
Outline

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

Introduction to Matrix Multiplication

Serial Matrix Multiplication

I. Sorting Networks Load Balancing on Graphs 32

Communication Models: Diffusion vs. Matching

1

6

5 4

3

2 1

6

5 4

3

2

M =



1
3

1
3 0 0 0 1

3
1
3

1
3

1
3 0 0 0

0 1
3

1
3

1
3 0 0

0 0 1
3

1
3

1
3 0

0 0 0 1
3

1
3

1
3

1
3 0 0 0 1

3
1
3

 M(t) =



1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 1

2
1
2 0

0 0 0 1
2

1
2 0

0 0 0 0 0 0



I. Sorting Networks Load Balancing on Graphs 33

Communication Models: Diffusion vs. Matching

1

6

5 4

3

2 1

6

5 4

3

2

M =



1
3

1
3 0 0 0 1

3
1
3

1
3

1
3 0 0 0

0 1
3

1
3

1
3 0 0

0 0 1
3

1
3

1
3 0

0 0 0 1
3

1
3

1
3

1
3 0 0 0 1

3
1
3

 M(t) =



1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 1

2
1
2 0

0 0 0 1
2

1
2 0

0 0 0 0 0 0



I. Sorting Networks Load Balancing on Graphs 33

Smoothness of the Load Distribution

let x ∈ Rn be a load vector

x denotes the average load

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

let x t ∈ Rn be a load vector at round t

x denotes the average load

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

let x t ∈ Rn be a load vector at round t

x denotes the average load

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

let x t ∈ Rn be a load vector at round t

x denotes the average load

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

let x t ∈ Rn be a load vector at round t

x denotes the average load

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Sorting Networks Load Balancing on Graphs 34

Smoothness of the Load Distribution

let x t ∈ Rn be a load vector at round t

x denotes the average load

`2-norm: Φt =
√∑n

i=1(x t
i − x)2

makespan: maxn
i=1 x t

i

discrepancy: maxn
i=1 x t

i −minn
i=1 xi .

Metrics

1.5

2

2.5

2

3

3.5

6.5

3

For this example:

Φt =
√

02 + 02 + 3.52 + 0.52 + 12 + 12 + 1.52 + 0.52 =
√

17

maxn
i=1 x t

i = 6.5

maxn
i=1 x t

i −minn
i=1 x t

i = 5

I. Sorting Networks Load Balancing on Graphs 34

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to choose α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to choose α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to choose α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to choose α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to choose α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Sorting Networks Load Balancing on Graphs 35

Diffusion Matrix

Given an undirected, connected graph G = (V ,E) and a diffusion pa-
rameter α > 0, the diffusion matrix M is defined as follows:

Mij =


α if (i, j) ∈ E ,
1− α deg(i) if i = j,
0 otherwise.

Further let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1
are the eigenvalues of M.

Diffusion Matrix

How to choose α for a d-regular graph?

α = 1
d may lead to oscillation (if graph is bipartite)

α = 1
d+1 ensures convergence

α = 1
2d ensures convergence (and all eigenvalues of M are non-negative)

First-Order Diffusion: Load vector x t satisfies

x t = M · x t−1.

neighbors of i

This can be also seen as a random walk on G!

I. Sorting Networks Load Balancing on Graphs 35

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

1D grid

γ(M) ≈ 1− 1
n2

2D grid

γ(M) ≈ 1− 1
n

3D grid

γ(M) ≈ 1− 1
n2/3

Complete Graph

γ(M) ≈ 0

Random Graph

γ(M) < 1

Hypercube

γ(M) ≈ 1− 1
log n

γ(M) ∈ (0,1] measures connectivity of G

I. Sorting Networks Load Balancing on Graphs 36

Diffusion on a Ring

after iteration 1:after iteration 2:after iteration 3:after iteration 4:after iteration 5:after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:after iteration 2:after iteration 3:after iteration 4:after iteration 5:after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:

after iteration 2:after iteration 3:after iteration 4:after iteration 5:after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:

after iteration 2:

after iteration 3:after iteration 4:after iteration 5:after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:after iteration 2:

after iteration 3:

after iteration 4:after iteration 5:after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:after iteration 2:after iteration 3:

after iteration 4:

after iteration 5:after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:after iteration 2:after iteration 3:after iteration 4:

after iteration 5:

after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:after iteration 2:after iteration 3:after iteration 4:after iteration 5:

after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Diffusion on a Ring

after iteration 1:after iteration 2:after iteration 3:after iteration 4:after iteration 5:

after iteration 20:

0

0

0

0

10

0

0

5

1.67

0

0

3.33

3.33

3.33

1.67

1.67

1.11

0.56

1.11

2.22

2.78

2.78

2.22

1.66

1.11

0.93

1.30

2.22

2.78

2.78

2.22

1.66

1.23

1.11

1.48

2.10

2.60

2.60

2.22

1.66

1.34

1.28

1.56

2.06

2.43

2.47

2.16

1.71

1.85

1.85

1.86

1.88

1.90

1.90

1.88

1.86

I. Sorting Networks Load Balancing on Graphs 37

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:

Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:

Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x

Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn

=
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met

= M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)

=
n∑

i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2

=
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2 =
n∑

i=2

αi
2µ2

i ‖vi‖2

≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2 =
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2

= γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2 =
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Upper Bound)

Let γ(M) := maxµi 6=1 |µi |, where µ1 = 1 > µ2 ≥ · · · ≥ µn ≥ −1 are the
eigenvalues of M. Then for any iteration t ,

Φt ≤ γ(M)2t · Φ0.

Lemma

Proof:
Let et = x t − x , where x is the column vector with all entries set to x
Express et through the orthogonal basis given by the eigenvectors of M:

et = α1 · v1 + α2 · v2 + · · ·+ αn · vn =
n∑

i=2

αi · vi .

For the diffusion scheme,

et+1 = Met = M ·

(
n∑

i=2

αivi

)
=

n∑
i=2

αiµivi .

Taking norms and using that the vi ’s are orthogonal,

‖et+1‖2 = ‖Met‖2 =
n∑

i=2

αi
2µ2

i ‖vi‖2 ≤ γ2
n∑

i=2

αi
2‖vi‖2 = γ2 · ‖et‖2

et is orthogonal to v1

I. Sorting Networks Load Balancing on Graphs 38

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µ2t
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

Φt = ‖et‖2 = µ2t
i ‖vi‖2 = µ2t

i Φ0.

I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µ2t
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

Φt = ‖et‖2 = µ2t
i ‖vi‖2 = µ2t

i Φ0.

I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µ2t
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

Φt = ‖et‖2 = µ2t
i ‖vi‖2 = µ2t

i Φ0.

I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µ2t
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

Φt = ‖et‖2 = µ2t
i ‖vi‖2 = µ2t

i Φ0.

I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µ2t
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

Φt = ‖et‖2 = µ2t
i ‖vi‖2 = µ2t

i Φ0.

I. Sorting Networks Load Balancing on Graphs 39

Convergence of the Quadratic Error (Lower Bound)

For any eigenvalue µi , 1 ≤ i ≤ n, there is an initial load vector x0 so that

Φt = µ2t
i · Φ0.

Lemma

Proof:

Let x0 = x + vi , where vi is the eigenvector corresponding to µi

Then

et = Met−1 = M te0 = M tvi = µt
i vi ,

and

Φt = ‖et‖2 = µ2t
i ‖vi‖2 = µ2t

i Φ0.

I. Sorting Networks Load Balancing on Graphs 39

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

Outlook: Idealised versus Discrete Case

Idealised Case

x t = M · x t−1

= M t · x0

Linear System

corresponds to Markov chain

well-understood

Given any load vector x0, the num-
ber of iterations until x t satisfies
Φt ≤ ε is at most log(Φ0/ε)

1−γ(M)
.

Discrete Case

y t = M · y t−1 + ∆t

= M t · y0 +
t∑

s=1

M t−s ·∆s

Non-Linear System

rounding of a Markov chain

harder to analyze

How close can it be made
to the idealised case?

Here load consists of integers
that cannot be divided further.

Rounding Error

I. Sorting Networks Load Balancing on Graphs 40

II. Matrix Multiplication
Thomas Sauerwald

Easter 2015

Outline

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

Introduction to Matrix Multiplication

Serial Matrix Multiplication

II. Matrix Multiplication Introduction to Matrix Multiplication 2

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n · n2 = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction to Matrix Multiplication 3

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , the

SQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n · n2 = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction to Matrix Multiplication 3

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n · n2 = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction to Matrix Multiplication 3

Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n matrices, then the
matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

4.2 Strassen’s algorithm for matrix multiplication 75

ray is 0. How would you change any of the algorithms that do not allow empty
subarrays to permit an empty subarray to be the result?
4.1-5
Use the following ideas to develop a nonrecursive, linear-time algorithm for the
maximum-subarray problem. Start at the left end of the array, and progress toward
the right, keeping track of the maximum subarray seen so far. Knowing a maximum
subarray of AŒ1 : : j !, extend the answer to find a maximum subarray ending at in-
dex jC1 by using the following observation: a maximum subarray of AŒ1 : : j C 1!
is either a maximum subarray of AŒ1 : : j ! or a subarray AŒi : : j C 1!, for some
1 ! i ! j C 1. Determine a maximum subarray of the form AŒi : : j C 1! in
constant time based on knowing a maximum subarray ending at index j .

4.2 Strassen’s algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them.
(Otherwise, you should read Section D.1 in Appendix D.) If A D .aij / and
B D .bij / are square n " n matrices, then in the product C D A # B , we define the
entry cij , for i; j D 1; 2; : : : ; n, by

cij D
nX

kD1

aik # bkj : (4.8)

We must compute n2 matrix entries, and each is the sum of n values. The following
procedure takes n " n matrices A and B and multiplies them, returning their n " n
product C . We assume that each matrix has an attribute rows, giving the number
of rows in the matrix.
SQUARE-MATRIX-MULTIPLY.A; B/

1 n D A:rows
2 let C be a new n " n matrix
3 for i D 1 to n
4 for j D 1 to n
5 cij D 0
6 for k D 1 to n
7 cij D cij C aik # bkj

8 return C

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The for loop
of lines 3–7 computes the entries of each row i , and within a given row i , theSQUARE-MATRIX-MULTIPLY(A,B) takes time Θ(n3).

This definition suggests that n · n2 = n3

arithmetic operations are necessary.

II. Matrix Multiplication Introduction to Matrix Multiplication 3

Outline

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

Load Balancing on Graphs

Introduction to Matrix Multiplication

Serial Matrix Multiplication

II. Matrix Multiplication Serial Matrix Multiplication 4

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)

This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach

Assumption: n is always an exact power of 2.

Divide & Conquer:
Partition A,B, and C into four n/2× n/2 matrices:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
.

Hence the equation C = A · B becomes:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
This corresponds to the four equations:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B12 + A22 · B22

Each equation specifies
two multiplications of

n/2×n/2 matrices and the
addition of their products.

II. Matrix Multiplication Serial Matrix Multiplication 5

Divide & Conquer: First Approach (Pseudocode)

4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C11 = A21 · B12 + A22 · B22

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,

8 · T (n/2) + Θ(n2)

if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,

8 · T (n/2) + Θ(n2)

if n > 1.

8 Multiplications

4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2)

+ Θ(n2)

if n > 1.

8 Multiplications

4 Additions and PartitioningGoal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2)

+ Θ(n2)

if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and Partitioning

Goal: Reduce the number of multiplicationsNo improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) =

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n)

No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

Divide & Conquer: First Approach (Pseudocode)4.2 Strassen’s algorithm for matrix multiplication 77

SQUARE-MATRIX-MULTIPLY-RECURSIVE.A; B/

1 n D A:rows
2 let C be a new n ! n matrix
3 if n == 1
4 c11 D a11 " b11

5 else partition A, B , and C as in equations (4.9)
6 C11 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B21/
7 C12 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A11; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A12; B22/
8 C21 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B11/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B21/
9 C22 D SQUARE-MATRIX-MULTIPLY-RECURSIVE.A21; B12/

C SQUARE-MATRIX-MULTIPLY-RECURSIVE.A22; B22/
10 return C

This pseudocode glosses over one subtle but important implementation detail.
How do we partition the matrices in line 5? If we were to create 12 new n=2 ! n=2
matrices, we would spend ‚.n2/ time copying entries. In fact, we can partition
the matrices without copying entries. The trick is to use index calculations. We
identify a submatrix by a range of row indices and a range of column indices of
the original matrix. We end up representing a submatrix a little differently from
how we represent the original matrix, which is the subtlety we are glossing over.
The advantage is that, since we can specify submatrices by index calculations,
executing line 5 takes only ‚.1/ time (although we shall see that it makes no
difference asymptotically to the overall running time whether we copy or partition
in place).

Now, we derive a recurrence to characterize the running time of SQUARE-
MATRIX-MULTIPLY-RECURSIVE. Let T .n/ be the time to multiply two n ! n
matrices using this procedure. In the base case, when n D 1, we perform just the
one scalar multiplication in line 4, and so
T .1/ D ‚.1/ : (4.15)

The recursive case occurs when n > 1. As discussed, partitioning the matrices in
line 5 takes ‚.1/ time, using index calculations. In lines 6–9, we recursively call
SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each
recursive call multiplies two n=2 ! n=2 matrices, thereby contributing T .n=2/ to
the overall running time, the time taken by all eight recursive calls is 8T .n=2/. We
also must account for the four matrix additions in lines 6–9. Each of these matrices
contains n2=4 entries, and so each of the four matrix additions takes ‚.n2/ time.
Since the number of matrix additions is a constant, the total time spent adding ma-

Line 5: Handle submatrices implicitly through
index calculations instead of creating them.

Let T (n) be the runtime of this procedure. Then:

T (n) =

{
Θ(1) if n = 1,
8 · T (n/2) + Θ(n2) if n > 1.

8 Multiplications 4 Additions and PartitioningGoal: Reduce the number of multiplications

Solution: T (n) = Θ(8log2 n) = Θ(n3) No improvement over the naive algorithm!

II. Matrix Multiplication Serial Matrix Multiplication 6

	Load Balancing on Graphs
	Introduction to Matrix Multiplication
	Serial Matrix Multiplication

