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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [ fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!
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Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems
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Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.
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Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V ), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)
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Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.
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Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk ) time.
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Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.
Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14



Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14



Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14



Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14



Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14



Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14



Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.
Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14



A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k )

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk ) (i.e., still polynomial for k = O(log n))
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The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [ fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18
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Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F})

≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
k ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over the newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost
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Illustration of Costs
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Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx

(1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let

ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si )|

⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui ) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.
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∑
x∈S

cx
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i=1

(ui−1 − ui ) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui )) = H(u0)− H(uk ) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.
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Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Is the bound on the approximation ratio tight?

Is there a better algorithm?

Unless P=NP, there is no c · ln(n) approximation algorithm for set cover
for some constant 0 < c < 1.

Lower Bound
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Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2
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