
I. Sorting Networks
Thomas Sauerwald

Easter 2015

Outline

Outline of this Course

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Sorting Networks Outline of this Course 2

(Tentative) List of Topics

Algorithms (I, II) Complexity Theory Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)
II. Matrix Multiplication (Serial and Parallel)
III. Linear Programming (Formulating, Applying and Solving)
IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same
numberring of theorems/lemmas etc.

I. Sorting Networks Outline of this Course 3

(Tentative) List of Topics

Algorithms (I, II) Complexity Theory Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)
II. Matrix Multiplication (Serial and Parallel)
III. Linear Programming (Formulating, Applying and Solving)
IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same
numberring of theorems/lemmas etc.

I. Sorting Networks Outline of this Course 3

(Tentative) List of Topics

Algorithms (I, II) Complexity Theory Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)
II. Matrix Multiplication (Serial and Parallel)
III. Linear Programming (Formulating, Applying and Solving)
IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same
numberring of theorems/lemmas etc.

I. Sorting Networks Outline of this Course 3

(Tentative) List of Topics

Algorithms (I, II) Complexity Theory Advanced Algorithms

I. Sorting Networks (Sorting, Counting, Load Balancing)
II. Matrix Multiplication (Serial and Parallel)
III. Linear Programming (Formulating, Applying and Solving)
IV. Approximation Algorithms: Covering Problems
V. Approximation Algorithms via Exact Algorithms
VI. Approximation Algorithms: Travelling Salesman Problem
VII. Approximation Algorithms: Randomisation and Rounding
VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same
numberring of theorems/lemmas etc.

I. Sorting Networks Outline of this Course 3

Outline

Outline of this Course

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Sorting Networks Introduction to Sorting Networks 2

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Sorting Networks Introduction to Sorting Networks 3

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Sorting Networks Introduction to Sorting Networks 3

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Sorting Networks Introduction to Sorting Networks 3

Overview: Sorting Networks

we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

execute one operation at a time

can handle arbitrarily large inputs

sequence of comparisons is not set in advance

(Serial) Sorting Algorithms

only perform comparisons

can only handle inputs of a fixed size

sequence of comparisons is set in advance

Comparisons can be performed in parallel

Sorting Networks

Allows to sort n numbers
in sublinear time!

Simple concept, but surprisingly deep and complex theory!

I. Sorting Networks Introduction to Sorting Networks 3

Comparison Networks

A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′

wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′

wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′
wire connect output of one comparator to the input of another

special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A comparison network consists solely of wires and comparators:
comparator is a device with, on given two inputs, x and y , returns two
outputs x ′ and y ′
wire connect output of one comparator to the input of another
special wires: n input wires a1, a2, . . . , an and n output wires b1, b2, . . . , bn

Comparison Network

27.1 Comparison networks 705

comparator

(a) (b)

7

3

3

7
 xx

yy

x ′ = min(x, y)x ′ = min(x, y)

y′ = max(x, y)y′ = max(x, y)

Figure 27.1 (a) A comparator with inputs x and y and outputs x ′ and y′. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x ′ = 3, y′ = 7 are shown.

A comparison network is composed solely of wires and comparators. A compara-
tor, shown in Figure 27.1(a), is a device with two inputs, x and y, and two outputs,
x ′ and y′, that performs the following function:

x ′ = min(x, y) ,

y′ = max(x, y) .

Because the pictorial representation of a comparator in Figure 27.1(a) is too
bulky for our purposes, we shall adopt the convention of drawing comparators as
single vertical lines, as shown in Figure 27.1(b). Inputs appear on the left and
outputs on the right, with the smaller input value appearing on the top output and
the larger input value appearing on the bottom output. We can thus think of a
comparator as sorting its two inputs.

We shall assume that each comparator operates in O(1) time. In other words,
we assume that the time between the appearance of the input values x and y and
the production of the output values x ′ and y′ is a constant.

A wire transmits a value from place to place. Wires can connect the output
of one comparator to the input of another, but otherwise they are either network
input wires or network output wires. Throughout this chapter, we shall assume
that a comparison network contains n input wires a1, a2, . . . , an , through which
the values to be sorted enter the network, and n output wires b1, b2, . . . , bn , which
produce the results computed by the network. Also, we shall speak of the input
sequence 〈a1, a2, . . . , an〉 and the output sequence 〈b1, b2, . . . , bn〉, referring to
the values on the input and output wires. That is, we use the same name for both a
wire and the value it carries. Our intention will always be clear from the context.

Figure 27.2 shows a comparison network, which is a set of comparators inter-
connected by wires. We draw a comparison network on n inputs as a collection
of n horizontal lines with comparators stretched vertically. Note that a line does
not represent a single wire, but rather a sequence of distinct wires connecting vari-
ous comparators. The top line in Figure 27.2, for example, represents three wires:
input wire a1, which connects to an input of comparator A; a wire connecting the
top output of comparator A to an input of comparator C; and output wire b1, which
comes from the top output of comparator C . Each comparator input is connected

operates in O(1)

Convention: use the same name for both a wire and its value.

A sorting network is a comparison network which
works correctly (that is, it sorts every input)

I. Sorting Networks Introduction to Sorting Networks 4

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

D

DD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

D

D

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

DD

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

DD

DD

D

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F

F
F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:

Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth

0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0

1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1

1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1

2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2

2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2

3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

a1 b1

a2 b2

a3 b3

a4 b4

D

D

DDD

A

B

C

E

A horizontal line represents
a sequence of distinct wires

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

This network is in fact a sorting network!

depth 0 1 1 2 2 3

Depth of a wire:
Input wire has depth 0

If a comparator has two inputs of depths dx and dy , then outputs have
depth max{dx , dy}+ 1

Maximum depth of an output
wire equals total running time

Interconnections between comparators
must be acyclic

X

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

F
F

F

I. Sorting Networks Introduction to Sorting Networks 5

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

I. Sorting Networks Introduction to Sorting Networks 6

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

I. Sorting Networks Introduction to Sorting Networks 6

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

710 Chapter 27 Sorting Networks

f (x)

f (y)

min(f (x), f (y)) = f (min(x, y))

max(f (x), f (y)) = f (max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

To prove the claim, consider a comparator whose input values are x and y. The
upper output of the comparator is min(x, y) and the lower output is max(x, y).
Suppose we now apply f (x) and f (y) to the inputs of the comparator, as is shown
in Figure 27.4. The operation of the comparator yields the value min(f (x), f (y))
on the upper output and the value max(f (x), f (y)) on the lower output. Since f
is monotonically increasing, x ≤ y implies f (x) ≤ f (y). Consequently, we have
the identities

min(f (x), f (y)) = f (min(x, y)) ,

max(f (x), f (y)) = f (max(x, y)) .

Thus, the comparator produces the values f (min(x, y)) and f (max(x, y)) when
f (x) and f (y) are its inputs, which completes the proof of the claim.
We can use induction on the depth of each wire in a general comparison network

to prove a stronger result than the statement of the lemma: if a wire assumes the
value ai when the input sequence a is applied to the network, then it assumes the
value f (ai) when the input sequence f (a) is applied. Because the output wires are
included in this statement, proving it will prove the lemma.
For the basis, consider a wire at depth 0, that is, an input wire ai . The result

follows trivially: when f (a) is applied to the network, the input wire carries f (ai).
For the inductive step, consider a wire at depth d, where d ≥ 1. The wire is the
output of a comparator at depth d, and the input wires to this comparator are at a
depth strictly less than d. By the inductive hypothesis, therefore, if the input wires
to the comparator carry values ai and a j when the input sequence a is applied,
then they carry f (ai) and f (a j) when the input sequence f (a) is applied. By
our earlier claim, the output wires of this comparator then carry f (min(ai , a j))
and f (max(ai , a j)). Since they carry min(ai , a j) and max(ai , a j) when the input
sequence is a, the lemma is proved.

As an example of the application of Lemma 27.1, Figure 27.5(b) shows the sort-
ing network from Figure 27.2 (repeated in Figure 27.5(a)) with the monotonically
increasing function f (x) = #x/2$ applied to the inputs. The value on every wire
is f applied to the value on the same wire in Figure 27.2.
When a comparison network is a sorting network, Lemma 27.1 allows us to

prove the following remarkable result.

I. Sorting Networks Introduction to Sorting Networks 6

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

If a comparison network transforms the input a = 〈a1, a2, . . . , an〉 into
the output b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing
function f , the network transforms f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into
f (b) = 〈f (b1), f (b2), . . . , f (bn)〉.

Lemma 27.1

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

I. Sorting Networks Introduction to Sorting Networks 6

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma

⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma
⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

If a comparison network with n inputs sorts all 2n possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Theorem 27.2 (Zero-One Principle)

Proof:

For the sake of contradiction, suppose the network does not correctly sort.

Let a = 〈a1, a2, . . . , an〉 be the input with ai < aj , but the network places aj

before ai in the output

Define a monotonically increasing function f as:

f (x) =

{
0 if x ≤ ai ,
1 if x > ai .

Since the network places aj before ai , by the previous lemma
⇒ f (aj) is placed before f (ai)

But f (aj) = 1 and f (ai) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly

I. Sorting Networks Introduction to Sorting Networks 7

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network ???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Sorting Networks Introduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Sorting Networks Introduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network ???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Sorting Networks Introduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Sorting Networks Introduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Bubble Sort

1
2
3
4
5

n − 1
n

n + 1

n-wire Sorting Network

???

Insertion Sort

These are Sorting Networks, but with depth Θ(n).

I. Sorting Networks Introduction to Sorting Networks 8

Outline

Outline of this Course

Introduction to Sorting Networks

Batcher’s Sorting Network

Counting Networks

I. Sorting Networks Batcher’s Sorting Network 9

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉
〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 ?

〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X

〈6, 9, 4, 2, 3, 5〉
〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 ?

〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X

〈9, 8, 3, 2, 4, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 ?

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X
〈4, 5, 7, 1, 2, 6〉 ?

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

((((((〈4, 5, 7, 1, 2, 6〉

binary sequences:

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

((((((〈4, 5, 7, 1, 2, 6〉
binary sequences: ?

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Bitonic Sequence

Sequences of one or two numbers are defined to be bitonic.

Examples:

〈1, 4, 6, 8, 3, 2〉 X
〈6, 9, 4, 2, 3, 5〉 X
〈9, 8, 3, 2, 4, 6〉 X

((((((〈4, 5, 7, 1, 2, 6〉
binary sequences: 0i1j0k , or, 1i0j1k , for i, j, k ≥ 0.

I. Sorting Networks Batcher’s Sorting Network 10

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2 for i = 1, 2, . . . , n/2.

Half-Cleaner

We always assume that n is even.

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

both the top half and the bottom half are bitonic,

every element in the top is not larger than any element in the bottom,

at least one half is clean.

Lemma 27.3

27.3 A bitonic sorting network 713

0
0
1
1
1
0
0

0
0
0
0
1
0
1

0 1

bitonic

bitonic,
clean

bitonic

0
0
1
1
1
1
1

0
0
1
0
1
1
1

0 1

bitonic

bitonic,
clean

bitonic

Figure 27.7 The comparison network HALF-CLEANER[8]. Two different sample zero-one input
and output values are shown. The input is assumed to be bitonic. A half-cleaner ensures that ev-
ery output element of the top half is at least as small as every output element of the bottom half.
Moreover, both halves are bitonic, and at least one half is clean.

even.) Figure 27.7 shows HALF-CLEANER[8], the half-cleaner with 8 inputs and
8 outputs.
When a bitonic sequence of 0’s and 1’s is applied as input to a half-cleaner, the

half-cleaner produces an output sequence in which smaller values are in the top
half, larger values are in the bottom half, and both halves are bitonic. In fact, at
least one of the halves is clean—consisting of either all 0’s or all 1’s—and it is from
this property that we derive the name “half-cleaner.” (Note that all clean sequences
are bitonic.) The next lemma proves these properties of half-cleaners.

Lemma 27.3
If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the output
satisfies the following properties: both the top half and the bottom half are bitonic,
every element in the top half is at least as small as every element of the bottom
half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i and
i + n/2 for i = 1, 2, . . . , n/2. Without loss of generality, suppose that the in-
put is of the form 00 . . . 011 . . . 100 . . . 0. (The situation in which the input is of
the form 11 . . . 100 . . . 011 . . . 1 is symmetric.) There are three possible cases de-
pending upon the block of consecutive 0’s or 1’s in which the midpoint n/2 falls,
and one of these cases (the one in which the midpoint occurs in the block of 1’s) is
further split into two cases. The four cases are shown in Figure 27.8. In each case
shown, the lemma holds.

I. Sorting Networks Batcher’s Sorting Network 11

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.
714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.
714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form 0i1j0k , for some i, j, k ≥ 0.

714 Chapter 27 Sorting Networks

0

1

0

0

1
0

1 1

1

0 0

0

1

1
0

bitonic,
clean

bitonic

bitonic

divide compare combine

top top

bottom bottom

(a)

0

1

0

1bitonic

top top

bottom bottom

(b)

0

1 0

1 0

0
1

0

0
1

1

0
bitonic

top top

bottom bottom

(c)

0
10
0

0

0
1

0

0

0
1

0

0
1

0
bitonic

top top

bottom bottom

(d)

0
1 0
0

0

0
1

0

0

0
1

0

bitonic,
clean

bitonic

bitonic,
clean

bitonic

bitonic,
clean

bitonic

1

0

Figure 27.8 The possible comparisons in HALF-CLEANER[n]. The input sequence is assumed
to be a bitonic sequence of 0’s and 1’s, and without loss of generality, we assume that it is of the
form 00 . . . 011 . . . 100 . . . 0. Subsequences of 0’s are white, and subsequences of 1’s are gray. We
can think of the n inputs as being divided into two halves such that for i = 1, 2, . . . , n/2, inputs i
and i + n/2 are compared. (a)–(b) Cases in which the division occurs in the middle subsequence
of 1’s. (c)–(d) Cases in which the division occurs in a subsequence of 0’s. For all cases, every
element in the top half of the output is at least as small as every element in the bottom half, both
halves are bitonic, and at least one half is clean.

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

I. Sorting Networks Batcher’s Sorting Network 12

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Sorting Networks Batcher’s Sorting Network 13

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Sorting Networks Batcher’s Sorting Network 13

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Sorting Networks Batcher’s Sorting Network 13

The Bitonic Sorter27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

Recursive Formula for depth D(n):

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k .

Henceforth we will always
assume that n is a power of 2.

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

I. Sorting Networks Batcher’s Sorting Network 13

Merging Networks

can merge two sorted input sequences into one sorted output
sequences

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

can merge two sorted input sequences into one sorted output
sequences

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

can merge two sorted input sequences into one sorted output
sequences

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

can merge two sorted input sequences into one sorted output
sequences

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

can merge two sorted input sequences into one sorted output
sequences

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

can merge two sorted input sequences into one sorted output
sequences

will be based on a modification of BITONIC-SORTER[n]

Merging Networks

Basic Idea:

consider two given sequences X = 00000111, Y = 00001111

concatenating X with Y R (the reversal of Y)⇒ 0000011111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y , it suf-
fices to perform a bitonic sort on X concatenated with Y R .

I. Sorting Networks Batcher’s Sorting Network 14

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉

We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉

Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2

Remaining part is identical to BITONIC-SORTER[n]

27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2, . . . , an〉
We know it suffices to bitonically sort 〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉
Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

⇒ First part of MERGER[n] compares inputs i and n − i for i = 1, 2, . . . , n/2
Remaining part is identical to BITONIC-SORTER[n]27.4 A merging network 717

0
0
1
1
0
0
0
1

0
0
0
0
1
1
0
1

a1
a2
a3
a4
a5
a6
a7
a8

b1
b2
b3
b4
b5
b6
b7
b8

(a)

bitonic

bitonic

sorted

sorted

0
0
1
1
1
0
0
0

0
0
0
0
1
0
1
1

a2
a3
a4

a5

a6

a7

a8

b1
b2
b3
b4

b5

b6

b7

b8

(b)

bitonic

bitonic

bitonic

a1

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences 〈a1, a2, . . . , an/2〉
and 〈an/2+1, an/2+2, . . . , an〉 into two bitonic sequences 〈b1, b2, . . . , bn/2〉 and 〈bn/2+1, bn/2+2,
. . . , bn〉. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
〈a1, a2, . . . , an/2−1, an/2, an , an−1, . . . , an/2+2, an/2+1〉 is transformed into the two bitonic se-
quences 〈b1, b2, . . . , bn/2〉 and 〈bn , bn−1, . . . , bn/2+1〉.

We can construct MERGER[n] by modifying the first half-cleaner of BITONIC-
SORTER[n]. The key is to perform the reversal of the second half of the inputs
implicitly. Given two sorted sequences 〈a1, a2, . . . , an/2〉 and 〈an/2+1, an/2+2,
. . . , an〉 to be merged, we want the effect of bitonically sorting the sequence
〈a1, a2, . . . , an/2, an, an−1, . . . , an/2+1〉. Since the first half-cleaner of BITONIC-
SORTER[n] compares inputs i and n/2 + i , for i = 1, 2, . . . , n/2, we make the
first stage of the merging network compare inputs i and n − i + 1. Figure 27.10
shows the correspondence. The only subtlety is that the order of the outputs from
the bottom of the first stage of MERGER[n] are reversed compared with the order
of outputs from an ordinary half-cleaner. Since the reversal of a bitonic sequence
is bitonic, however, the top and bottom outputs of the first stage of the merging
network satisfy the properties in Lemma 27.3, and thus the top and bottom can be
bitonically sorted in parallel to produce the sorted output of the merging network.
The resulting merging network is shown in Figure 27.11. Only the first stage of

MERGER[n] is different from BITONIC-SORTER[n]. Consequently, the depth of
MERGER[n] is lg n, the same as that of BITONIC-SORTER[n].

Exercises

27.4-1
Prove an analog of the zero-one principle for merging networks. Specifically, show
that a comparison network that can merge any two monotonically increasing se-

Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (2/2)

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

I. Sorting Networks Batcher’s Sorting Network 16

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]

merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Sorting Networks Batcher’s Sorting Network 17

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Sorting Networks Batcher’s Sorting Network 17

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Sorting Networks Batcher’s Sorting Network 17

Construction of a Sorting Network

1. BITONIC-SORTER[n]
sorts any bitonic sequence
depth log n

2. MERGER[n]
merges two sorted input sequences
depth log n

Main Components

SORTER[n] is defined recursively:
If n = 2k , use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].
If n = 1, network consists of a single wire.

Batcher’s Sorting Network

can be seen as a parallel version of merge sort

27.3 A bitonic sorting network 715

0
0
0
0
1
0
1
1

0
0
0
0
1
0
1
1

0
0
1
1
1
0
0
0

0
0
0
0
0
1
1
1

(b)(a)

bitonic sorted

BITONIC-
SORTER[n/2]

HALF-
CLEANER[n]

BITONIC-
SORTER[n/2]

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 27.9, we can build
a bitonic sorter, which is a network that sorts bitonic sequences. The first stage
of BITONIC-SORTER[n] consists of HALF-CLEANER[n], which, by Lemma 27.3,
produces two bitonic sequences of half the size such that every element in the
top half is at least as small as every element in the bottom half. Thus, we can
complete the sort by using two copies of BITONIC-SORTER[n/2] to sort the two
halves recursively. In Figure 27.9(a), the recursion has been shown explicitly, and
in Figure 27.9(b), the recursion has been unrolled to show the progressively smaller
half-cleaners that make up the remainder of the bitonic sorter. The depth D(n) of
BITONIC-SORTER[n] is given by the recurrence

D(n) =
{
0 if n = 1 ,
D(n/2) + 1 if n = 2k and k ≥ 1 ,

whose solution is D(n) = lg n.
Thus, a zero-one bitonic sequence can be sorted by BITONIC-SORTER, which

has a depth of lg n. It follows by the analog of the zero-one principle given as
Exercise 27.3-6 that any bitonic sequence of arbitrary numbers can be sorted by
this network.

Exercises

27.3-1
How many zero-one bitonic sequences of length n are there?

718 Chapter 27 Sorting Networks

0
0
1
0
1
1
1
1

0
0
1
0
1
1
1
1

0
0
1
1
0
1
1
1

0
0
0
1
1
1
1
1

(b)(a)

sorted

sorted

sorted

BITONIC-
SORTER[n/2]

BITONIC-
SORTER[n/2]

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[n] can be viewed as BITONIC-SORTER[n]with the first half-cleaner altered to
compare inputs i and n− i+1 for i = 1, 2, . . . , n/2. Here, n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

quences of 0’s and 1’s can merge any two monotonically increasing sequences of
arbitrary numbers.

27.4-2
How many different zero-one input sequences must be applied to the input of a
comparison network to verify that it is a merging network?

27.4-3
Show that any network that can merge 1 item with n − 1 sorted items to produce a
sorted sequence of length n must have depth at least lg n.

27.4-4 !
Consider a merging network with inputs a1, a2, . . . , an , for n an exact power of 2,
in which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and
〈a2, a4, . . . , an〉. Prove that the number of comparators in this kind of merging
network is "(n lg n). Why is this an interesting lower bound? (Hint: Partition the
comparators into three sets.)

27.4-5 !
Prove that any merging network, regardless of the order of inputs, requires
"(n lg n) comparators.

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

1.

2.

I. Sorting Networks Batcher’s Sorting Network 17

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

720 Chapter 27 Sorting Networks

1
0
1
0
1
0
0
0

0
0
0
0
0
1
1
1

0
1
0
1
0
1
0
0

0
0
1
1
0
0
0
1

1 2 2 3 4 4 4 4 5 5 6depth
(c)

(a) (b)

SORTER[n/2]

MERGER[n] MERGER[8]

MERGER[2]

SORTER[n/2]

MERGER[2]

MERGER[2]

MERGER[2]

MERGER[4]

MERGER[4]

Figure 27.12 The sorting network SORTER[n] constructed by recursively combining merging net-
works. (a) The recursive construction. (b)Unrolling the recursion. (c) Replacing the MERGER boxes
with the actual merging networks. The depth of each comparator is indicated, and sample zero-one
values are shown on the wires.

27.5-2
Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

27.5-3
Suppose that we have 2n elements 〈a1,a2, . . . ,a2n〉 and wish to partition them into
the n smallest and the n largest. Prove that we can do this in constant additional
depth after separately sorting 〈a1, a2, . . . , an〉 and 〈an+1, an+2, . . . , a2n〉.

27.5-4 !
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the
depth of a merging network with 2k inputs. Suppose that we have a sequence of n
numbers to be sorted and we know that every number is within k positions of its
correct position in the sorted order. Show that we can sort the n numbers in depth
S(k) + 2M(k).

Recursion for D(n):

D(n) =

{
0 if n = 1,
D(n/2) + log n if n = 2k .

Solution: D(n) = Θ(log2 n).

SORTER[n] has depth Θ(log2 n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network 18

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

There exists a sorting network with depth O(log n).
Ajtai, Komlós, Szemerédi (1983)

Quite elaborate construction, and involves huges constants.

A perfect halver is a comparator network that, given any input, places the
n/2 smaller keys in b1, . . . , bn/2 and the n/2 larger keys in bn/2+1, . . . , bn.

Perfect Halver

Perfect halver of depth log2 n exist yields sorting networks of depth Θ((log n)2).

An (n, ε)-approximate halver, ε < 1, is a comparator network that for
every k = 1, 2, . . . , n/2 places at most εk of its k smallest keys in
bn/2+1, . . . , bn and at most εk of its k largest keys in b1, . . . , bn/2.

Approximate Halver

We will prove that such networks can be constructed in constant depth!

I. Sorting Networks Batcher’s Sorting Network 19

	Outline of this Course
	Introduction to Sorting Networks
	Batcher's Sorting Network

