
A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist  yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!
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Expander Graphs

A bipartite (n, d , µ)-expander is a graph with:

G has n vertices (n/2 on each side)

the edge-set is the union of d matchings

For every subset S ⊆ V being in one part,

|N(S)| ≥ min{µ · |S|, n/2− |S|}

Expander Graphs

L R

Expander Graphs:
probabilistic construction “easy”: take d (disjoint) random matchings

explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

many applications in networking, complexity theory and coding theory
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From Expanders to Approximate Halvers
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Existence of Approximate Halvers

Proof:

X := wires with the k smallest inputs
Y := wires in lower half with k smallest outputs
For every u ∈ N(Y ): ∃ comparator (u, v)
Let ut , vt be their keys after the comparator
Let ud , vd be their keys at the output
Note that vd ∈ Y ⊆ X
Further: ud ≤ ut ≤ vt ≤ vd

⇒ ud ∈ X

Since u was arbitrary:

|Y |+ |N(Y )| ≤ k .

Since G is a bipartite (n, d , µ)-expander:

|Y |+ |N(Y )|

≥ |Y |+ min{µ|Y |, n/2− |Y |}
= min{(1 + µ)|Y |, n/2}.

Combining the two bounds above yields:

(1 + µ)|Y | ≤ k .

The same argument shows that at most ε · k ,
ε := 1/(µ+ 1), of the k largest input keys are
placed in b1, . . . , bn/2.

Here we used that k ≤ n/2

v

u

vd

ud

vt

ut
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AKS network vs. Batcher’s network

Donald E. Knuth (Stanford)

“Batcher’s method is much
better, unless n exceeds the
total memory capacity of all
computers on earth!”

Richard J. Lipton (Georgia Tech)

“The AKS sorting network is
galactic: it needs that n be
larger than 278 or so to finally
be smaller than Batcher’s
network for n items.”
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Siblings of Sorting Network

sorts any input of size n

special case of Comparison Networks

Sorting Networks

creates a random permutation of n items

special case of Permutation Networks

Switching (Shuffling) Networks

balances any stream of tokens over n wires

special case of Balancing Networks

Counting Networks
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Outline

Outline of this Course

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks
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Counting Network

Processors collectively assign successive values from a given range.

Distributed Counting

Values could represent addresses in memories
or destinations on an interconnection network

constructed in a similar manner like sorting networks

instead of comparators, consists of balancers

balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

Balancing Networks

Number of tokens differs by at most one
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Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Sorting Networks Counting Networks 27



Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Sorting Networks Counting Networks 27



Bitonic Counting Network

1. Let x1, x2, . . . , xn be the number of tokens (ever received) on the
designated input wires

2. Let y1, y2, . . . , yn be the number of tokens (ever received) on the
designated output wires

3. In a quiescent state:
∑n

i=1 xi =
∑n

i=1 yi

4. A counting network is a balancing network with the step-property:

0 ≤ yi − yj ≤ 1 for any i < j .

Counting Network (Formal Definition)

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

I. Sorting Networks Counting Networks 27



Correctness of the Bitonic Counting Network

Let x1, . . . , xn and y1, . . . , yn have the step property. Then:

1. We have
∑n/2

i=1 x2i−1 =
⌈ 1

2

∑n
i=1 xi

⌉
, and

∑n/2
i=1 x2i =

⌊ 1
2

∑n
i=1 xi

⌋
2. If

∑n
i=1 xi =

∑n
i=1 yi , then xi = yi for i = 1, . . . , n.

3. If
∑n

i=1 xi =
∑n

i=1 yi + 1, then ∃! j = 1, 2, . . . , n with xj = yj + 1 and xi = yi for j 6= i .

Facts

Proof (by induction on n)

Case n = 2 is clear, since MERGER[2] is a single balancer
n > 2:

Let z1, . . . , zn/2 and z′1, . . . , z′n/2 be the outputs of the MERGER[n/2] subnetworks

IH⇒ z1, . . . , zn/2 and z′1, . . . , z′n/2 have the step property

Let Z :=
∑n/2

i=1 zi and Z ′ :=
∑n/2

i=1 z′i
F1⇒ Z = d 1

2

∑n/2
i=1 xie + b 1

2

∑n
i=n/2+1 xic and Z ′ = b 1

2

∑n/2
i=1 xic + d 1

2

∑n
i=n/2+1 xie

Case 1: If Z = Z ′, then F2 implies the output of MERGER[n] is yi = z1+b(i−1)/2c X

Case 2: If |Z − Z ′| = 1, F3 implies zi = z′i for i = 1, . . . , n/2 except a unique j with zj 6= z′j .

Balancer between zj and z′j will ensure that the step property holds.
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Bitonic Counting Network in Action
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Counting can be done as follows:
Add local counter to each output wire i , to
assign consecutive numbers i, i + n, i + 2 · n, . . .
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A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

Consists of log n BLOCK[n] networks each of which has depth log n
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From Counting to Sorting

If a network is a counting network, then it is also a sorting network.
Counting vs. Sorting

The converse is not true!

Proof.

Let C be a counting network, and S be the corresponding sorting network
Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.
C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.
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Consider an input sequence a1, a2, . . . , an ∈ {0, 1}n to S
Define an input x1, x2, . . . , xn ∈ {0, 1}n to C by xi = 1 iff ai = 0.

C is a counting network⇒ all ones will be routed to the lower wires
S corresponds to C ⇒ all zeros will be routed to the lower wires
By the Zero-One Principle, S is a sorting network.
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