
Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|:

|C| = 2|A|

≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Analysis of Greedy for Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.
Theorem 35.1

Proof:

Running time is O(V + E) (using adjacency lists to represent E ′)

Let A ⊆ E denote the set of edges picked in line 4

Every optimal cover C∗ must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: |C∗| ≥ |A|

Every edge in A contributes 2 vertices to |C|: |C| = 2|A| ≤ 2|C∗|.

We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

IV. Covering Problems Vertex Cover 8

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Solving Special Cases

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

IV. Covering Problems Vertex Cover 9

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

IV. Covering Problems Vertex Cover 10

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

IV. Covering Problems Vertex Cover 11

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Execution on a Small Example

After iteration

VERTEX-COVER-TREES(G)
1: C = ∅
2: while ∃ leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

IV. Covering Problems Vertex Cover 12

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Exact Algorithms

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Strategies to cope with NP-complete problems

Such algorithms are called exact algorithms.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k .

Simple Brute-Force Search would take ≈
(n

k

)
= Θ(nk) time.

IV. Covering Problems Vertex Cover 13

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.
Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

uu

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.

Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.

Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

Towards a more efficient Search

Consider a graph G = (V ,E), edge (u, v) ∈ E(G) and integer k ≥ 1.
Let Gu be the graph obtained by deleting u and its incident edges (Gv is
defined similarly). Then G has a vertex cover of size k if and only if Gu

or Gv (or both) have a vertex cover of size k − 1.

Substructure Lemma

Reminiscent of Dynamic Programming.

Proof:

⇐ Assume Gu has a vertex cover Cu of size k − 1.
Adding u yields a vertex cover of G which is of size k

⇒ Assume G has a vertex cover C of size k , which contains, say u.
Removing u from C yields a vertex cover of Gu which is of size k − 1.

u

u

Gu v

IV. Covering Problems Vertex Cover 14

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2

⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)
1: If E = ∅ return {⊥}
2: If k = 0 and E 6= ∅ return ∅
3: Pick an arbitrary edge (u, v) ∈ E
4: S1 = VERTEX-COVER-SEARCH(Gu, k − 1)
5: S2 = VERTEX-COVER-SEARCH(Gv , k − 1)
6: if S1 6= ∅ return S1 ∪ {u}
7: if S2 6= ∅ return S2 ∪ {v}
8: return ∅

Correctness follows by the Substructure Lemma and induction.

Running time:

Depth k , branching factor 2⇒ total number of calls is O(2k)

O(E) work per recursive call

Total runtime: O(2k · E).

exponential in k , but much better than Θ(nk) (i.e., still polynomial for k = O(log n))

IV. Covering Problems Vertex Cover 15

Outline

Introduction

Vertex Cover

The Set-Covering Problem

IV. Covering Problems The Set-Covering Problem 16

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3

S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4

S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

The Set-Covering Problem

Given: set X of size n and family of subsets F
Goal: Find a minimum-size subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Number of sets
(and not elements)

S1

S2

S3 S4 S5

S6

Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

models resource allocation problems

IV. Covering Problems The Set-Covering Problem 17

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4

S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5

S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

35.3 The set-covering problem 1119

A greedy approximation algorithm
The greedy method works by picking, at each stage, the set S that covers the great-
est number of remaining elements that are uncovered.
GREEDY-SET-COVER.X; F /

1 U D X
2 C D ;
3 while U ¤ ;
4 select an S 2 F that maximizes jS \ U j
5 U D U ! S
6 C D C [fSg
7 return C

In the example of Figure 35.3, GREEDY-SET-COVER adds to C , in order, the sets
S1, S4, and S5, followed by either S3 or S6.

The algorithm works as follows. The set U contains, at each stage, the set of
remaining uncovered elements. The set C contains the cover being constructed.
Line 4 is the greedy decision-making step, choosing a subset S that covers as many
uncovered elements as possible (breaking ties arbitrarily). After S is selected,
line 5 removes its elements from U , and line 6 places S into C . When the algorithm
terminates, the set C contains a subfamily of F that covers X .

We can easily implement GREEDY-SET-COVER to run in time polynomial in jX j
and jF j. Since the number of iterations of the loop on lines 3–6 is bounded from
above by min.jX j ; jF j/, and we can implement the loop body to run in time
O.jX j jF j/, a simple implementation runs in time O.jX j jF jmin.jX j ; jF j//. Ex-
ercise 35.3-3 asks for a linear-time algorithm.

Analysis
We now show that the greedy algorithm returns a set cover that is not too much
larger than an optimal set cover. For convenience, in this chapter we denote the d th
harmonic number Hd D

Pd
iD1 1=i (see Section A.1) by H.d/. As a boundary

condition, we define H.0/ D 0.

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time !.n/-approximation algorithm, where
!.n/ D H.max fjS j W S 2 F g/ :

Proof We have already shown that GREEDY-SET-COVER runs in polynomial
time.

Can be easily implemented to run
in time polynomial in |X | and |F|

How good is the approximation ratio?

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

Greedy chooses S1,S4,S5 and S3

(or S6), which is a cover of size 4.

Optimal cover is C = {S3,S4,S5}

Optimal cover is C = {S3,S4,S5}

IV. Covering Problems The Set-Covering Problem 18

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F})

≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
k ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over the newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F})

≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
k ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over the newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
k ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over the newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
k ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over the newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

IV. Covering Problems The Set-Covering Problem 19

Approximation Ratio of Greedy

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

H(k) :=
∑k

i=1
1
k ≤ ln(k) + 1

Idea: Distribute cost of 1 for each added set over the newly covered elements.

If an element x is covered for the first time by set Si in iteration i , then

cx :=
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|
.

Definition of cost

IV. Covering Problems The Set-Covering Problem 19

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4

S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4

S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5

S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5

S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
2

1

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
2

1

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 =

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 = ??

4

IV. Covering Problems The Set-Covering Problem 20

Illustration of Costs

S1

S2

S3 S4 S5

S6

S1

S4 S5S3

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
21

1
6 + 1

6 + 1
6 + 1

6 + 1
6 + 1

6 + 1
3 + 1

3 + 1
3 + 1

2 + 1
2 + 1 = 4

IV. Covering Problems The Set-Covering Problem 20

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx

(1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx

(1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so

∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx

≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx ≤
∑

S∈C∗
H(|S|)

≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (1/2)

If x is covered for the first time by a set Si , then cx := 1

|Si\(S1∪S2∪···∪Si−1)|
.

Definition of cost

Proof.

Each step of the algorithm assigns one unit of cost, so

|C| =
∑
x∈X

cx (1)

Each element x ∈ X is in at least one set in the optimal cover C∗, so∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx (2)

Combining 1 and 2 gives

|C| ≤
∑

S∈C∗

∑
x∈S

cx ≤
∑

S∈C∗
H(|S|) ≤ |C∗| · H(max{|S| : S ∈ F})

Key Inequality:
∑

x∈S cx ≤ H(|S|).

IV. Covering Problems The Set-Covering Problem 21

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let

ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let

ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S

Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|

⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S

Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .

⇒ ∑
x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx

=
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

= ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx

≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1

=
k∑

i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui))

= H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk)

= H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality
∑

x∈S cx ≤ H(|S|)

For any S ∈ F and i = 1, 2, . . . , |C| = k let ui := |S \ (S1 ∪ S2 ∪ · · · ∪ Si)|
⇒ u0≥u1≥ · · ·≥u|C| = 0 and ui−1 − ui counts the items covered first time by Si .
⇒ ∑

x∈S

cx =
k∑

i=1

(ui−1 − ui) ·
1

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Further, by definition of the GREEDY-SET-COVER:

|Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| ≥ |S \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| = ui−1.

Combining the last inequalities gives:

∑
x∈S

cx ≤
k∑

i=1

(ui−1 − ui) ·
1

ui−1
=

k∑
i=1

ui−1∑
j=ui+1

1
ui−1

≤
k∑

i=1

ui−1∑
j=ui+1

1
j

=
k∑

i=1

(H(ui−1)− H(ui)) = H(u0)− H(uk) = H(|S|).

Remaining uncovered elements in S Sets chosen by the algorithm

Each factor is at most one.

IV. Covering Problems The Set-Covering Problem 22

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Is the bound on the approximation ratio tight?

Is there a better algorithm?

Unless P=NP, there is no c · ln(n) approximation algorithm for set cover
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Is the bound on the approximation ratio tight?

Is there a better algorithm?

Unless P=NP, there is no c · ln(n) approximation algorithm for set cover
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Is the bound on the approximation ratio tight?

Is there a better algorithm?

Unless P=NP, there is no c · ln(n) approximation algorithm for set cover
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Set-Covering Problem (Summary)

GREEDY-SET-COVER is a polynomial-time ρ(n)-algorithm, where

ρ(n) = H(max{|S| : |S| ∈ F}) ≤ ln(n) + 1.

Theorem 35.4

The same approach also gives an approximation ratio
of O(ln(n)) if there exists a cost function c : S → Z+

Is the bound on the approximation ratio tight?

Is there a better algorithm?

Unless P=NP, there is no c · ln(n) approximation algorithm for set cover
for some constant 0 < c < 1.

Lower Bound

IV. Covering Problems The Set-Covering Problem 23

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1

S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2

S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3

S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3

S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2

S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1

S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets.

Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

Example where Greedy is a (1/2) · log2 n factor off

Given any integer k ≥ 3

There are n = 2k+1 − 2 elements overall

Sets S1,S2, . . . ,Sk are pairwise disjoint and each set contains
2, 4, . . . , 2k elements

Sets T1,T2 are disjoint and each set contains half of the elements of
each set S1,S2, . . . ,Sk

Instance

k = 4:

S1 S2 S3 S4

Solution of Greedy consists of k sets. Optimum consists of 2 sets.

T1

T2

S1 S2 S3 S4

T1

T2

IV. Covering Problems The Set-Covering Problem 24

	The Set-Covering Problem

