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Communication Models: Diffusion vs. Matching
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Smoothness of the Load Distribution

= let x € R" be a load vector
= X denotes the average load
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Smoothness of the Load Distribution

= let x! € R” be a load vector at round ¢
= X denotes the average load
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Smoothness of the Load Distribution

= let x' € R” be a load vector at round ¢
= X denotes the average load

Metrics
= Lo-norm: f = /37 (xf —X)?
= makespan: maxi x! ¢
= discrenancy: maxL, x! — minf_, x,-é?_d?
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Smoothness of the Load Distribution

= let x' € R” be a load vector at round ¢
= X denotes the average load

Metrics

= Lo-norm: f = /37 (xf —X)? (2 O, ©
= makespan: maxi_, x! M
= discrepancy: maxL; x! — min_; x;. @A?@
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Smoothness of the Load Distribution

= let x' € R” be a load vector at round ¢
—
= X denotes the average load

Metrics
= Lo-norm: f = /37 (xf —X)?

= makespan: maxi_, x!
= discrepancy: maxL; x! — min_; x;.

For this example:
" o' =02+ 02+352+ 052+ P+ P+ 152+ 0.6 = /17
= max!_; x/ =6.5

= max?_; x{ —min_, x/ =5
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Smoothness of the Load Distribution

= let x! € R” be a load vector at round ¢
= X denotes the average load

Metrics
= l-norm: f = /37 (x! —X)?

= makespan: maxi_, x!
= discrepancy: maxL; x! — min_; x;.

For this example:
» ' =/02+02+352+ 052+ 12+ 12+ 152+ 062 = V17
= max!_; x/ =6.5

= max?_; x{ —min_, x/ =5
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Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
I\@z 1 — adeg(/) if i =j,
0 otherwise.

.,a I. Sorting Networks Load Balancing on Graphs 35



Diffusion Matrix

How to choose « for a d-regular graph?

" o= :—j may lead to oscillation (if graph is bipartite)

= o = - ensures convergence

"= 21—d ensures convergence (and all eigenvalues of M are non-negative)

—

Diffusion Matrix 4

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

o
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Diffusion Matrix

Diffusion Matrix
Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
M; = <1 — adeg(i) if i =],

0 - ~ otherwise.
# neighbors of i
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Diffusion Matrix

Diffusion Matrix
Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

a if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =],

0 otherwise.

Further let y(M) :=|max,, |}

are the eigenvalues of M.

where 1 =1>pp > -+ > pp > —1
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Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further let (M) := max,, 1 |uil, where gy = 1> pp > -+ > pp > —1
are the eigenvalues of M.

First-Order Diffusion: Load vector x’ satisfies

X' =M. x=1.
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Diffusion Matrix

Diffusion Matrix

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter o > 0, the diffusion matrix M is defined as follows:

o if (i,) € E,
Mj = ¢ 1 — adeg(i) if i =j,
0 otherwise.

Further letyy(M) ;= max,,»1 |wil, where pq =1 > pp > -+ > pp > —1
are the eigenvalues of M.

I
| This can be also seen as a random walk on G!

%
First-Order Diffusion: Load vector x’ satisfies

X' =M. x=1. ){=M;
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1D grid
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1D grid 2D grid 3D grid
*—o—0—0—0o o oo
|
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1D grid 2D grid 3D grid
*—o—0—0—0 00—
|
1 ~ 1
Hypercube
1
(M)~ 1~ g7
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1D grid 2D grid 3D grid
*—o—0—0—0—0—0—0
|
~ 1
Y(M) =1 -5 AM)=1-1  y(M)=1- L
Hypercube Random Graph
OIRE
»
, 1
(M) ~1— g7 ~(M) < 1
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1D grid

y(M)~1— #
Hypercube
(M)~ 1~ g

2D grid

—_

YM) =1 -2

>

Random Graph

2

’\/(M) <1

3D grid

e

Complete Graph
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1D grid

2D grid 3D grid
*—o—0—0—0—0—0—0
|
~ 1
(M)~ 1 - Y My=1-1 M) =1 -5
Hypercube Random Graph Complete Graph
N
7
1
VM) =1 — 557 (M) <1 Y(M) ~
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( v(M) € (0,1] measures connectivity of G )
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Diffusion on a Ring

ggg I. Sorting Networks

Load Balancing on Graphs

37



Diffusion on a Ring
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Diffusion on a Ring

after iteration 1:
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Diffusion on a Ring

after iteration 2:
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Diffusion on a Ring

after iteration 3:
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Diffusion on a Ring

after iteration 4:
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Diffusion on a Ring

after iteration 5:
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Diffusion on a Ring

after iteration 20:
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Diffusion on a Ring

after iteration 20:
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 ||, where uy = 1> pup > --- > pp > —1 are the
eigénvalues of M. Then for any iteration t,

t 2t 0
RO R
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

d)t S 7(,\4)21 . ¢0.

Proof:
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

O < (M) - 0O
e

Proof: /

= Let e = x' — X, where X is the column vector with all entries set to X
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . q)().

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

t
€ =a-Vitoz-Vat---+an-Vn
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,x |uil, where py =1 > ppz > -+ > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . q)().

Proof:
= Let ' = x' — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n
et—a1‘V1+042‘V2+---+an-vn—l ;- V. l
1\ N =2

<ri\!1§ - O [er is orthogonal to v1J 7 ..:“‘SZ
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . q)().

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

t
€ =a-Vitoz-Vat---+an-Vn Zawvl-

= For the diffusion scheme, [ef is orthogonal to v1J
e“:/— Me'
et A Tt =
e + =X = M H X

MGt )= M oet
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ :OM‘V1+062‘V2+"'+C¥n'vn:Zaf‘Vi-
i=2

= For the diffusion scheme, el is orthogonal to vy

n
et+1 = Me’ =M. <Z a,'V,'>
i=2
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
n
et:a1‘V1+062‘V2+"'+C¥n'vn: Qa; - V.
N\ _i=2
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
i—2 i—2
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,

¢t S 7(,\4)21 . ¢0.

Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

€ =a1-Vitoz-Vat---+ap Vo= ;- V.
i=2

4
= For the diffusion scheme, [ef is orthogonal to v1J

n n
et =Me' =M- <Z aiVi> = Zaiﬂi\//-
=2 i=2

= Taking norms and using that the v;’s are orthogonal,

16l = [ Me
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,, .1 |pil, where gy =1 > pp > --- > up > —1 are the
eigenvalues of M. Then for any iteration t,
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Proof:
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,
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= Let e/ = x! — X, where X is the column vector with all entries set to X
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,
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Proof:
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Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |ni|, where uy = 1> pup > --- > pp > —1 are the
eigenvalues of M. Then for any iteration t,
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Proof:
= Let e/ = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:
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Convergence of the Quadratic Error (Lower Bound)

(<K ip(pcok)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O
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Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

t 2t 0
Proof:
i
Sl I. Sorting Networks Load Balancing on Graphs 39
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Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
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Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

el = Me'™! = M'e® = My, = M/t'Vi,
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Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = Mel' = M 0 _ M’v,- _ M/t'Vi,
and

o' = ||l = || ill = pif'®°.
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Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue u;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let x° = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = Mel' = M 0 _ M’v,- _ M/t'Vi,
and

o' = |le'||2 = 1| vill2 = pF'®°. -
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Outlook: Idealised versus Discrete Case

Idealised Case
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Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO
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Outlook: Idealised versus Discrete Case

Idealised Case
Xt — M . Xt—1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood
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Outlook: Idealised versus Discrete Case

Idealised Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t ; log(®”/€)
P gelsatmost.L:V(M).
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Outlook: Idealised versus Discrete Case

Here load consists of integers
that cannot be divided further.

Idealised Case Discrete Case

Xt — M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations until0 x! satisfies

t i log(¢~ /<)
&' < eis at most T
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Outlook: Idealised versus Discrete Case

Here load consists of integers
that cannot be divided further.

Idealised Case Discrete Case
Xt=M~Xt_1 yt:M.yt—1+‘AI)
— Mt . XO

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations until0 x! satisfies

t i log(¢~ /<)
&' < eis at most T
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Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

= M Xt Y= M.yt A
:Mt'XO

[ Here load consists of integers ]

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations until0 x! satisfies

t i log(¢~ /<)
&' < eis at most T
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Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

[ Here load consists of integers ]

=M. xt—1 yt:M.yt—1+At
:Mt'XO t
_-'\N-. :Mt_yo_'_ZMt—s.As
e 5:1'——-\.-

Linear System
= corresponds to Markov chain
= well-understood

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t i log(¢~ /<)
&' < eis at most T
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Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

= M Xt Y= M.yt A
:Mt'XO

[ Here load consists of integers ]

t
:Mt-yO+ZMI75.AS

s=1

Linear System Non-Linear System
= corresponds to Markov chain = rounding of a Markov chain
= well-understood = harder to analyze

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t i log(¢~ /<)
&' < eis at most T
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Outlook: Idealised versus Discrete Case

that cannot be divided further.

Idealised Case Discrete Case °
Rounding Error

Xt Mt yi=M.y 4 Al
=M. x°

[ Here load consists of integers ]

t
=M.y +> M A

s=1

Linear System Non-Linear System
= corresponds to Markov chain = rounding of a Markov chain
= well-understood = harder to analyze

Given any load vector x°, the num- .
L A How close can it be made
ber of iterations until x' satisfies

of < ¢ is af most 129°%/) to the idealised case?
= T—y (M) *
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Introduction to Matrix Multiplication
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Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
CI]':Zaik'bk/ Vi,j:1,2,...,n.
k=1
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Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
Cij:zaik'bk/ Vi,j:1,2,...,n.
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by
8 return C

2
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Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
Cij:zaik'bk/ Vi,j:1,2,...,n.
k=1

SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by
8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n®).
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Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - B is defined by

n
CI]':Zaik'bk/ Vi,j:1,2,...,n.
k=1

——

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n- n? :_Ig_g

1 1= A rows arithmetic operations are necessary.
2 let C be anew n X n matrix

3 fori =1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = ¢jj +aix - by

8 return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time ©(n®).

2
Il. Matrix Multiplication Introduction to Matrix Multiplication 3
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Serial Matrix Multiplication
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

s
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1
A: B: =
<A21 Azz)’ (Bz1 1322)’ c <Cz1

Ciz
Ca2
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1
A: B: =
<A21 Azz)’ (Bz1 Bzz)’ c <Cz1

Hence the equation C = A - B becomes:

Ciz
Cn /)’

5 Il. Matrix Multiplication Serial Matrix Multiplication



Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A1 Az By B2 Ci1 G2
<A21 Azz)’ (Bz1 Bzz)’ c <Cz1 sz)
Hence the equation C = A - B becomes:

Ci1 Cr2) _ (A1 A\ (B B
Cx Cx Axi Az By Bx
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A A Bi1 Bz Ci
A = B = =
<A21 Azz) : (Bz1 Bzz) » C (Cm
Hence the equation C = A - B becomes:
Ci1 Cr2) _ (A1 A\ (B B
CZ1 C22 A21 A22 321 822
This corresponds to the four equations:
Cis = At1 - Bit + Avz2 - B
QEZ Aty - B2 + A2 - B2

= A2y - Biy + A2 - Byy
o0 = Aot - Bia + Az - Boo

Ciz
Ca2
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

a=(a az) o=(an a2) o= (& &)
Hence the equation C = A - B becomes:
(Cﬂ C12>:<A11 A12).<B11 B12)
Cx1 Cx A A By B
This corresponds to the four equations:

Cit = Art - Bir + Arz - Boy Each equation specifies
Ciz = A1 - Bz + A1z Bz two multiplications of
Co1 = Aot - Bi1 + A - B>y ] N/2xn/2 matrices and the
Cos = Aot - Bia + Ass - Boo addition of their products.
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Divide & Conquer: First Approach (Pseudocode)

Ci1 = A1 - Bi1 + Agz - By
Ci2 = A1 - Biz + A2 - Bz
Co1 = A2t - By + Az - Bay
Ci1 = Azt - Bia+ Az - B
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Ci1 = A1 - Bi1 + Agz - By
Ci2 = A1 - Biz + A2 - Bz
Co1 = A2t - By + Az - Bay
Ci1 = Azt - Bia+ Az - B

i
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

Line 5: Handle submatrices implicitly through

2 let C be anew n x n matrix X 3 . .
3 ifn==1 index calculations instead of creating them.
4 ¢y = ay by
5 else partition 4, B, and C as in equations (4.9) /
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bsy)
7 C1» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bsy)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Ci1 = A1 - Bi1 + Agz - By
Ci2 = A1 - Bia+ A2 - B
Co1 = A2t - By + Az - Bay

Ciy

= Aot - Bia+ Az - B

Al
QD
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A42,, By,)
10 return C

Let T(n) be the runtime of this procedure.
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 1 = .
5 elsepartition A4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T —
(n) ifn>1.
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T —
(n) ifn>1.

8 Multiplications
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix
3 ifn==1
4 ¢ = an by
5 else partition 4, B, and C as in equations (4.9)
6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)
7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)
9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

T(m — o(1) ifn=1,
(n) = 8-T(n/2) itn>1.

8 Multiplications

ol
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1

n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢y = ap by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)

10 return C

Let T(n) be the runtime of this procedure. Then:

o
)

o(1) ifn=1,

T =18.7(n/2) ifn>1.

/ -
[8 Multiplicationsj [4 Additions and Partitioningj
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1

[o NNV NSRS I )

Let T(n) be the runtime of this procedure. Then:

n = A.rows
let C be a new n X n matrix

ifn ==
¢y = ap by
else partition 4, B, and C as in equations (4.9)
C;; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B;;)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)

C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)

return C

T(n) =

8" o=y

n?
o(1) % ifn=1, C“’ r?gz(‘“)
@i@ o(r)) ifn>1. +C - (h)

e = 2
(8 Multiplicationsj [4 Additions and Partitioningj O(h )

ol
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢ = an by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 T(n/2) + 0(r2) ifn>1.

Solution: T(n) =
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢ = an by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By;)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8"°%")
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 ¢ = an by

5 else partition 4, B, and C as in equations (4.9)

6 C1; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bsy)

7 C1, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (412, By,)

8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (451, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (43,, By)

9 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B1s)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =18 T(n/2) + 0(r2) ifn>1.

Solution: T(n) = ©(8°%2") = ©(n®) {No improvement over the naive algorithm!j
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