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Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising
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Political Advertising Continued

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of
thousands of voters who could be won (lost) over by spending $1,000 on
advertising support of a policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?
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Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of
thousands of voters who could be won (lost) over by spending $1,000 on
advertising support of a policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4
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The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints
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A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution
Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.
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While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.
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Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.
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′′
2 ≥ 0

Replace each equality
by two inequalities.
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.
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Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.
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Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables
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Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.
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Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables on the right hand side are indexed by the entries of N.
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Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0



b =

b1

b2

b3

 =

 8
4
18

 ,

c =

c3

c5

c6

 =

−1/6
−1/6
−2/3



v = 28

Slack Form Notation
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The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If there exists an optimal solution, it occurs at a vertex of the polygon.
Theorem

Proof:

Let x be an optimal solution which is not a vertex

⇒ ∃ vector d so that x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d
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