like Merge-Sort)]
EXACT-SUBSET-SUM (S, 1) ,

n =[S Returns the merged list (ir; sorted
Lo = {0) order and without duplicates)

1
2
3 fori =1ton P
4 L; = MERGE-LISTS(L;_y, Li_1 + X;) (S+x:={st+x:s€8}
5 remove from L; every element that is greater than ¢

6 return the largest element in L,

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

-.,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

cs=(1.45, t=0

-.,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* S={1,4,5}
= Lo =(0)

-.,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* §={1,45}
= Lo = <0>
- L1 = <07 1>

-.,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
= S={1,4,5}
= Lo =(0)
= L4y =(0,1)
= [, =(0,1,4,5)

-.,a % V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,4,5}

" Lo:<0>

= Li=(0,1)

= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:

= S={1,4,5}

" Lo:<0>

= Li=(0,1) D= 045=1+4
= [, =(0,1,4,5)

= [3=(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n =S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* S={1,4,5}

= Correctness: L, contains all sums of {xi, X2, ..

'vXn}

'Lo:<0>

* L1 =(0,1)

» L, =(0,1,4,5)
=(0,1,4,5,6,9,10)

ﬁlﬁ
'-.a»:.

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L, [can be shown by induction on nj
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example:
= S={1,4,5}
= Lo = <0>
= Li=(0,1)
. =(0,1,4,5)
- =(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example: Runtime: O(2' + 22 + ... + 2" = O(2")
= Runtime: 00 =
£ 5= {145 (
. Lo =(0)
" Li=(0,1)
. =(0,1,4,5)
- =(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

Example:
* S={1,4,5}

= Runtime: O(2' +22 + ... +2") = O(2")

= Correctness: L, contains all sums of {xq, Xz, ...

aXn}

- LO =(0) [There are 2' subsets of {x, Xz, .. ., x,}.]

= Ly =(0,1)

. =(0,1,4,5)
—(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem 4

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM (S, 1)

1 n=|S|
2 Lo =(0)
3 fori =1ton
4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
5 remove from L; every element that is greater than ¢
6 return the largest element in L,
= Correctness: L, contains all sums of {xi,X,...,Xn}
Example: Runtime: O(2' + 22 2" — 0(2")
= Runtime: FET e qE =
= S={1,45} -

= Ly = (0) (There are 2' subsets of {x, Xz, .. ., x,}.] Better runtime |]

= Ly =(0,1) an /or-are small

(0,
« L, =(0,1,4,5
- L3 =(0,1,4/5)6,9,10)

o

\-,,',-, V. Approximation via Exact Algorithms The Subset-Sum Problem 4

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

,,a 5 V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1

-,,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.
y 6_z_y /

I V2
Qpproximate representafive

-,,a,;, V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

v
1+4

z<y

AN

<z
[= [=(10,11,12, 15,20, 21,22, 23, 24, 29)

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

y
— < z<y.

(10,11, 12, 15,20, 21, 22, 23, 24, 29)
0.1

(.,
L

V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

L S V4 S y
1+6 /'\
[== <10)eq 12, 15?}(‘82 23, X ,29
= 5=0.1
L = [’ =(10,12,15, 20, 23, 29)
The Subset-Sum Problem 5

V. Approximation via Exact Algorithms

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

I <z<y.

140

TRIM(L,)

let m be the length of L

L= (n)

last = y,

fori =2tom

if y; > last - (1 + 9) // yi > last because L is sorted

append y; onto the end of L’
last = y;

return L’

0NN R W=

-,,a,;, V. Approximation via Exact Algorithms The Subset-Sum Problem 5

Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

Y

— < z<y.

T i
TRIM(L,)
1 let m be the length of L
2 L= ()
3 last = y;
4 fori =2tom
5 if y; > last - (1 + 9) // yi > last because L is sorted
6 append y; onto the end of L’ maou nfq. h(_;L [vd“d-m@[
7 last = y; 3
8 return L’

(Trims list in time ©(m), if L is given in|sorted order.

-,,a,;, V. Approximation via Exact Algorithms The Subset-Sum Problem 5

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last =y,

return L’

0 J O WL AWK~

V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

0 J O WL AWK~

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last =y,

return L’

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L=

-,,', V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

L' = (10)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|

/
L'=(10)
J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
/
L"={10,12)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
/
L"={10,12)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)
1 let m be the length of L
2 L'={n)
3 last = y,
4 fori =2tom
5 if y; > last- (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L’

6=01

last
L=(10,11,12,15,20,21,22,23,24,29)
L
/
L"={10,12)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15,20)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15,20)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
[

L' = (10,12,15,20)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
[

L' = (10,12,15,20)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)
|

L' = (10,12,15,20)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

[
m

L'=(10,12,15,20,23)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
L'=(10,12,15,20,23)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
'=(10,12,15,20,23,29)
m

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

lllustration of the Trim Operation

TRIM(L, §)

let m be the length of L

L' = {y)

last = y,

fori =2tom

if y; > last- (1 + 6) // y; = last because L is sorted

append y; onto the end of L’
last = y;

return L’

0 J O WL AWK~

0=0.1

last

L={10,11,12,15,20,21,22,23, 24, 29)

|
'=(10,12,15,20,23,29)
m

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM (S, 1, €)
n = |S|
Ly = (0)
fori = 1ton
L; = MERGE-LISTS (L;—y, L;i— + X;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

00 N NN —

V. Approximation via Exact Algorithms

The Subset-Sum Problem

The FPTAS

APPROX-SUBSET-SUM (S, 1, €)

n =S|
Lo = (0)
fori = 1ton

L; = MERGE-LISTS (L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

00 2 || W —

remove from L; every element that is greater than ¢

let z* be the largest value in L,

return z*

EXACT-SUBSET-SUM(S, 1)

n =S|
Ly = (0)
fori = l1ton

L; = MERGE-LISTS(L;—1, L~ + X;)
remove from L; every element that is greater than ¢
return the largest element in L,

Lo R

V. Approximation via Exact Algorithms

The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€)
n =S|
Ly = (0>
fori = 1ton
L; = MERGE-LISTS (L;_y, Li—1 + X;)

L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢
let z* be the largest value in L,
return z*

00 2 || W —

S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

1 n=]S|

2 Ly =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—1, L~ + X;)

5 remove from L; every element that is greater than ¢
6 return the largest element in L,

V. Approximation via Exact Algorithms

The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€)
n =S|
Ly = (0>
fori = 1ton
L; = MERGE-LISTS (L;_y, Li—1 + X;)

remove from L; every element that is greater than ¢
let z* be the largest value in L,

1
2
3
4
5 L; = TRIM(L;,€/2n)
6
7
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

EXACT-SUBSET-SUM(S, 1)

n = |S|
Ly = (0)
fori = l1ton

L; = MERGE-LISTS(L;—1, Li—y + x;)
remove from L; every element that is greater than ¢
return the largest element in L,

Lo e T R S N

= We must bound the inaccuracy introduced by repeated trimming

.-,,!.-, V. Approximation via Exact Algorithms

The Subset-Sum Problem 7

The FPTAS

APPROX-SUBSET-SUM(S, t,€) EXACT-SUBSET-SUM(S, 1)
1 n=]|S| 1 n=]S|
2 Lo ={0) 2 Ly =(0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;_y, L;i—1 + X;) 4 L; = MERGE-LISTS(L;—1, L~ + X;)
[5 L; = TRIM(L;]e/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

Repeated application of TRIM m'\o(’f o‘noicc O'F C‘S WJ"S

to make sure L;'s remain short. E‘i&L confl jcés'nj jom{ S

= We must bound the inaccuracy introduced by repeated trimming
* We must show that the algorithm is polynomial time

V. Approximation via Exact Algorithms The Subset-Sum Problem 7

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 =S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

V. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

n =S|
Ly = (0)
fori = 1ton

L; = MERGE-LISTS(L;—y, Li—1 + Xx;)
L; = TRIM(L;,€/2n)

remove from L; every element that is greater than ¢

let z* be the largest value in L,

return z*

= Input: S = (104,102,201,101), t = 308,

*
> Z Slnow[c/l bt
at lea st A times
AL
'{'J\t o'laéirhurn

V. Approximation via Exact Algorithms

The Subset-Sum Problem 8

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, e = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

-,,a,;, V. Approximation via Exact Algorithms

The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

.-,,!,;, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2: Ly = (0)

= line 4: Ly = (0,104)

.-,,I-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)

.-,,I-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

.-,,I-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)
= line 4: L, = (0,102, 104, 206)

.-,,',-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)
*= line 5: L, = (0,102, 206)

\-,,',-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

* line 5: L, = (0, 102, 206)

(
(
(
* line 4: L, = (0,102, 104, 206)
(
* line 6: Ly = (0, 102, 206)

\-,,',-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)
= line 5: Ly = (0,104)
= line 6: Ly = (0,104)

* line 5: L, = (0, 102, 206)
* line 6: Ly = (0, 102, 206)

(
(
(
* line 4: L, = (0,102, 104, 206)
(
(
= line 4: Ly = (0,102,201, 206, 303, 407)

\-,,I,;, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)

*= line 5: L, = (0,102, 206)

*= line 6: L, = (0,102, 206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: L3 = (0,102,201, 303, 407)

\-,,I,;, V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)

*= line 5: L, = (0,102, 206)

*= line 6: L, = (0,102, 206)

= line 4: L3 = (0,102,201, 206, 303, 407)
= line 5: Ly = (0,102,201, 303 407)

= line 6: L3 = (0,102,201 303)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:

.

Ls = (0,102,201, 303 407)
Lg = (0,102,201 303)

Ly = (0,101,102,201, 203, 302, 303, 404)

Lo = (0)
Ly = (0,104)
Ly = (0,104)
Ly = (0,104)
Ly = (0,102, 104, 206)
L5 = (0,102, 206)
L5 = (0,102, 206)
L3 = (0,102,201, 206, 303, 407)
(
(
(

V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05

= line 2:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:
= line 5:
= line 6:
= line 4:

= line 5: L,

.

J‘I%

Lo = (0)

Ly = (0,104)

Ly = (0,104)

Ly = (0,104)

Ly = (0,102, 104, 206)

L> — (0,102, 206)

L5 = (0,102, 206)

L3 = (0,102,201, 206, 303, 407)

L3 = (0,102,201, 303 407>

Ls = (0,102,201, 303)

L4 = (0,101,102,201,203, 302, 303, 404)
— (0,101,201, 302, 404)

V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, ¢ = 0.4
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

= line 4: L, = (0,102, 104, 206)

= line 5: L, = (0,102, 206)

= line 6: L, = (0,102, 206)

= line 4: Ly = (0,102,201, 206, 303, 407)

= line 5: L = (0,102,201, 303, 407)

= line 6: L3 = (0,102,201, 303)

* line 4: L, = (0,101,102, 201, 203,302, 303, 404)
* line 5: Ly = (0,101,201, 302, 404)

* line 6: Ly = (0,101,201 =) ou-[-lmf
n

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

Running through an Example

APPROX-SUBSET-SUM(S, ,¢€)

1 n=|S|

2 Loy =(0)

3 fori = 1ton

4 L; = MERGE-LISTS(L;—y, Li—1 + Xx;)

5 L; = TRIM(L;,€/2n)

6 remove from L; every element that is greater than ¢
7 let z* be the largest value in L,

8 return z*

= Input: S = (104,102,201,101), t = 308, c =[0.4 |
= Trimming parameter: § = ¢/(2-n) = ¢/8 = 0.05
= line 2: Ly = (0)

= line 4: Ly = (0,104)

= line 5: Ly = (0,104)

= line 6: Ly = (0,104)

» line 4: Lp = (0,102, 104, 206)

* line 5: Ly = (0, 102, 206)

= line 6: L, = (0,102, 206) hnb\t‘n [DL‘HZ&“ 'HnoW\ l
» line 4: Ly = (0,102,201, 206, 303, 407) _ : :

= line 5: Ly — (0,102, 201, 303, 407) Ag app roximation |
» line 6: Ly = (0,102, 201, 303)

» line 4: Ly = (0,101,102, 201, 203, 302, 303, 404)

* line 5: L4 = (0,101,201, 302, 404) Returned solution z* — 302, which is]2%

* line 6: L, = (0,101,201, 302) <{within the optimum 307 = 104 + 102 m

1
V. Approximation via Exact Algorithms The Subset-Sum Problem 8

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

\-,,',-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):

= Returned solution z* is a valid solution v*

Y .
allelements (n the Trimmed
Ligts ove So[ud:,\‘onj

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution
= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
y

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio): . . .
= Returned solution z* is a valid solution v/ l_,l St OL”& {‘nnm.rn
= Let y* denote an optimal solution T
= For every possible sum y < tof xq, ..., X;, there exists an element z € L,-'s.t.:

(Can be shown by induction on i)
;‘:/fi C{Car Kq
. Tyt xaEL 33l 2, 2 F
2,4 €L, D326, 2y 2ata

Da > Ra_ Ko x,tx, (I
- 2 7 (Ms)* (4d) =~ (/H‘J)zz “(__7,%;;}

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— <<y Y
(1+¢/(2n)) I=n
1

(Can be shown by induction on ij

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

£ Fd
Gl
YEY

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— L i<y v X <<y
(1+¢/(2n)) (1 +¢/(2n))h
1

(Can be shown by induction on ij

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— L i<y v L <<y
(1 +¢/(2n)) (1+¢/2n))N
! y* e\"
- < -
(Can be shown by induction on /j z = (1 + 2n) ’

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— L i<y v L <<y
(1 +¢/(2n)) (1 +¢/(2n)N
! y* e\"
- < -
(Can be shown by induction on /j z = (1 + 2n) ’

N nosoo

and now using the fact that (1 + 1,72) 3 e¢/2 yields

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— <oy M sy
(1+¢/(2n)) (1+¢/(2n))
1 y e\"
- < -
(Can be shown by induction on /j z = (1 + 2n) ’

N nosoo

and now using the fact that (1 + 1,72) 3 e¢/2 yields

.
Y g2
— <

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— L _crcy L L cray
(1+¢/(2n)) (1+¢/(2n))
! y* e\"
< —
(Can be shown by induction on ij z = (1 + 2n) ’

N nosoo

and now using the fact that (1 + 1,72) 3 e¢/2 yields

ﬁ < el (Taylor approximation of ej
V4 &~

ggg" V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
L crcy L L crcy
(1+¢/(2m) (1+¢/(2n)
! y* e\"
< —
(Can be shown by induction on ij z = (1 + 2n) ’

N nosoo

and now using the fact that (1 + 1,72) 3 e¢/2 yields

ﬁ < el (Taylor approximation of ej
V4 &~
<1 4e/2+ (e/2)?

ggg" V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v
= Let y* denote an optimal solution

= For every possible sum y < tof xq, ..., X;, there exists an element z € L; s.t.:
— L i<y v X <<y
(1 +¢/(2n)) (1 +¢/(2n))N
! y* e\"
< —
(Can be shown by induction on ij z = (1 + 2n) ’

N nosoo

and now using the fact that (1 + 1,72) 3 e¢/2 yields

ﬁ < el (Taylor approximation of ej
V4 &~
<T14e/2+4 (/22 <1+4e

ggg" V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

\-,,',-, V. Approximation via Exact Algorithms The Subset-Sum Problem

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is polynomial in |L;|)

e o canc i OCILD)

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4 ¢/(2n)

J‘I% V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is polynomial in |L;
= After trimming, two successive elements z and z’ satisfy z//z >[1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to Uogmtj additional values.

o
E:E V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.
Hence,

10g14c/2m t+2=

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

£ Fd
e
YEY

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.
Hence,
Int

| =i ae 2
Otre/en) 2= Ta ey T

V. Approximation via Exact Algorithms The Subset-Sum Problem 9

£ Fd
e
YEY

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.
Hence,
Int

| =i ae 2
Otre/en) 2= Ta ey T

[Forx> —1,In(1 + x) > ﬁ

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):
= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])
= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)

= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.
Hence,

Int
In(1 + ¢/(2n))
2n(1+¢/(2n)) Int
<—+2
/ €
[Forx > —1,In(1 +x) >]

A x>0 lnlx)>. :';

10g14c/2m t+2=

+|

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.

Hence,
Int

“in(1 + ¢/(2n))
< 2n(1+¢/(2n)) Int 42

Iog1+5/(2n) t+2

€

3n|nt+2.

[Forx> —1,In(1 + x) > ﬁ

(143)< =

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.

Hence,
Int
“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

€

Iog1+5/(2n) t+2

3nint
€

+2.

[Forx> —1,In(1 + x) > ﬁ

= This bound on |L;| is polynomial in the size of the input and in 1/e.

ggg V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is polynomial in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [log . (25 t] additional values.

Hence,
Int
“in(1 + ¢/(2n))
2n(1+¢/(2n)) Int 42

Iog1+5/(2n) t+2

[Forx> —1,In(1 + x) > ﬁ

= This bound on |L;] is polyn in the size of the input and in 1/e. O
g

[Need log(t) bits to represent ¢ and n bits to represent S.]

ggg‘ V. Approximation via Exact Algorithms The Subset-Sum Problem 9

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

-.,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t

-.,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi <t

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

-,,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢

= Goal: Find a subset S’ C S which maximizes)", wes Xi < L.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

The Knapsack Problem

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

-,,a,-,, V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

[A more general problem than Subset-Sum.]
V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which
1. maximizes). g Vi

I
2. satisfies ;cq Wi < t "wﬂ,‘ﬂkfb(;V&"J‘l‘ah 01(SMLJ!‘I"&

The Knapsack Problem

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

[A more general problem than Subset-Sum.]

The Knapsack Problem

V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which

1. maximizes). g Vi

2. satisfies Y ;cq W <t

— Theorem

There is a FPTAS for the Knapsack problem.]

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Concluding Remarks

The Subset-Sum Problem
= Given: Set of positive integers S = {x1, Xz, . .., X»} and positive integer ¢

* Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.

~——— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.]

\

[A more general problem than Subset-Sum.]
V
= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t
= Goal: Find a subset S’ C S which
1. maximizes). g Vi
2. satisfies 3, cq w; < t

The Knapsack Problem

-
LAIgorithm very similar to APPROX-SUBSET-SUM. '_

— Theorem 7

4
There is a FPTAS for the Knapsack problem.]

V. Approximation via Exact Algorithms The Subset-Sum Problem 10

Outline

Parallel Machine Scheduling

-,,a,;, V. Approximation via Exact Algorithms

Parallel Machine Scheduling

Parallel Machine Scheduling

Machine Scheduling Problem

Given: njobs Ji, Jz, . . ., Jo with processing times p1, P, by, and
m identical machines My, Mz, ..., Mn,

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Machine Scheduling Problem
= Given: njobs Ji, s, . .., Jn with processing times p;, P2, -...Pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

-,,a,-,, V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, J, . .., J, with processing times p1, po, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

T T T T T
T T T T T T

5 6 7 8 9 10 11 12 13 14 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

SEy
o
ks

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

)

2 J

1
I
i
I
1
I
i
J
1
T

T
T T T T

5 6 7 8 9 10 11 12 13 14 15

V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

SEy
o
ks

Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jn With processing times py, pe, . . ., pn, and
m identical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = maxi<j<n Cj, where Cx is the completion time of job Jk.

For the analysis, it will be convenient to denote
by Ci the completion time of a machine /.

W SR R
m(_ %)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 12

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

£
Gl
VY

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (D)

M, [| s |)

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (D)

M, [| s |)

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LIST SCHEDULING(J1, Jo, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two

machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (D)

M1.[_ Jo - ji

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

J

[
LIST SCHEDULING(J1, Jo, . . ., Jn, M)
1: while there exists an unassigned job
2: Schedule job on the machine with the least load

E:g V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

w (D)

m_ k _

T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, Jo, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
[N

[How good is this most basic Greedy Approach?j

% V. Approximation via Exact Algorithms Parallel Machine Scheduling 13

List Scheduling Analysis (Observations)

.-,,I-, V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max py.
max Z 1§k§np

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cra. > max px.
max Z 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1%
Cmax Z Ezpk

k=1

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Cra. > max px.
max Z 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

. 1%
Cmax Z Ezpk

k=1

Proof:

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max pk.
max Z 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

L o 1¢
Cmax 2 Ezpk

k=1

Proof:
L“& The total processing times of all n jobs equals Y";_, p«

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > max pk.
max Z 1§k§np

b. The optimal makespan is at least as large as the average machine
load, that is,

L o 1¢
Cmax 2 Ezpk

k=1

Proof:
b_ N The total processing times of all n jobs equals >kt Px
W, One machine must have a load of at least + - >~/ _, p«

V. Approximation via Exact Algorithms Parallel Machine Scheduling 14

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Cinax < E;pk + max pg.

1<k<n

\

Hence list scheduling is a poly-time(2-approximation\algorithm.

V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)

For the schedule returned by the greedy algorithm it holds that

1 n
Cinax < E;pk + max pg.

1<k<n

\

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

V. Approximation via Exact Algorithms Parallel Machine Scheduling

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

1<k<n

1 n
Cinax < E;pk + max pg.

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
n

1
Cinax < EZ,D;(+ max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;

|
| " G -
v (D G

L .

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

A L p—

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

|
| " G -
v (D G

Co T .

0
V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

A L p—

Cmax

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that
n

1
Cinax < r Z,Dk + max p.

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M;, C; — p, < Ck forall1 <k<m

G rf.&{:] Prnrertg

—--CJCD
m() (

- d' C 3 Crnax

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

A L p—

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

(R G R) S G
(O
U S v —

ﬁﬂﬂl

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

M; Ji

A L p—

Cmax

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 m
Ci—p<— C

di i n];é; k
(O G/ S) D
Ty
.
0 Ci — pi

éﬂﬁ

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

M; Ji

A L p—

Cmax

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m
= Averaging over K yields:

1 1 <
C—-p < Ezckzmzpk
k=1 k=1
(S S G G
T
e
0 G —pi

éﬂﬁ

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

M; Ji

A L p—

Cmax

List Scheduling Analysis (Final Step)

~——— Ex 35-5 d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < EZ'DK + max pg.

1<k<n
k=1 -~

Hence list scheduling is a poly-time 2-approximation algorithm.

\

Proof:
= Let J; be the last job scheduled on machine M; with Cmax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 <k <m
= Averaging over K yields: C

1 m 1 n J\.\ 1 n
C—pi< E;Ckzmkz_;pk = Cmaxsmkz_;pw@g;npk

CCOO@mEEEC

M; Ji

A L p—

CCC
| S —
0 Ci — pi

ﬁ!{n

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

Cmax

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966) <\
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over K yields: [Using Ex 355 a. &b.]

n n

1 1 1 ~
Cf—p[gﬁkz:;ck:ﬁzpk = Cmaxgmzpk+1r2ka-§)(npk

k=1 k=1

([
(
am

M;

P
4 _-%—%-_ ‘-
(S
- e - - -

0 C/ — Pi Crmax

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

List Scheduling Analysis (Final Step)

~—— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Cinax < ™ Zpk + max pg.

1<k<n
k=1

Hence list scheduling is a poly-time 2-approximation algorithm.
Proof:
= Let J; be the last job scheduled on machine M; with Crnax = C;
= When J; was scheduled to machine M, C; — p; < C forall1 < k <m

= Averaging over k yieIdS' [Using Ex 355 a. &b]

n n

p/<—ZCk Zpk = Cmax<%2pk+ maxpk<2 Crnax

m ldea: P"O’L(El-n s l\at J ,
[) NC O scw«rcd fop tat@
(I X 4)
G —pi Crmax

0
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 15

M;

Improving Greedy

Analysis can be shown to be almost tight. Is there a betier algorithm?

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm? }

31 ve tL\E,w{

a\nw Pnon‘t'al

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
cforj=1ton
i =argmin, ., ., Ck
Si=SuU{j},C=Ci+p
: end for
creturn Sy, ..., Sp

QO NOA RN

—_

J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
cforj=1ton
i =argmin, ., ., Ck
Si=SuU{j},C=Ci+p
: end for
return S, ..., Sy

QO NOA RN

—_

O\

Runtime:

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
cforj=1ton
i =argmin, ., ., Ck
Si=SuU{j},C=Ci+p
: end for
return S, ..., Sy

QO NOA RN

—_

O\

Runtime:
= O(nlog n) for sorting

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jn, M)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
cforj=1ton
i =argmin, ., ., Ck
Si=SuU{j},C=Ci+p
: end for
return S, ..., Sy

QO NOA RN

—_

O\

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting the minimum (use priority queue).

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 16

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]
N

[This can be shown to ben{ight (see next inde).J

%Qd’[n “ '

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

> a bt eagier to prove
Proof (of approximation ratio 3/2).

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
—_—

J
Jdmachine which hog to
Pro cess o dobj Prom

In 921y drutn

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling

,n 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

Crmax>Ci = (C —p)) +pi

X
~
R S

0 C] — Pi Crnax

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.

= Observation 2: If there are more than m jobs, then

= As in the analysis for list scheduling, we have

ool o} B i) (G- G FK)

(Tms is for the case i > m + 1 (otherwise, an even stronger inequality holds)

X
O T)
1)
—
- = -
<~
IR U A,

Cj — Pi Cmax

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Crax > 2 - Pm1-
= As in the analysis for list scheduling, we have

* 1 * 3
CM‘R:C/ = (Cj - pi) +pi < Crmax + ECmax = ECmaX- O

X
S
R S

0 C] — Pi Crnax

V. Approximation via Exact Algorithms Parallel Machine Scheduling 17

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

V. Approximation via Exact Algorithms Parallel Machine Scheduling

£ Fd
e
VY

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:
= m machines

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2, ..., m and one job of length m

J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2, ..., m and one job of length m

m=5n=11:

012345678 91011121314151617181920

Fl!“ V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Y
G
G-

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: TR P
T .
EEEREERE
T :\ :\ 1 H“\“
11111 | e
I | | 2
M EREEREEEEEN
M, L T et
[I I e E I S Y Y Y I ~S N~ Y~
My s es)
|
M. AT R I
M1 [DS SO L Y Y Y _H _H__‘

012345678 91011121314151617181920

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: P
Con
L
1 | =
SRR N i
| 1 ‘\ | 1 N ‘\ ‘Y AN “Y Al
M Sngiigh
l 1 ! :\7\\7\\ 0 N I I !
M AT R UL S
M SIS S S S
My S S
M1[9] L_‘l_JL_JL_“__‘l_JL J\ o ey

123456 7 8 91011121314151617 18 1920

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

ST
SRme
| !

BEEEae

| ‘\ ‘\ 1 I ‘\ |

Cl e
Ms 18108t N h
M Co e
M AR A A MY

SEREREEEER
M2[9] I :\ :\ oo :\ :\ e
M1[9] [S S A GO GO AL AL
012345678 91011121314151617181920
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

o

oy

-

-

oyt I I

TR JRNERIES
Ms :81: Tt } | B
M T elel
M 5) T AT HEHEY

AT TR T T
MZ[9] | :\ e :\ :\ o
M1[9] (S S S Y GOY S S S
0123456 7 8 91011121314151617 1819 20
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

I
I
| L
: e S YT
MB :7\:7\: : :: \: \: |
AW Al [A B B
M :) e
I I
W 8) O8I 5 8
M 9) SEREERE
M1[9] [L Y G L L
0123456 7 8 91011121314151617 1819 20
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

Ms (7) e
M4[8] : ‘:6::6:: Ho

| I ! ‘\5\\5\‘5\
Ms 8) e
e 9) SERREE
M (9) I U G R S A

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

pe—————
M (8) 1611611 !
s 8) s
M 9) AT
M1[9] (Y Y S L

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

N s s e e S 0
M :) E) LIPS
M 8) oS
Me(:) SRER
M1[9] (S L

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

wemr—e——— (]
M 8 X 6) 11
M 8) 6) O11%1S,
M d) SRR
M1[9] o h

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

M 8 X 6) 1.
M (8 X 6) :5::5:
M 9 I 5) |
M (9)

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

Ms 7) 7) o
i 8 5) !
Ms (8 X 6) L
M 9) 5) o
M (9) 5)

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2, ..., m and one job of length m
m=5n=11

Ms (7) 7)

Ma(8 X 6)

Ms(8 X 6)

Mo 9 I 5)

M (9) 5) 5)

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

@
am<

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2, ..., m and one job of length m
m=5n=11

Ms 7)(7) !

M (8) 6)

MS[8][6] i Cmax = 19

Mo (9)(5) ;

M (9) 5) 5)

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

@
am<

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: W 1=~ LPTgives Cra =19
T .
11t
(T :\ :\ ot
T T N H H T H P
| | | 2
M EREEREEEEEN
M, R A PP T
M A At
3 \HH:\:\HH:\:\HH‘
M, AR
M1 |G L U SO L LN IO U WL R

012345678 91011121314151617181920

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

M (9) -
123 456 7 8 91011121314151617 181920

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

T 1

! \‘ !

! ‘\ |

C

: \: \: | |

\:\:\H\\::v\‘y\‘y\‘
Ms 1818 it
M Co e
M AR A A MY

SEREREEEER
M2[9] I :\ :\ oo :\ :\ e
M1[9] [S S A GO GO AL AL
012345678 91011121314151617181920
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11:

o

oy

| ‘\

| ‘\

! \‘ | |

TR JRNERIES
Ms :81: Tt } | B
M T elel
I 5] TR RS HEHE S

AT TR T T
M2[9] | :\ o :\ :\ o
M1[9] (S S S Y GOY S S S
012345678 91011121314151617181920
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
\—_H—_\
o
[R T B
Ms :7::7\: H | B
| 1 1 1) I 1 |
M 8) LI
I
M 8) e
M (9) EEEEREER
M1[9] L Y O L N
0123456 7 8 91011121314151617 1819 20
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
Ms o
M. 8 7 el o
4[][]\ \\6‘\6‘\5:\5:\5:
M 8) L
M 9) EEERERRE
M1[9] ‘__‘L_;\ n _‘\ _‘__‘

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
Ms Lo
M. 8 7 66! 1
. X) 618:5li505!
M 8 X 7)T
M 9) SEERE
M1[9] [L R S

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
Ms AT T
M. 8 7 8l
1)) SERE
Ms (8 X 7) BEEN
My 9) 6) SEEe
M1[9] l /‘ _\\ ___\

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
Ms : H 1 :
M. 8 7 : \: H :
Al)) BEE
MS[8][7] : \: \: I
Mo 9 I 6) R
i 9 5) S

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m
m=5n=11: LPT gives Cmax = 19
(n—w‘
M5) I
oy
M :) l) e
Ms(8 X 7) 1
M:(9 (6) b
i 9 5) i
0123456 7 8 91011121314151617181920
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m
m=5n=11: LPT gives Cmax = 19
Ms(5) 5) 1
M 8) 7) .
Ms (8 X 7) -
M:(9 (6) L
M (9) 6) -
0123456 7 8 91011121314151617181920
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m
m=5n=11: LPT gives Cmax = 19

Ms (5) 5) 5)

Ma(8 X 7)

Ms(8 X 7)

Mo 9 I 6)

M (9) 6)

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

as

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:
= m machines

= n=2m+ 1 jobs of length2m —1,2m — 2, ..., m and one job of length m
m=5n=11: LPT gives Cmax = 19
M5)5) 5)
M 8 X 7 j
M (8 X 7 } Coax = 15
M 9)(6)
M (9) 6)
0123456 7 8 91011121314151617 1819 20
“:‘:‘E‘ V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).]

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cnax = 19
Optimum is Cha = 15

Ms((5 X 5 X 5)

Ma(8) 7)

Ms (8) 7) Cax = 15

Ms(9) 6)

M (9)(6)]
0123456867 8 91011121314151617 181920
ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 —1/(3m).

Proof of an instance which shows tightness:

= m machines
= n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cnax = 19
Optimum is Cha = 15

M5)C 5)C 5
M 8 X 7 j
Ms(8 X 7 } Crnax = 15
M 9)(6)
M 9)(6)

123456 7 8 91011121314151617 18 1920

V. Approximation via Exact Algorithms Parallel Machine Scheduling 18

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

.-,,I-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma
‘ SUBROUTINE can be implemented in time n®(/<").

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
‘ SUBROUTINE can be implemented in time n°(/<").

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\. J

~—— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3"7_, px.

\. J

V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

£ Fd
Gl
YEY

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\. J

~—— Theorem (Hochbaum, Shmoys’87) N\
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3"7_, px.

\. J

Proof (using Key Lemma):
PTAS(J1, 2, ..., Jdn,m)
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\.

~—— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := 3"7_, px.

5

\.

Since 0 < Chax < P and G is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(J1, o, ..., Jn, m) —
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)
1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°(/<").

\.

~—— Theorem (Hochbaum, Shmoys’87)

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/¥) . log P), where P := S"7_, px.

5

\.

Since 0 < Chax < P and G is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(J1, o, ..., Jn, m) —
1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling 19

A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1, do, ..., Jn,m, T)

1. Either: Return a solution with Cmax < (1 +€) - max{T, Crax}

2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

\.

U
SUBROUTINE can be implemented in time n°(/<").

~—— Theorem (Hochbaum, Shmoys’87)

oot/ - log P), where P:= 32, pi.

There exists a PTAS for Parallel Machine Scheduling which runs in time

5

(polynomial in the size of the input

Since 0 < Chax < P and G is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(Ji, b, ..., Jn,m) =

1: Do binary search to find smallest T s.t. Cnax < (1 +¢€) - max{T, Crax}-
2: Return solution computed by SUBROUTINE(J1, Jo, ..., Jn,m, T)

ggg V. Approximation via Exact Algorithms

Parallel Machine Scheduling

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

ggg V. Approximation via Exact Algorithms Parallel Machine Scheduling

20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

\-,,!,-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:

.-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

\-,,I,;, V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Ci—p < mzpk
A k=1

(the “well-known” formula)

i
J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 n
Cj_piﬁmzpk =
A k=1

(the “well-known” formula)

i
J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula)

o
J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 < 1<
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1
(the “well-known” formula) <e- T+ Cra

o
J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation

Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

i
J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Implementation of Subroutine

SUBROUTINE(J1, Jo, ..., Jp,m, T)
1: Either: Return a solution with Cmax < (1 +¢) - max{T, Cnax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < e- T} and diarge = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + €) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{T, Crax}-

Proof:
= Let M; be the machine with largest load
= |f there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 o 1 &
Cj—PISEZPk = C/SP"'_EZ'D"
N k=1 k=1

(the “well-known” formula) <e- T+ Cra
<(1+e¢)-max{T,Crax} O

.

J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 20

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

,,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

= Let b be the smallest integer with 1/b < e.

-.,a 5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

. ib?
= Let b be the smallest integer with 1/b < e. Define processing times p; = ['J’T] .

-,,a,-,, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

T

b2

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

. ib?
= Let b be the smallest integer with 1/b < e. Define processing times p; = ['J’T] . b—TZ

P1
P2
Ps
Illﬁaa

-,,a,;, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T " e=05
125.T

1.7 "b=2
0.75- T + |ps

05.T H
0.25-3

.

.-,,!,-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T cc=05
125.7

1.7 rh=2
0.75- T +|p

05T +i- % ————————
0257

.

.-,,!,-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.T "e=05
125-T
[] — 2
1.T b
0.75-T + |P1
0.5-T+{-{PeLf) - -
025-T Ds
0
Jlarge lJsma\ll

.

.-,,I-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2

15.-T " e=05 15.-T
125 T . h— 125-T
1.7 b=2 1.7
0.75-T + [P 0.75-T
0.5-T+{-{PeLf) - - 05T
025-T Ps 025-T
0 0
Jlarge lJsma\ll

.

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

2

= Let b be the smallest integer with 1/b < e. Define processing times p; = [@] . b—T2
15.T = e=05 15.-T
1.25-T 125.T
[= 2
1.T b 1.-T
0.75-T + |Ps 0.75- T 1 |p}
0.5-T+{-{PeLf) - - 05T ph
025-T Ps 025-T Ps
0 0-———
Jlarge lJsma\ll Jlarge

.

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] L

b2
= Every pI{ = - b_T2 fora=b,b+1,..., b2 {Can assume there are no jobs with p; > T!J

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T e
0 0-—— —
Jlarge Jsmall Jlarge

.

\-,,I,;, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
N
= Everyp,f:a~§fora:b,b+1,...,b2

= LetCbe all (Sp, Sp1,-- -, Sye) with S5 - - L<rT
15.T " e¢=05 1.5.T
125-T 125-T
L] = 2
1.T b 1-T
0.75- T + |pi > 0.75.T +|p,
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T P
0 0-—— —
Jlarge Jsmall Jlarge

.

\-,,I,;, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
N
= Everyp,f:owﬁforoz:b,b—H,...,b2

2 T n
= LetCbe all (Sp, Spy1, - - - » Sp2) With 32 s j- L < T. JAssignments to one machine
(S0, St S2) Z'_j / b2 = with makespan < T.

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T e
0 0-—— —
Jlarge Jsmall Jlarge

.

J‘I% V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
= Evel’yp;:a~b—T2f0I’oz:b,b+1,...,b2
" LetCheall (Sp, Spii--. S) With 8- j- L < T.

= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:

15.T " e¢=05 1.5.-T
125.T o 125.T
1.7 b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-fPLf) - - 05T ph
025-T s 0.25-T e
0 0-—— —
Jlarge lJsma\ll Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

b2
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’—] L

T b2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
f(0,0,...,0) =0

15.T " e¢=05 1.5.-T
125.T o 125.T
1.7 b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T Ph
025-T s 0.25-T e
0 0-—— —
Jlarge lJsma\ll Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

)

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] . b—T2
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule
all jobs with makespan < T:
£(0,0,...,0)=0
f(Np, N1, -, M) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-

(SbsSp415---,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T
0 0-—— —
Jlarge Jsmall Jlarge

V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [’J’T] . b—z
= Everyp/ =a- b—T2 fora=bb+1,...,b?
. 2)
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T: [assign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

. /
f(Nps Nty Mp2) =1+ min f(Np — Spy N1 — Spts -+ M2 — Sp2)-
(8b:Sp+1,-+-,5,2)EC

15.T " e¢=05 1.5.T
125.T o 125.T
1T b=2 1T
0.75- T + |pi 0.75- T +|p}
0.5-T+{-{PeLf) - - 05T ph
025-T s 0.25-T
0 0-—— —
] Jlarge Jsmall Jlarge
]

4,';}, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sb’nb+1_sb+15"'?nb2_sb2)‘
(SbsSp415---,5,2)EC

» Number of table entries is at most n®, hence filling all entries takes nO®*)

.-,,!,;, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+11""nb2):1+ min f(nb_sb’nb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

» Number of table entries is at most n®, hence filling all entries takes nO®*)
= If f(np, Np41, . . ., Np2) < m (for the jobs with p’), then return yes, otherwise no.

.-,,!,-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [”’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
= Let C be all (Sp, Spi1,- - - » Sp2) With zf’:js,- - b—Tz <T.
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge

<T+b L
b2

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Proof of Key Lemma

[Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

2

b
= Let b be the smallest integer with 1/b < e. Define processing times p; = [p’T] . b—T2
= Everyp/ =a- b—TZ fora=bb+1,...,b?
. 2 .
* LetCbe all (Sp, Spr1, -+, Spe) With 575+ - L<T
= Let f(np, Npi1, ..., Ny2) be the minimum number of machines required to schedule

all jobs with makespan < T:
f(0,0,...,0) =0

f(nbvnb+17""nb2):1+ min f(nb_sbanb+1_sb+15"'7nb2_sb2)‘
(SbsSp415---,5,2)EC

Number of table entries is at most n?”, hence filling all entries takes nO®*)
If f(np, N1, - .., Ne) < m (for the jobs with p’), then return yes, otherwise no.

= As every machine is assigned at most b jobs (p; > %) and the makespanis < T,

Cmax < T+ b- max (p; — pj)

i€ Jiarge

.
STHb o <(+a:T. O

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 21

Final Remarks

Graham 1966
| List scheduling has an approximation ratio of 2.

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

V. Approximation via Exact Algorithms Parallel Machine Scheduling

22

Final Remarks

~——— Graham 1966

List scheduling has an approximation ratio of 2.

——— Graham 1966

The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\

~——— Theorem (Hochbaum, Shmoys’87)

There exists a_PTAS for Parallel Machine Scheduling which runs in time
O(n2/L) . 1og P), where P := 37 px.

i
E:E V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

~——— Graham 1966
List scheduling has an approximation ratio of 2.

\

——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/<) .1og P), where P := 37 px.

\

Can we find a FPTAS (for polynomially bounded processing times)?

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

——— Graham 1966
List scheduling has an approximation ratio of 2.

\

——— Graham 1966
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/<) .1og P), where P := 37 px.

\

Can we find a FPTAS (for polynomially bounded processing times)? No!

\-,,',-, V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

Final Remarks

——— Graham 1966 N\
List scheduling has an approximation ratio of 2.

——— Graham 1966 \
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

~——— Theorem (Hochbaum, Shmoys’87) N\

There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°/<) .1og P), where P := 37 px.

\ J

Can we find a FPTAS (for polynomially bounded processing times)? No!
=

Because for sufficiently small approximation ratio
1+ ¢, the computed solution has to be optimal,
1. o | " o\ i At ——1
and: Par Hodn. Sdhed. 1 ¢ 5tro@la NF-harol !

V. Approximation via Exact Algorithms Parallel Machine Scheduling 22

£ Fd
Gl
YEY

