

- Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

- Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Perfect halver of depth $\log_2 n$ exist \rightsquigarrow yields sorting networks of depth $\Theta((\log n)^2)$.

Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

— Approximate Halver —
$$\mathcal{E} = \frac{1}{400}$$

An $(\underline{n}, \epsilon)$ -approximate halver, $\epsilon < 1$, is a comparator network that for every k = 1, 2, ..., n/2 places at most ϵk of its k smallest keys in $b_{n/2+1}, ..., b_n$ and at most ϵk of its k largest keys in $b_1, ..., b_{n/2}$.

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Approximate Halver An (n, ϵ) -approximate halver, $\epsilon < 1$, is a comparator network that for every k = 1, 2, ..., n/2 places at most ϵk of its k smallest keys in $b_{n/2+1}, \ldots, b_n$ and at most ϵk of its k largest keys in $b_1, \ldots, b_{n/2}$.

We will prove that such networks can be constructed in constant depth!

Expander Graphs -

A bipartite (n, d, μ) -expander is a graph with:

- G has n vertices (n/2 on each side)
- the edge-set is the union of *d* matchings
- For every subset $S \subseteq V$ being in one part,

 $|N(S)| \ge \min\{\mu \cdot |S|, n/2 - |S|\}$

Expander Graphs -

A bipartite (n, d, μ) -expander is a graph with:

- G has n vertices (n/2 on each side)
- the edge-set is the union of *d* matchings
- For every subset $S \subseteq V$ being in one part,

 $|N(S)| \ge \min\{\mu \cdot |S|, n/2 - |S|\}$

Expander Graphs -

A bipartite (n, d, μ) -expander is a graph with:

- G has n vertices (n/2 on each side)
- the edge-set is the union of *d* matchings
- For every subset $S \subseteq V$ being in one part,

 $|N(S)| \geq \min\{\mu \cdot |S|, n/2 - |S|\}$

Expander Graphs -

A bipartite (n, d, μ) -expander is a graph with:

- G has n vertices (n/2 on each side)
- the edge-set is the union of *d* matchings
- For every subset $S \subseteq V$ being in one part,

 $|N(S)| \ge \min\{\mu \cdot |S|, n/2 - |S|\}$

Expander Graphs:

- probabilistic construction "easy": take d (disjoint) random matchings.
- explicit construction is a deep mathematical problem with ties to number theory, group theory, combinatorics etc.
- many applications in networking, complexity theory and coding theory

Proof:

• X := wires with the k smallest inputs

Proof: Keys

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs

Proof Strategy:

1.IN(

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator $(u, v) \lor e \lor$

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq \dot{X}$
- Further: $u_d \leq u_t \leq v_t \leq v_d$

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$

• Further:
$$u_d \leq u_t \leq v_t \leq v_d \Rightarrow u_d \in X$$

Since u was arbitrary:

$$\int |Y| + |N(Y)| \leq k.$$

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \le u_t \le v_t \le v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y|+|N(Y)|\leq k.$$

Since G is a bipartite (n, d, μ)-expander:

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \le u_t \le v_t \le v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y|+|N(Y)|\leq k.$$

Since G is a bipartite (n, d, μ)-expander:

|Y| + |N(Y)|

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \leq u_t \leq v_t \leq v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

 $|Y|+|N(Y)|\leq k.$

Since G is a bipartite (n, d, μ)-expander:

$$|Y| + |N(Y)| \ge |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \leq u_t \leq v_t \leq v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

 $|Y|+|N(Y)|\leq k.$

• Since *G* is a bipartite (*n*, *d*, *µ*)-expander:

$$|Y| + |N(Y)| \ge |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

= min{(1 + \mu)|Y|, n/2}.

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d , v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \leq u_t \leq v_t \leq v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

|Y| + |N(Y)| < k.

• Since *G* is a bipartite (n, d, μ) -expander:

$$\begin{aligned} |Y| + |N(Y)| &\geq |Y| + \min\{\mu|Y|, n/2 - |Y|\} \\ &= \min\{(1+\mu)|Y|, n/2\}. \end{aligned}$$

Combining the two bounds above yields:

$$(1+\mu)|Y|\leq k.$$

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \le u_t \le v_t \le v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

 $|Y|+|N(Y)|\leq k.$

• Since *G* is a bipartite (*n*, *d*, *µ*)-expander:

$$|Y| + |N(Y)| > |Y| + \min\{\mu | Y|, n/2 - |Y|\}$$

= min{(1 + \mu)|Y|, n/2}.

Combining the two bounds above yields:

$$(1 + \mu)|Y| \le k.$$

Here we used that $k \le n/2$

Proof:

- X := wires with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparator (u, v)
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output
- Note that $v_d \in Y \subseteq X$
- Further: $u_d \le u_t \le v_t \le v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

 $|Y|+|N(Y)|\leq k.$

• Since G is a bipartite (n, d, μ) -expander:

$$|Y| + |N(Y)| \ge |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

= min{(1 + \mu)|Y|, n/2}.

Combining the two bounds above yields:

$$(1+\mu)|Y| \le k.$$

The same argument shows that at most $\epsilon \cdot k$, $\epsilon := 1/(\mu + 1)$ of the *k* largest input keys are placed in $b_1, \ldots, b_{n/2}$.

AKS network vs. Batcher's network

Donald E. Knuth (Stanford)

"Batcher's method is much better, unless n exceeds the total memory capacity of all computers on earth!"

Richard J. Lipton (Georgia Tech)

"The AKS sorting network is **galactic**: it needs that n be larger than 2⁷⁸ or so to finally be smaller than Batcher's network for n items."

Siblings of Sorting Network

Sorting Networks -

- sorts any input of size n
- special case of Comparison Networks

Siblings of Sorting Network

Sorting Networks -

- sorts any input of size n
- special case of Comparison Networks

Switching (Shuffling) Networks -

- creates a random permutation of n items
- special case of Permutation Networks

Siblings of Sorting Network

Sorting Networks _____

- sorts any input of size n
- special case of Comparison Networks

 7
 2

 2
 >

 2
 >

Switching (Shuffling) Networks ------

- creates a random permutation of n items
- special case of Permutation Networks

Counting Networks _____

- balances any stream of tokens over n wires
- special case of Balancing Networks

Outline of this Course

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

Distributed Counting -

Processors collectively assign successive values from a given range.

- Distributed Counting -

Processors collectively assign successive values from a given range.

Values could represent addresses in memories or destinations on an interconnection network

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -----

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -----

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -----

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -----

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -----

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks -----

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed	Counting
-------------	----------

Processors collectively assign successive values from a given range.

Balancing Networks —

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Counting Network (Formal Definition) -

- Let <u>x1, x2, ..., xn</u> be the number of tokens (ever received) on the designated input wires
- Let <u>y₁, y₂,..., y_n</u> be the number of tokens (ever received) on the designated output wires

Counting Network (Formal Definition)

- 1. Let *x*₁, *x*₂,..., *x_n* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*₁, *y*₂,..., *y_n* be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state: $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a balancing network with the step-property

$$0 \leq y_i - y_j \leq 1$$
 for any $i < j$.

Counting Network (Formal Definition)

- 1. Let *x*₁, *x*₂,..., *x_n* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*₁, *y*₂,..., *y_n* be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state: $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a balancing network with the step-property:

$$0 \leq y_i - y_j \leq 1$$
 for any $i < j$.

Bitonic Counting Network: Take Batcher's Sorting Network and replace each comparator by a balancer.

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_i\right\rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lceil \frac{1}{2} \sum_{i=1}^{n} x_i \rceil$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

Key Lemma

Consider a MERGER[*n*]. Then if the inputs $x_1, \ldots, x_{n/2}$ and $x_{n/2+1}, \ldots, x_n$ have the step property, then so does the output y_1, \ldots, y_n .

Proof

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_i\right\rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

Proof (by induction on *n*)

Case n = 2 is clear, since MERGER[2] is a single balancer

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- *n* > 2:

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_i\right\rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left\lfloor\frac{1}{2} \sum_{i=1}^{n} x_i\right\rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $\underline{z_1, \ldots, z_{n/2}}$ and $\underline{z'_1, \ldots, z'_{n/2}}$ be the outputs of the MERGER[n/2] subnetworks

Facts Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks

Facts
Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^n x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left\lfloor\frac{1}{2} \sum_{i=1}^n x_i\right\rfloor$
2. If $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH \Rightarrow $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property

Facts Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH \Rightarrow $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property

• Let
$$Z := \sum_{i=1}^{n/2} z_i$$
 and $Z' := \sum_{i=1}^{n/2} z'_i$

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \dots, z_{n/2}$ and $z'_1, \dots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z'_i$
- F1 \Rightarrow Z = $\lceil \frac{1}{2} \sum_{i=1}^{n/2} x_i \rceil + \lfloor \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rfloor$ and Z' = $\lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rceil$

Facts Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lceil \frac{1}{2} \sum_{i=1}^{n} x_i \rceil$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH \Rightarrow $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z'_i$
- F1 \Rightarrow Z = $\lceil \frac{1}{2} \sum_{i=1}^{n/2} x_i \rceil + \lfloor \frac{1}{2} \sum_{i=n/2+1}^n x_i \rfloor$ and Z' = $\lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^n x_i \rceil$

Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lceil \frac{1}{2} \sum_{i=1}^{n} x_i \rceil$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH \Rightarrow $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z'_i$
- F1 \Rightarrow Z = $\lceil \frac{1}{2} \sum_{i=1}^{n/2} x_i \rceil + \lfloor \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rfloor$ and Z' = $\lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rceil$
- Case 1: If Z = Z', then F2 implies the output of MERGER[*n*] is $y_i = z_{1+\lfloor (i-1)/2 \rfloor} \checkmark$

Correctness of the Bitonic Counting Network

Let
$$x_1, ..., x_n$$
 and $y_1, ..., y_n$ have the step property. Then:
1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$, and $\sum_{i=1}^{n/2} x_{2i} = \lfloor \frac{1}{2} \sum_{i=1}^{n} x_i \rfloor$
2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for $i = 1, ..., n$.
3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

Proof (by induction on *n*)

- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH \Rightarrow $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z'_i$
- F1 \Rightarrow Z = $\lceil \frac{1}{2} \sum_{i=1}^{n/2} x_i \rceil + \lfloor \frac{1}{2} \sum_{i=n/2+1}^n x_i \rfloor$ and Z' = $\lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^n x_i \rceil$
- Case 1: If Z = Z', then F2 implies the output of MERGER[n] is $y_i = z_{1+\lfloor (i-1)/2 \rfloor} \checkmark$
- Case 2: If |Z Z'| = 1, F3 implies $z_i = z'_i$ for i = 1, ..., n/2 except a unique *j* with $z_j \neq z'_j$. Balancer between z_i and z'_i will ensure that the step property holds.

Bitonic Counting Network in Action

Bitonic Counting Network in Action

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

— Counting vs. Sorting —

If a network is a counting network, then it is also a sorting network.

— Counting vs. Sorting ——

If a network is a counting network, then it is also a sorting network.

Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

• Let C be a counting network, and S be the corresponding sorting network

Counting vs. Sorting —

If a network is a counting network, then it is also a sorting network.

Proof.

• Let C be a counting network, and S be the corresponding sorting network

31

Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S

Counting vs. Sorting –

If a network is a counting network, then it is also a sorting network.

- Let *C* be a counting network, and *S* be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S

Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to *C* by $x_i = 1$ iff $a_i = 0$.

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, \ldots, x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, \ldots, x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, \ldots, x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, \ldots, x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires

Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires

31

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, \ldots, x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires
- S corresponds to $C \Rightarrow$ all zeros will be routed to the lower wires

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, \ldots, x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network \Rightarrow all ones will be routed to the lower wires
- S corresponds to $C \Rightarrow$ all zeros will be routed to the lower wires

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to *C* by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires
- S corresponds to $C \Rightarrow$ all zeros will be routed to the lower wires
- By the Zero-One Principle, *S* is a sorting network.

