Outline

Load Balancing on Graphs

I. Sorting Networks

Load Balancing on Graphs

32

Communication Models: Diffusion vs. Matching

O O O QJI—‘(.OI—‘SLI—*

O O wl—wl—wl—= O
O wl—wl—wl—=- O O

1
i
3
0
0
0
1
3

w—wl—w—- O O O
wl—wl=- O O OLM—A

J‘I% I. Sorting Networks Load Balancing on Graphs

33

Communication Models: Diffusion vs. Matching

—
[eNeoNoNoNoNe

O O O ~Ia-1InO
O O O Il INO

[eoNololNolNeNe)

e O O © O

—la-lNO O O O

10O O O —lo—im

O O O rlo—lm—im

O O rlorlo-m O

O ol O O

33

Load Balancing on Graphs

I. Sorting Networks

Smoothness of the Load Distribution

= let x € R" be a load vector
= X denotes the average load

I. Sorting Networks Load Balancing on Graphs

£ Fd
Gl
YEY

34

Smoothness of the Load Distribution

= let x! € R” be a load vector at round ¢
= X denotes the average load

J‘I% I. Sorting Networks Load Balancing on Graphs

34

Smoothness of the Load Distribution

= let x' € R” be a load vector at round ¢
= X denotes the average load

Metrics
= Lo-norm: f = /37 (xf —X)?
= makespan: maxi x! ¢
= discrenancy: maxL, x! — minf_, x,-é?_d?

-,,a,-,, I. Sorting Networks Load Balancing on Graphs

34

Smoothness of the Load Distribution

= let x' € R” be a load vector at round ¢
= X denotes the average load

Metrics

= Lo-norm: f = /37 (xf —X)? (2 O, ©
= makespan: maxi_, x! M
= discrepancy: maxL; x! — min_; x;. @A?@

\-,,!,-, I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

= let x' € R” be a load vector at round ¢
—
= X denotes the average load

Metrics
= Lo-norm: f = /37 (xf —X)?

= makespan: maxi_, x!
= discrepancy: maxL; x! — min_; x;.

For this example:
" o' =02+ 02+352+ 052+ P+ P+ 152+ 0.6 = /17
= max!_; x/ =6.5

= max?_; x{ —min_, x/ =5

ggg I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

= let x! € R” be a load vector at round ¢
= X denotes the average load

Metrics
= l-norm: f = /37 (x! —X)?

= makespan: maxi_, x!
= discrepancy: maxL; x! — min_; x;.

For this example:
» ' =/02+02+352+ 052+ 12+ 12+ 152+ 062 = V17
= max!_; x/ =6.5

= max?_; x{ —min_, x/ =5

ggg I. Sorting Networks Load Balancing on Graphs 34

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
I\@z 1 — adeg(/) if i =j,
0 otherwise.

.,a I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

How to choose « for a d-regular graph?

" o= :—j may lead to oscillation (if graph is bipartite)

= o = - ensures convergence

"= 21—d ensures convergence (and all eigenvalues of M are non-negative)

—

Diffusion Matrix 4

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

o
E:E I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Diffusion Matrix
Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
M; = <1 — adeg(i) if i =],

0 - ~ otherwise.
neighbors of i

-,,a,-,, I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Diffusion Matrix
Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

a if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =],

0 otherwise.

Further let y(M) :=|max,, |}

are the eigenvalues of M.

where 1 =1>pp > -+ > pp > —1

-,,!,, I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further let (M) := max,, 1 |uil, where gy = 1> pp > -+ > pp > —1
are the eigenvalues of M.

First-Order Diffusion: Load vector x’ satisfies

X' =M. x=1.

-,,!,, I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further letyy(M) ;= max,,»1 |wil, where pq =1 > pp > -+ > pp > —1
are the eigenvalues of M.

I
| This can be also seen as a random walk on G!

%
First-Order Diffusion: Load vector x’ satisfies

X' =M. x=1.){=M;

\-,,I,;, I. Sorting Networks Load Balancing on Graphs 35

1D grid

-,,a,-,, I. Sorting Networks Load Balancing on Graphs 36

1D grid

2D grid

~'-.'»'. I. Sorting Networks

Load Balancing on Graphs

36

1D grid 2D grid 3D grid
*—o—0—0—0o o oo
|
1 ~ 1
M1 AM=1-F AM~1-
I. Sorting Networks Load Balancing on Graphs 36

£
Gl
VY

1D grid 2D grid 3D grid
*—o—0—0—0 00—
|
1 ~ 1
Hypercube
1
(M)~ 1~ g7
I. Sorting Networks Load Balancing on Graphs 36

1D grid 2D grid 3D grid
*—o—0—0—0—0—0—0
|
~ 1
Y(M) =1 -5 AM)=1-1 y(M)=1- L
Hypercube Random Graph
OIRE
»
, 1
(M) ~1— g7 ~(M) < 1
I. Sorting Networks Load Balancing on Graphs 36

1D grid

y(M)~1— #
Hypercube
(M)~ 1~ g

2D grid

—_

YM) =1 -2

>

Random Graph

2

’\/(M) <1

3D grid

e

Complete Graph

I. Sorting Networks

Load Balancing on Graphs

36

1D grid

2D grid 3D grid
*—o—0—0—0—0—0—0
|
~ 1
(M)~ 1 - Y My=1-1 M) =1 -5
Hypercube Random Graph Complete Graph
N
7
1
VM) =1 — 557 (M) <1 Y(M) ~

I. Sorting Networks

(v(M) € (0,1] measures connectivity of G)
.(_._._—_-—-——-'-"
1

Load Balancing on Graphs

36

Diffusion on a Ring

ggg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

i
E:E 1. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 1:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 2:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 3:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 4:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 5:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 20:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Diffusion on a Ring

after iteration 20:

Egg I. Sorting Networks

Load Balancing on Graphs

37

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 ||, where uy = 1> pup > --- > pp > —1 are the
eigénvalues of M. Then for any iteration t,

t 2t 0
RO R

I. Sorting Networks Load Balancing on Graphs 38

£ Fd
e
VY

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

d)t S 7(,\4)21 . ¢0.

Proof:

I. Sorting Networks Load Balancing on Graphs 38

£ Fd
Gl
YEY

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

O < (M) - 0O
e

Proof: /

= Let e = x' — X, where X is the column vector with all entries set to X

I. Sorting Networks Load Balancing on Graphs 38

£ Fd
Gl
YEY

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . q)().

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

t
€ =a-Vitoz-Vat---+an-Vn

ggg . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,x |uil, where py =1 > ppz > -+ > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . q)().

Proof:
= Let ' = x' — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n
et—a1‘V1+042‘V2+---+an-vn—l ;- V. l
1\ N =2

<ri\!1§ - O [er is orthogonal to v1J 7 ..:“‘SZ

ggg . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . q)().

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

t
€ =a-Vitoz-Vat---+an-Vn Zawvl-

= For the diffusion scheme, [ef is orthogonal to v1J
e“:/— Me'
et A Tt =
e + =X = M H X

MGt)= M oet

ggg . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ :OM‘V1+062‘V2+"'+C¥n'vn:Zaf‘Vi-
i=2

= For the diffusion scheme, el is orthogonal to vy

n
et+1 = Me’ =M. <Z a,'V,'>
i=2

Egg' . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
et:a1‘V1+062‘V2+"'+C¥n'vn: Qa; - V.
N\ _i=2
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
i—2 i—2

Egg' . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vitoz-Vat---+ap Vo= ;- V.
i=2

4
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

16l = [Me

Egg' . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,, .1 |pil, where gy =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
et:a1‘V1+062‘V2+"'+C¥n'vn: Qa; - V.
N\ _i=2
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
i—2 i—2

= Taking norms and using that the v;’s are orthogonal,
n
2 2
16"]l = Me'llz = > a®uf | ville
i=2

Egg' 1. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vitoz-Vat---+ap Vo= ;- V.
i=2

4
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
i—2 i—2

= Taking norms and using that the v;’s are orthogonal,

n

n
le" e = IMelo = > alufllville <7* > alville
i=2 i=2

Egg' . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vitoz-Vat---+ap Vo= ;- V.
i=2

4
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
i—2 i—2

= Taking norms and using that the v;’s are orthogonal,

n

n
el = IMeflle = >~ o ifllville <4 3 afllville = 7 - 1€l
. .
=2 i=2

Egg' . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vitoz-Vat---+ap Vo= ;- V.
i=2

4
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
i—2 i—2

= Taking norms and using that the v;’s are orthogonal,

n n
1" e = IMe'l2 = Y- alflville < +* Y alllvile =2 l&'le O
i—2 i=2

Egg' . Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Lower Bound)

(<K ip(pcok)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

I. Sorting Networks Load Balancing on Graphs 39

5 Fd
e
YEY

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

t 2t 0
Proof:
i
Sl I. Sorting Networks Load Balancing on Graphs 39

¥
=
k|

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;

ggg I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

el = Me'™! = M'e® = My, = M/t'Vi,

ggg I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = Mel' = M 0 _ M’v,- _ M/t'Vi,
and

o' = ||l = || ill = pif'®°.

ggg I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = Mel' = M 0 _ M’v,- _ M/t'Vi,
and

o' = |le'||2 = 1| vill2 = pF'®°. -

ggg I. Sorting Networks Load Balancing on Graphs 39

Outlook: Idealised versus Discrete Case

Idealised Case

J‘I% I. Sorting Networks Load Balancing on Graphs

40

Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

J‘I% I. Sorting Networks Load Balancing on Graphs

40

Outlook: Idealised versus Discrete Case

Idealised Case
Xt — M . Xt—1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

J‘I% I. Sorting Networks Load Balancing on Graphs

40

Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t ; log(®”/€)
P gelsatmost.L:V(M).

ggg I. Sorting Networks Load Balancing on Graphs

40

Outlook: Idealised versus Discrete Case

Here load consists of integers
that cannot be divided further.

Idealised Case Discrete Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations until0 x! satisfies

t i log(¢~ /<)
&' < eis at most T

E:g' . Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Here load consists of integers
that cannot be divided further.

Idealised Case Discrete Case
Xt=M~Xt_1 yt:M.yt—1+‘AI)
— Mt . XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations until0 x! satisfies

t i log(¢~ /<)
&' < eis at most T

E:g' . Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

= M Xt Y= M.yt A
:Mt'XO

[Here load consists of integers]

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations until0 x! satisfies

t i log(¢~ /<)
&' < eis at most T

%‘ . Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

[Here load consists of integers]

=M. xt—1 yt:M.yt—1+At
:Mt'XO t
_-'\N-. :Mt_yo_'_ZMt—s.As
e 5:1'——-\.-

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t i log(¢~ /<)
&' < eis at most T

E:g' 1. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

= M Xt Y= M.yt A
:Mt'XO

[Here load consists of integers]

t
:Mt-yO+ZMI75.AS

s=1

Linear System Non-Linear System
= corresponds to Markov chain = rounding of a Markov chain
= well-understood = harder to analyze

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t i log(¢~ /<)
&' < eis at most T

E:g' 1. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

Xt Mt yi=M.y 4 Al
=M. x°

[Here load consists of integers]

t
=M.y +> M A

s=1

Linear System Non-Linear System
= corresponds to Markov chain = rounding of a Markov chain
= well-understood = harder to analyze

Given any load vector x°, the num- .
L A How close can it be made
ber of iterations until x' satisfies

of < ¢ is af most 129°%/) to the idealised case?
= T—y (M) *

ggg 1. Sorting Networks Load Balancing on Graphs 40

Il. Matrix Multiplication

Thomas Sauerwald

Easter 2015

Outline

Introduction to Matrix Multiplication

Il. Matrix Multiplication Introduction to Matrix Multiplication

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
CI]':Zaik'bk/ Vi,j:1,2,...,n.
k=1

Il. Matrix Multiplication Introduction to Matrix Multiplication 3

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
Cij:zaik'bk/ Vi,j:1,2,...,n.
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by
8 return C

2
E:E II. Matrix Multiplication Introduction to Matrix Multiplication 3

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
Cij:zaik'bk/ Vi,j:1,2,...,n.
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n®).

s,.i-,_ II. Matrix Multiplication Introduction to Matrix Multiplication 3

Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
CI]':Zaik'bk/ Vi,j:1,2,...,n.
k=1

——

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n- n? :_Ig_g

1 1= A rows arithmetic operations are necessary.
2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by

8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n®).

2
Il. Matrix Multiplication Introduction to Matrix Multiplication 3

Outline

Serial Matrix Multiplication

g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

s
* II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1
A: B: =
<A21 Azz)’ (Bz1 1322)’ c <Cz1

Ciz
Ca2

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1
A: B: =
<A21 Azz)’ (Bz1 Bzz)’ c <Cz1

Hence the equation C = A - B becomes:

Ciz
Cn /)’

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1 G2
<A21 Azz)’ (Bz1 Bzz)’ c <Cz1 sz)
Hence the equation C = A - B becomes:

Ci1 Cr2) _ (A1 A\ (B B
Cx Cx Axi Az By Bx

5 Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 Bz Ci
A = B = =
<A21 Azz) : (Bz1 Bzz) » C (Cm
Hence the equation C = A - B becomes:
Ci1 Cr2) _ (A1 A\ (B B
CZ1 C22 A21 A22 321 822
This corresponds to the four equations:
Cis = At1 - Bit + Avz2 - B
QEZ Aty - B2 + A2 - B2

= A2y - Biy + A2 - Byy
o0 = Aot - Bia + Az - Boo

Ciz
Ca2

2 II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

a=(a az) o=(an a2) o= (& &)
Hence the equation C = A - B becomes:
(Cﬂ C12>:<A11 A12).<B11 B12)
Cx1 Cx A A By B
This corresponds to the four equations:

Cit = Art - Bir + Arz - Boy Each equation specifies
Ciz = A1 - Bz + A1z Bz two multiplications of
Co1 = Aot - Bi1 + A - B>y] N/2xn/2 matrices and the
Cos = Aot - Bia + Ass - Boo addition of their products.

a'D 1. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

Ci1 = A1 - Bi1 + Agz - By
Ci2 = A1 - Biz + A2 - Bz
Co1 = A2t - By + Az - Bay
Ci1 = Azt - Bia+ Az - B

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Ci1 = A1 - Bi1 + Agz - By
Ci2 = A1 - Biz + A2 - Bz
Co1 = A2t - By + Az - Bay
Ci1 = Azt - Bia+ Az - B

i
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

Line 5: Handle submatrices implicitly through

2 let C be anew n x n matrix X 3 . .
3 ifn==1 index calculations instead of creating them.
4 ¢y = ay by
5 else partition 4, B, and C as in equations (4.9) /
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bsy)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Ci1 = A1 - Bi1 + Agz - By
Ci2 = A1 - Bia+ A2 - B
Co1 = A2t - By + Az - Bay

Ciy

= Aot - Bia+ Az - B

Al
QD

Il. Matrix Multiplication

Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure.

g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 1 = .
5 elsepartition A4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T —
(n) ifn>1.

g II. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T —
(n) ifn>1.

8 Multiplications

ol
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

T(m — o(1) ifn=1,
(n) = 8-T(n/2) itn>1.

8 Multiplications

ol
Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1

n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢y = ap by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)

10 return C

Let T(n) be the runtime of this procedure. Then:

o
)

o(1) ifn=1,

T =18.7(n/2) ifn>1.

/ -
[8 Multiplicationsj [4 Additions and Partitioningj

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1

[o NNV NSRS I)

Let T(n) be the runtime of this procedure. Then:

n = A.rows
let C be a new n X n matrix

ifn ==
¢y = ap by
else partition 4, B, and C as in equations (4.9)
C;; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B;;)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)

C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)

return C

T(n) =

8" o=y

n?
o(1) % ifn=1, C“’ r?gz(‘“)
@i@ o(r)) ifn>1. +C - (h)

e = 2
(8 Multiplicationsj [4 Additions and Partitioningj O(h)

ol
Il. Matrix Multiplication Serial Matrix Multiplication

6

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢ = an by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 T(n/2) + 0(r2) ifn>1.

Solution: T(n) =

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢ = an by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8"°%")

Il. Matrix Multiplication Serial Matrix Multiplication

Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢ = an by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8°%2") = ©(n®) {No improvement over the naive algorithm!j

ol
Il. Matrix Multiplication Serial Matrix Multiplication 6

	Load Balancing on Graphs
	Introduction to Matrix Multiplication
	Serial Matrix Multiplication

