Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

7A "V&‘*‘LK’E’GSU(" Gfteo(J*Ala,

; g ZZ@G - which adds one vertex ot
3 while E' # 0 each iteration does not
451 lcet (=u,cv) be an arbitrary edge of O.CL\; eve x. V‘R‘Ha of 2'
6 remove from E’ every edge incident on either u or v ( E Xor Cl. se 4 8 )
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm. ]
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Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:
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Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9¢
2 E'=G.E
3 while £ # 0
4 let (1, v) be an arbitrary edge of E’
5 C =CU{u,v}
6 remove from E’ every edge incident on either u or v
7 return C
Theorem 35.1
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm. ]
Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)
= Let A C E denote the set of edges picked in line 4
= Every optimal cover C* must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: | |C*| > |A|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| < 2|C"|. ‘ O
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Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER(G)
1 C=9¢

2 E =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’
5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7

return C We can bound the size of the returned solution
without knowing the (size of an) optimal solution!

Theorem 35.1 >
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

[(e,n dea: A 18 a maximal match [r\j

= Runnirg time is O(V + E) (using adjacency lists to represent E’)

= Let denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,

and edges in A do not share a common endpoint: | |C*| > |A|

= Every edge in A contributes 2 vertices to |C|: ‘ |C| = 2|A| < 2|C"|. ‘ O
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Solving Special Cases

—— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.
Develop algorithms which find near-optimal solutions in
polynomial-time.

E:? IV. Covering Problems Vertex Cover 9



Solving Special Cases

—— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

E:? IV. Covering Problems Vertex Cover 9



Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

“E:? IV. Covering Problems Vertex Cover 9



Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

“E:? IV. Covering Problems Vertex Cover 9



Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

.-,,!,;, IV. Covering Problems Vertex Cover 9



Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Vertex Cover 9



Solving Special Cases

— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

IV. Covering Problems Vertex Cover 9



Solving Special Cases

be satisfactory.
polynomial-time.

polynomial-time.

——— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
2. Isolate important special cases which can be solved in

3. Develop algorithms which find near-optimal solutions in

O
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Vertex Cover on Trees
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Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

-,,a,-,, IV. Covering Problems Vertex Cover 10



Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

A
[Exchange-Argument: Replace any leaf in the cover by its parent.]

o
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Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.
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Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
:C=0
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN - .
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Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN - .

N
[Clear: Running time is O( V), and the returned solution is a vertex cover.]
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Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN - .

N
[Clear: Running time is O( V), and the returned solution is a vertex cover.]

\
Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)

o
&
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Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e
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VERTEX-COVER-TREES(G)
:C=10
while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN e
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Execution on a Small Example

VERTEX-COVER-TREES(G)
1:C=10
2: while 3 leaves in G
3: Add all parents to C
4 Remove all leaves and their parents from G
5: return C

(Problem can be also solved on bipartite graphs, using‘Max-FIows and Min-CL@]

.
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Exact Algorithms

— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.
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Exact Algorithms

[Such algorithms are called exact algorithms.]

— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.
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Exact Algorithms

[Such algorithms are called exact algorithms.]

— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances of where the minimum vertex cover is small, that is,
smaller, than some given integer k.

s
(or equo\t)
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Exact Algorithms

[Such algorithms are called exact algorithms.]

— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances of where the minimum vertex cover is small, that is,
smaller than some given integer k.

SN\
N

[Simple Brute-Force Search would take = (}) = ©(n¥) time.]
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Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge (u,v) € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.
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Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge (u,v) € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

I\

A\

[Reminiscent of Dynamic Programming.]
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Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge (u,v) € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

Proof:
< Assume G, has a vertex cover C, of size k — 1.
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Substructure Lemma

Consider a graph G = (V, E), edge (u,v) € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k
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Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge (u,v) € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.
4y 7
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Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge (u,v) € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

Proof:

< Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.
Removing u from C yields a vertex cover of G, which is of size k — 1. O
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2

ANN
[Correctness follows by the Substructure Lemma and induction.]
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2

Running time:
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2

N

Running time:
* Depth k, branching factor 2
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VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2

N

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2

N

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
= O(E) work per recursive call
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return {L}

If k =0and E # () return (

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
if S; # 0 return S; U {u}

if S; # 0 return S; U {v}

return ()

©NQD RN 2

N

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
= O(E) work per recursive call
« Total runtime: O(2% - E).
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return { L}

If Kk =0 and E # () return ()

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S> = VERTEX-COVER-SEARCH(G,, k — 1)
: if Sy # 0 return S; U {u}

cif So # O return S; U {v}

: return ()

©NQD RN 2

N

Running time:
» Depth k, branching factor 2 = total number of calls is O(2¥)
= O(E) work per recursive call
« Total runtime: O(2% - E).
~o

[exponential in k, but much better than ©(n*) (i.e., still polynomial for k = O(log n))]
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Outline

The Set-Covering Problem
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

st.  x=[JS

Sec
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

st X= U S.

Sec
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The Set-Covering Problem

Set Cover Problem
= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

st.  x=[JS

Sec

Si
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The Set-Covering Problem

[ ]
Set Cover Problem
= Given: set X of size n and family of subsets 7 °
* Goal: Find a minimum-size subset C C F
Se
st X= U S. ° ® °
sec
[ ] [ ] [ ]
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The Set-Covering Problem

[ ]
Set Cover Problem
= Given: set X of size n and family of subsets 7 °
* Goal: Find a minimum-size subset C C F
Se
st X= U S. ° ® °
sec
[ ] [ ] [ ]
S3
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The Set-Covering Problem

[ J [ J [ J
Set Cover Problem S
= Given: set X of size n and family of subsets 7 Py (@ °
* Goal: Find a minimum-size subset C C F
Se
st.  x=[JS o (J °
Sec
[ J [ J [ J
S
Y
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

st X= U S.

Sec

[

@’)0 Lj °
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

st X= U S.

Sec

[

@’)0 Lj °
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F
st.  x=[JS

Sec
N

\ X

[Only solvable if (Jgc» S = X!J

[

o bl -
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
» Goal: Find a minimum-size subset C C F

umber of sets s.t. X= U S.

and not elements) Sec

Si

\ X

[Only solvable if (Jgc» S = X!J

[

Sz

\-,,',-, IV. Covering Problems The Set-Covering Problem

o bl -



The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

Number of sets st X= U S.
(and not elements) Sec

\ X

[Only solvable if (Jgc» S = X!J

Remarks:

[

o bl -
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The Set-Covering Problem

Set Cover Problem

= Given: set X of size n and family of subsets F
* Goal: Find a minimum-size subset C C F

Number of sets st X= U S.
(and not elements) Sec

\ X

[Only solvable if (Jgc» S = X!J

Remarks:

[ J [ J
S

o o)

. EJ

[ J [ J

Sz Ss

= generalisation of the vertex-cover problem and hence also NP-hard.
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The Set-Covering Problem

Set Cover Problem S
= Given: set X of size n and family of subsets 7 ° °

* Goal: Find a minimum-size subset C C F

Number of sets st.  X= U S. L o
(and not elements) Sec
I 1 \ . .
[Only solvable if (Jgc» S = X!J S

Remarks:
= generalisation of the vertex-cover problem and hence also NP-hard.
= models resource allocation problems

o bl -
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

GREEDY-SET-COVER (X, ¥)

1 U=X

2 €=9¢

3 whileU # 0

4 selectan S € thal‘ maximizes |S N U | '
5 U=U-S

6 € =¢€U{S}

7 return €
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

GREEDY-SET-COVER (X, ¥)
1 U=X

2 €=9¢

3 whileU # 0

4 select an S € F that maximizes |S N U |
5 U=U-S

6 € =¢€U{S}

7 return €

Si

w

S
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Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements. e ° P
Si

GREEDY-SET-COVER (X, ¥) —

[ (® o)
1 U=X |
2 €=90 S,
3 while U # 0 o o " o
4 select an S € ¥ that maximizes |[S N U | |
5 U=U-S
6 € =euls) o| | o o
7 return € S; Ss
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Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements. o |
Si

GREEDY-SET-COVER (X, ¥) ° —
1 U=X |
2 €=9 S,
3 whileU # 0 (] e | e
4 select an S € ¥ that maximizes |[S N U | |
5 U=U-S
6 € =euls) o| | o .
7 return © Ss Ss
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements. /1

Si
GREEDY-SET-COVER (X, ¥) —

1 U=X

2 €=90 LSZJ

3 whileU # ¢ e | e

4 select an S € F that maximizes |S N U |

5 U=U-S

6 € ="cu{s} g d g

7 return € .
&) &) (&)
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements. /\

Si
GREEDY-SET-COVER (X, ¥) —

1 U=X
2 €=90 L S, J
3 whileU # 0 e | e
4 select an S € F that maximizes |S N U |
5 U=U-S
6 € ="cu{s} g d g
7 return € Ss

—/ —/

N

Greedy chooses Sy, Sy, S5 and S
(or Sg), which is a cover of size 4,
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Greedy

Strategy: Pick the set S that covers the

1

largest number of uncovered elements. ° ° °
Si
GREEDY-SET-COVER (X, ¥) ° (.———'\
1 U=X
2 €=90 S,
3 whileU # 0 e | e
4 select an S € F that maximizes |S N U |
5 U=U-S§
6 € ="cu{s} d d g
7 return € Ss
—/ —/
N
Greedy chooses Sy, S4, Ss and S;
(or Ss), which is a cover of size 4.
AN
[Optimal coveris C = {M]
al'ﬁ
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Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements. e ° °
Si
GREEDY-SET-COVER (X, ¥) ° e e
1 U=X (_ _\
2 €=90 L S, J
3 whileU # 0 e | e
4 select an S € F that maximizes |S N U |
5 U=U-S
6 € ="cu{s} g d g
7 return € N Ss
. —/ —/

Can be easily implemented to run

{ in time polynomial in |X| and |F| 1
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements. e °

Si
GREEDY-SET-COVER (X, ¥) —
1 U=X
2 €=90 S,
3 whileU # 0

4 select an S € F that maximizes |S N U |
5

6

7

U=U-S§
€ =¢€U{S}
return € N

Ge & ] -

Can be easily implemented to run
in time polynomial in |X| and |F|

) o

How good is the approximation ratio?
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Approximation Ratio of Greedy

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: |S| € F})

A4
in ar,nbm[,, not o constant
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Approximation Ratio of Greedy

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S]: |S| € 7})

H(k) = Y, 1 <In(k) + 1j
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Approximation Ratio of Greedy

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: |S| € F}) < In(n) + 1.

H(k) = Y, 1 <In(k) + 1j
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Approximation Ratio of Greedy

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: |S| € F}) < In(n) + 1.

H(k) = Y, 1 <In(k) + 1]

Idea: Disiribute cost of 1 for each added set over the newly covered elements.
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Approximation Ratio of Greedy

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: |S| € F}) < In(n) + 1.

HMy:ZL%SMM%HJ

Idea: Disiribute cost of 1 for each added set over the newly covered elements.

Definition of cost

If an element x is covered for the first time by set S; in iteration i, then

1
S\ (S1USU---USi4)|’

Cx :

({h ‘u\b ‘{3]\ 'bm[, Omn\t Sts S,‘ s 'ﬂ'\t Sﬂg CLOSen .
n ;{era‘%‘:n el'w:-&mt ‘to B&'j coh-fu.sp,o( w]t'h S,,,Sz,‘.,,jc ™

ma theexomple) —
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lllustration of Costs
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lllustration of Costs
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lllustration of Costs
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lllustration of Costs
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lllustration of Costs
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lllustration of Costs
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Proof of Theorem 35.4 (1/2)

Definition of cost

1

If x is covered for the first time by a set S;, then ¢« := &S00S ]
i 1 2 i—1
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢ :

1

T S\(S1US U US_y)

Proof.

= Each step of the algorithm assigns one unit of cost, so
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Proof of Theorem 35.4 (1/2)

Definition of cost

1

If x is covered for the first time by a set S;, then ¢« := &S00S ]
i 1 2 i—1

Proof.
= Each step of the algorithm assigns one unit of cost, so

cl=>"c (1)

xeX
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Proof of Theorem 35.4 (1/2)

Definition of cost

1

If x is covered for the first time by a set S;, then ¢« := &S00S ]
i 1 2 i—1

Proof.
= Each step of the algorithm assigns one unit of cost, so

el =" o )
xeX

= Each element x € X is in at least one set in the optimal cover C*, so
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Proof of Theorem 35.4 (1/2)

Definition of cost

1

If x is covered for the first time by a set S;, then ¢« := &S00S ]
i 1 2 i—1

Proof.
= Each step of the algorithm assigns one unit of cost, so

cl=> o (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so

Y YaxY o @)

Sec* xeS xeX
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢« := m
i 1 2 i—1

Proof.
= Each step of the algorithm assigns one unit of cost, so
cl=> o (1)
xeX

= Each element x € X is in at least one set in the optimal cover C*, so

Y YaxY o @)

Sec* xeS xeX

= Combining 1 and 2 gives
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢« := m
i 1 2 i—1

Proof.
= Each step of the algorithm assigns one unit of cost, so
Cl=> e (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so
> YezYa @
Sec* xe$8 xeX
= Combining 1 and 2 gives

C1< > > o

SecC* xeSs
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢« := m
i\ (S1US2U- - US; 1

Proof.
= Each step of the algorithm assigns one unit of cost, so
Cl=> e (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so
> YezYa @
Sec* xe$8 xeX
= Combining 1 and 2 gives

C1< > > o

Sec* xe$8 V4
[Key Inequality: >3, g Cx < H(|S\).]

.
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢y := m
i\N(S1USU---US;_4

Proof.
= Each step of the algorithm assigns one unit of cost, so
Cl=> e (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so

Y YaxY o @)

Sec* xeS xeX

= Combining 1 and 2 gives
1< > e < > H(IS)
Sec* xe$8 V4 Sec*
[Key Inequality: >3, g Cx < H(|S\).]

.
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢y := m
i\N(S1USU---US;_4

Proof.
= Each step of the algorithm assigns one unit of cost, so
Cl=> e (1)
xeX
= Each element x € X is in at least one set in the optimal cover C*, so

Y YaxY o @)

Sec* xeS xeX

= Combining 1 and 2 gives

lefe ¥ oo Y HIS) < - Hmaxs s e 7)) O

Sec* xeS )  Secx -

[Key Inequality: >3, g Cx < H(|S\).]
—— —
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ Y oxes & < H(|S))
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ Y oxes & < H(|S))

= Forany Se Fandi=1,2,...,|C| =k let
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

" ForanySe Fandi=1,2,...,|C| =klet u;:==|S\(S1USU---US))|
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

[Remaining uncovered elements in S]

~J
= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

[Sets chosen by the algorithmJ

, P
= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>ui>--->Ue; = 0and uj_y — uj counts the |temstcovered first time by S;.

U’ wS

0 ’A ‘P*
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=

>o

xe$8
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=
2m—2m1 :
S\ (S1USU---US )

xe$8

C_D.St QIS;SV\Q,O{ {0 elements i"l‘\ \g
Iterrﬂt“o"ﬂ |
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=

k[Each factor is at most one.]

\/ 1
Cx = i1 — U
20 = 2 WU W) e TS, U

xXeS i=1
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=
k 1
Cx = (Uji—1 —u;) -
D B N VT AVRVE

xXeS i=1
= Further, by definition of the GREEDY-SET-COVER:
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

" ForanySe Fandi=1,2,...,|C| =klet u;:==|S\(S1USU---US))|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=

K 1
cx =y (Ui—1—u)-
ng ; T IS\ (S1US U US|
= Further, by definition of the GREEDY-SET-COVER:

li\(S1US2U~“US,',1)|2®(S1U32U“-US/,1)|
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

" ForanySe Fandi=1,2,...,|C| =klet u;:==|S\(S1USU---US))|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=

K 1
cx =y (Ui—1—u)-
ng ; T IS\ (S1US U US|
= Further, by definition of the GREEDY-SET-COVER:

[SIN(S1USU---US_1)| > [S\(S1USU--USi_1)| =Uj1.
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

" ForanySe Fandi=1,2,...,|C| =klet u;:==|S\(S1USU---US))|

= Up>Uy>--- >Uje; = 0and u;_1 — u; counts the items covered first time by S;.
=
Z : 1
Cx = E (U',1 — U') .
Xes = YIS\ (S1US U USy))

= Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
= Combining the last inequalities gives:

> o

xe$8
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

" ForanySe Fandi=1,2,...,|C| =klet u;:==|S\(S1USU---US))|

= Up>Uy>--- >Uje; = 0and u;_1 — u; counts the items covered first time by S;.
=
Z : 1
Cx = E (U',1 — U') .
Xes = YIS\ (S1US U USy))

= Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
= Combining the last inequalities gives:

k
Yoo <Y (Ut - )

x€S i=1 i—
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=
k 1
Cx = (Uji—1 —u;) -
D B N VT AVRVE

xe$8 i=1
= Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
= Combining the last inequalities gives:

ZCX<Z(U,1—U,~U7 = *

xesS i=1 TI 1 j=uj+1 U,',1

Uu's ave lntejerg

—1
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=
k 1
Cx = (Uji—1 —u;) -
D B N VT AVRVE

xe$8 i=1
= Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
= Combining the last inequalities gives:

ZCX<Z(U, 1= up)-

XeS i=1

<
|

i

lM

\/\
£
|

—] =

ZRbo
3p3

HM
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

" ForanySe Fandi=1,2,...,|C| =klet u;:==|S\(S1USU---US))|

= Up>Uy>--- >Uje; = 0and u;_1 — u; counts the items covered first time by S;.
=
Z : 1
Cx = E (U',1 — U') .
Xes = YIS\ (S1US U USy))

= Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
= Combining the last inequalities gives:

k
Yo <Y (Ut —u) =

x€S i=1 i—

£
|

M~

Uj—q

j=ui+1

RS
|

IN
1]~
=
RS
i
— =

[
M=

(H(uj—1) = H(up)
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

=
=

Forany Se Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US))|

Up>Uy> -+ >Uje; = 0 and u;_1 — u; counts the items covered first time by S;.
: 1
Cx = (U',1 — U') .
xze:s ,; ' TSI\ (S1US U USLy)

Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
Combining the last inequalities gives:

k
Yo <Y (Ut —u) =

x€S i=1 i—

£
|

M~

H()

1l
(H(uj-1) — H(u;)) = H(uo) — H(uk)

J

<
|

-

— =

J=uj+1

[
M=
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S])

= ForanySe Fandi=1,2,...,|C|=klet u;:=|S\(S1USU---US)|
= Up>U1>--->Ujc) = 0and u;_1 — u; counts the items covered first time by S;.
=
k

S o= (U1 - w) ‘

xes i= S\ (51U U--- US|

= Further, by definition of the GREEDY-SET-COVER:
[SIN(S1USU---USi_1)| Z [S\(S$1USU---USi_1)| = Uj_1.
= Combining the last inequalities gives:

k 1 kUi
So<> s u) g =2 X G
xes =t i— i=1 j=u+1 “1
k  Ui—1 1
<> -
=1 jmg1

[
M=

(H(ui—1) — H(ui)) = H(wp) — H(ux) = H(ISI). O
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Set-Covering Problem (Summary)

Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where
p(n) = Hmax{|S|: |S| € F}) <In(n) + 1.

"Ion ! APP[I covbrion -

Vertex Cover for Gmpks Wwith maximum o{ﬂav&c 3

G=(VE)

e

728,55 Sl X=E
Aeply GREEDY-SET-(OVER = p(n) = H(3)=143+2<2
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Set-Covering Problem (Summary)

~——— Theorem 35.4

GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = Hmax{|S|: |S| € F}) <In(n) + 1.

= Is the bound on the approximation ratio tight?
= |s there a better algorithm?
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Set-Covering Problem (Summary)

~——— Theorem 35.4

GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = Hmax{|S|: |S| € F}) <In(n) + 1.

= Is the bound on the approximation ratio tight?
= |s there a better algorithm?

‘Jnr{:]nomiaf,-'tfme,

Lower Bound
v

Unless P=NP, there is no c - In(n)“approximation algorithm for set cover
for some constant 0 < ¢ < 1.

=

\-,,',-, IV. Covering Problems The Set-Covering Problem 23



Set-Covering Problem (Summary)

The same approach also gives an approximation ratio
of O(In(n)) if there exists a cost function ¢ : S — Z*

~——— Theorem 35.4 /4 N

GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = Hmax{|S|: |S| € F}) <In(n) + 1.

= Is the bound on the approximation ratio tight?
= |s there a better algorithm?

Lower Bound

Unless P=NP, there is no c - In(n) approximation algorithm for set cover
for some constant 0 < ¢ < 1.

~

"
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer k > 3
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Example where Greedy is a (1/2) - log, n factor off

Instance
= Given any integer k > 3
= There are n = 2" — 2 elements overall
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Example where Greedy is a (1/2) - log, n factor off

Instance
= Given any integer kK > 3
= There are n= 2k+1 _ 2 elements overall

k=4:
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

k=4:
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

k=4:

| &6 6 o o o o6 o o o o o o o o
Si
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements
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= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=4:
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=2 (n=32-2=20)
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3

= There are n = 2¢*' — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

Given any integer k > 3
There are n = 2" — 2 elements overall

Sets 51, Sy, ..., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

Given any integer k > 3
There are n = 2" — 2 elements overall

Sets 51, Sy, ..., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer k > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer k > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=4:
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk

k=4:

...............7—1)

e oj|j6 o o o6 o o o o o o o Tz)
S4

o
\S‘J\S?/\ Ss VAN Y,

(Solution of Greedy consists of k sets. J

ggg IV. Covering Problems The Set-Covering Problem 24



Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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Example where Greedy is a (1/2) - log, n factor off

Instance

= Given any integer kK > 3
= There are n = 2" — 2 elements overall

= Sets 51, S, . . ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset S1,S,,..., Sk
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