I. Sorting Networks

Thomas Sauerwald

Easter 2015

Outline of this Course

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

- I. Sorting Networks (Sorting, Counting, Load Balancing)
- II. Matrix Multiplication (Serial and Parallel)
- IV. Approximation Algorithms: Covering Problems
- V. Approximation Algorithms via Exact Algorithms
- VI. Approximation Algorithms: Travelling Salesman Problem
- VII. Approximation Algorithms: Randomisation and Rounding
- VIII. Approximation Algorithms: MAX-CUT Problem

- I. Sorting Networks (Sorting, Counting, Load Balancing)
- II. Matrix Multiplication (Serial and Parallel)
- III. Linear Programming (Formulating, Applying and Solving)
- IV. Approximation Algorithms: Covering Problems
- V. Approximation Algorithms via Exact Algorithms
- VI. Approximation Algorithms: Travelling Salesman Problem
- VII. Approximation Algorithms: Randomisation and Rounding
- VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same numberring of theorems/lemmas etc.

- I. Sorting Networks (Sorting, Counting, Load Balancing)
- II. Matrix Multiplication (Serial and Parallel)
- III. Linear Programming (Formulating, Applying and Solving)
- IV. Approximation Algorithms: Covering Problems
- V. Approximation Algorithms via Exact Algorithms
- VI. Approximation Algorithms: Travelling Salesman Problem
- VII. Approximation Algorithms: Randomisation and Rounding
- VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same numberring of theorems/lemmas etc.

Outline of this Course

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms -

- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

(Serial) Sorting Algorithms _____

- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

Sorting Networks -----

- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance

(Serial) Sorting Algorithms -

- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

Sorting Networks

- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance
- Comparisons can be performed in parallel

Allows to sort *n* numbers in sublinear time!

(Serial) Sorting Algorithms -

- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

Sorting Networks

- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance
- Comparisons can be performed in parallel

Allows to sort *n* numbers in sublinear time!

Simple concept, but surprisingly deep and complex theory!

Comparison Network _____

A comparison network consists solely of wires and comparators:

Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

Comparison Networks

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x, d_y } + 1

• If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x , d_y } + 1

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x , d_y } + 1

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x , d_y } + 1

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x, d_y } + 1

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x , d_y } + 1

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max{ d_x , d_y } + 1

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Lemma 27.1

If a comparison network transforms the input $a = \langle a_1, a_2, ..., a_n \rangle$ into the output $b = \langle b_1, b_2, ..., b_n \rangle$, then for any monotonically increasing function f, the network transforms $f(a) = \langle f(a_1), f(a_2), ..., f(a_n) \rangle$ into $f(b) = \langle f(b_1), f(b_2), ..., f(b_n) \rangle$.

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

- Lemma 27.1

If a comparison network transforms the input $a = \langle a_1, a_2, ..., a_n \rangle$ into the output $b = \langle b_1, b_2, ..., b_n \rangle$, then for any monotonically increasing function f, the network transforms $f(a) = \langle f(a_1), f(a_2), ..., f(a_n) \rangle$ into $f(b) = \langle f(b_1), f(b_2), ..., f(b_n) \rangle$.

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is monotonically increasing.

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

- Lemma 27.1

If a comparison network transforms the input $a = \langle a_1, a_2, ..., a_n \rangle$ into the output $b = \langle b_1, b_2, ..., b_n \rangle$, then for any monotonically increasing function f, the network transforms $f(a) = \langle f(a_1), f(a_2), ..., f(a_n) \rangle$ into $f(b) = \langle f(b_1), f(b_2), ..., f(b_n) \rangle$.

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

i < j, i > j

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function *f* as:

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function *f* as:

$$f(x) = egin{cases} 0 & ext{if } x \leq a_i, \ 1 & ext{if } x > a_i. \end{cases}$$

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function *f* as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

Since the network places a_i before a_i, by the previous lemma

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function *f* as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

• Since the network places a_i before a_i , by the previous lemma $\Rightarrow f(a_i)$ is placed before $f(a_i)$

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function *f* as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

- Since the network places *a_i* before *a_i*, by the previous lemma ⇒ *f*(*a_j*) is placed before *f*(*a_i*)
- But f(a_i) = 1 and f(a_i) = 0, which contradicts the assumption that the network sorts all sequences of 0's and 1's correctly

Some Basic (Recursive) Sorting Networks

Outline of this Course

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be <u>circularly</u> shifted to become monotonically increasing and then monotonically decreasing.

Sequences of one or two numbers are defined to be bitonic.

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Examples:

• $\langle 1,4,6,8,3,2\rangle$?

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ▲ (1,4,6,8,3,2) ✓

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ▲ (1,4,6,8,3,2) ✓
- (6,9,4,2,3,5) ✓

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ▲ (1,4,6,8,3,2) ✓
- (6,9,4,2,3,5) ✓
- $\langle 9,8,3,2,4,6\rangle$?

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ▲ (1,4,6,8,3,2) ✓
- (6,9,4,2,3,5) ✓
- $\langle 9, 8, 3, 2, 4, 6 \rangle$ \checkmark

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- $\langle 1, 4, 6, 8, 3, 2 \rangle$ \checkmark
- (6,9,4,2,3,5) ✓
- $\langle 9, 8, 3, 2, 4, 6 \rangle$ \checkmark
- 4,5,7,1,2,6 ?

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- $\langle 1, 4, 6, 8, 3, 2 \rangle$ \checkmark
- (6,9,4,2,3,5) ✓
- $\langle 9, 8, 3, 2, 4, 6 \rangle$ \checkmark
- <u>(4,5,7,1,2,6)</u>

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- $\langle 1, 4, 6, 8, 3, 2 \rangle$ \checkmark
- (6,9,4,2,3,5) ✓
- (9,8,3,2,4,6) ✓
- 4,5,7,1,2,6
- binary sequences: ?

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- $\langle 1, 4, 6, 8, 3, 2 \rangle$ \checkmark
- (6,9,4,2,3,5) ✓
- (9,8,3,2,4,6) ✓
- 4,5,7,1,2,6
- binary sequences: $0^{i}1^{j}0^{k}$, or, $1^{i}0^{j}1^{k}$, for $i, j, k \ge 0$.

- Half-Cleaner -

Half-Cleaner A half-cleaner is a comparison network of depth 1 in which input wire *i* is compared with wire i + n/2 for i = 1, 2, ..., n/2. We always assume that *n* is even.

- Half-Cleaner

- Half-Cleaner

- Half-Cleaner

Half-Cleaner

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire *i* is compared with wire i + n/2 for i = 1, 2, ..., n/2.

- Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0's and 1's, then the output satisfies the following properties:

- both the top half and the bottom half are bitonic,
- every element in the top is not larger than any element in the bottom,
- at least one half is clean.

- Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire *i* is compared with wire i + n/2 for i = 1, 2, ..., n/2.

- Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0's and 1's, then the output satisfies the following properties:

- both the top half and the bottom half are bitonic,
- every element in the top is not larger than any element in the bottom,
- at least one half is clean.

W.I.o.g. assume that the input is of the form $0^{i}1^{j}0^{k}$, for some $i, j, k \ge 0$.

This suggests a recursive approach, since it now suffices to sort the top and bottom half separately.

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + 1 & \text{if } n = 2^k. \end{cases}$$

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + 1 & \text{if } n = 2^k. \end{cases}$$

Henceforth we will always assume that n is a power of 2.

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + 1 & \text{if } n = 2^k. \end{cases}$$

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

Henceforth we will always assume that n is a power of 2.

Merging Networks -

- can merge two sorted input sequences into one sorted output sequences
- will be based on a modification of BITONIC-SORTER[n]

Merging Networks -

- can merge two sorted input sequences into one sorted output sequences
- will be based on a modification of BITONIC-SORTER[n]

Merging Networks

- can merge two sorted input sequences into one sorted output sequences
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

• consider two given sequences X = 00000111, Y = 00001111

Merging Networks

- can merge two sorted input sequences into one sorted output sequences
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

- consider two given sequences X = 00000111, Y = 00001111
- concatenating X with Y^R (the reversal of Y) \Rightarrow 0000011111110000

Merging Networks

- can merge two sorted input sequences into one sorted output sequences
- will be based on a modification of BITONIC-SORTER[n]

Merging Networks

- can merge two sorted input sequences into one sorted output sequences
- will be based on a modification of BITONIC-SORTER[n]

• Given two sorted sequences $\langle a_1, a_2, \ldots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \ldots, a_n \rangle$

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort (a₁, a₂, ..., a_{n/2}, a_n, a_{n-1}, ..., a_{n/2+1})

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \ldots, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $(a_1, a_2, \ldots, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+1})$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[*n*] compares inputs *i* and n i for i = 1, 2, ..., n/2

- Given two sorted sequences $\langle a_1, a_2, \ldots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \ldots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \ldots, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[*n*] compares inputs *i* and n i for i = 1, 2, ..., n/2

Figure 27.10 Comparing the first stage of MERGER[*n*] with HALF-CLEANER[*n*], for n = 8. (a) The first stage of MERGER[*n*] transforms the two monotonic input sequences $\langle a_1, a_2, ..., a_{n/2} \rangle$ and $\langle a_n/2+1, a_n/2+2, ..., a_n \rangle$ into two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_n/2+1, b_n/2+2, ..., b_n \rangle$. (b) The equivalent operation for HALF-CLEANER[*n*]. The bitonic input sequence $\langle a_1, a_2, ..., a_{n/2} - a_{n/2}, a_{n/2}, a_{n/2} - a_{n/2}, a_{n/2} - a_{n/2}, a_{n/2} - a_{n/2} \rangle$ and $\langle b_n, b_{n-1}, ..., b_{n/2} + 1 \rangle$ is transformed into the two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_n, b_{n-1}, ..., b_{n/2+1} \rangle$.

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \ldots, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[*n*] compares inputs *i* and n i for i = 1, 2, ..., n/2

Figure 27.10 Comparing the first stage of MERGER[*n*] with HALF-CLEANER[*n*], for n = 8. (a) The first stage of MERGER[*n*] transforms the two monotonic input sequences $\langle a_1, a_2, ..., a_{n/2} \rangle$ and $\langle a_n/2+1, a_n/2+2, ..., a_n \rangle$ into two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_n/2+1, b_n/2+2, ..., b_n \rangle$. (b) The equivalent operation for HALF-CLEANER[*n*]. The bitonic input sequence $\langle a_1, a_2, ..., a_{n/2} \rangle$, $a_n/2, a_n, a_{n-1}, ..., a_{n/2+1} \rangle$ is transformed into the two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_n, b_{n-1}, ..., b_{n/2+1} \rangle$.

- Given two sorted sequences $\langle a_1, a_2, \ldots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \ldots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \ldots, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[*n*] compares inputs *i* and n i for i = 1, 2, ..., n/2

Figure 27.10 Comparing the first stage of MERGER[*n*] with HALF-CLEANER[*n*], for n = 8. (a) The first stage of MERGER[*n*] transforms the two monotonic input sequences $\langle a_1, a_2, ..., a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, ..., a_n \rangle$ into two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_{n/2+1}, b_{n/2+2}, ..., b_n \rangle$. (b) The equivalent operation for HALF-CLEANER[*n*]. The bitonic input sequence $\langle a_1, a_2, ..., a_{n/2}, a_{n,2}, a_{n-1}, ..., a_{n/2+2}, a_{n/2+1} \rangle$ is transformed into the two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_n, b_{n-1}, ..., b_{n/2+1} \rangle$.

- Given two sorted sequences $\langle a_1, a_2, \ldots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \ldots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \ldots, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- \Rightarrow First part of MERGER[*n*] compares inputs *i* and *n i* for *i* = 1, 2, ..., *n*/2
 - Remaining part is identical to BITONIC-SORTER[n]

Figure 27.10 Comparing the first stage of MERGER[*n*] with HALF-CLEANER[*n*], for n = 8. (a) The first stage of MERGER[*n*] transforms the two monotonic input sequences $\langle a_1, a_2, ..., a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, ..., a_n \rangle$ into two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_{n/2+1}, b_{n/2+2}, ..., b_n \rangle$. (b) The equivalent operation for HALF-CLEANER[*n*]. The bitonic input sequence $\langle a_1, a_2, ..., a_{n/2} \rangle$, $a_n \langle a_{n-1}, ..., a_{n/2+1} \rangle$, $a_{n/2+1} \rangle$ is transformed into the two bitonic sequences $\langle b_1, b_2, ..., b_{n/2} \rangle$ and $\langle b_n, b_{n-1}, ..., b_{n/2+1} \rangle$.

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence. The network MERGER[n] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to compare inputs i and n - i + 1 for i = 1, 2, ..., n/2. Here, n = 8. (a) The network decomposed into the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

Batcher's Sorting Network

- SORTER[n] is defined recursively:
 - If n = 2^k, use two copies of SORTER[n/2] to sort two subsequences of length n/2 each. Then merge them using MERGER[n].
 - If n = 1, network consists of a single wire.

BITONIC-SORTER[n/2]

BITONIC-SORTER[n/2]

SORTER[n/2]

Ajtai, Komlós, Szemerédi (1983) –

There exists a sorting network with depth $O(\log n)$.

— Ajtai, Komlós, Szemerédi (1983) ———

There exists a sorting network with depth $O(\log n)$.

Quite elaborate construction, and involves huges constants.

- Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

- Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$. Perfect halver of depth $\log_2 n$ exist \rightsquigarrow yields sorting networks of depth $\Theta((\log n)^2)$.

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Approximate Halver

An (n, ϵ) -approximate halver, $\epsilon < 1$, is a comparator network that for every k = 1, 2, ..., n/2 places at most ϵk of its k smallest keys in $b_{n/2+1}, ..., b_n$ and at most ϵk of its k largest keys in $b_1, ..., b_{n/2}$.

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparator network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Approximate Halver An (n, ϵ) -approximate halver, $\epsilon < 1$, is a comparator network that for every k = 1, 2, ..., n/2 places at most ϵk of its k smallest keys in $b_{n/2+1}, \ldots, b_n$ and at most ϵk of its k largest keys in $b_1, \ldots, b_{n/2}$.

We will prove that such networks can be constructed in constant depth!

