I. Sorting Networks

Thomas Sauerwald

Easter 2015

5.7 UNIVERSITY OF
2P CAMBRIDGE

Outline

QOutline of this Course

I. Sorting Networks Outline of this Course

(Tentative) List of Topics

[Algorithms (I, Il)] [Complexity Theory j [Advanced Algorithms]
__— __—

% I. Sorting Networks Outline of this Course 3

(Tentative) List of Topics

[Algorithms (I, Il)] [Complexity Theory j [Advanced Algorithms]
__— __—

I. Sorting Networks (Sorting, Counting, Load Balancing) — 2
II. Matrix Multiplication (Serial and Parallel)

Il. Linear Programming (Formulating, Apnlving and Solving) — ’2
= V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem

= VII. Approximation Algorithms: Randomisation and Rounding

= VIII. Approximation Algorithms: MAX-CUT Problem

% I. Sorting Networks Outline of this Course s

(Tentative) List of Topics

[Algorithms (I, Il)] [Complexity Theory j [Advanced Algorithms]
__— ——

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication (Serial and Parallel)

lll. Linear Programming (Formulating, Applying and Solving)

= V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem

= VII. Approximation Algorithms: Randomisation and Rounding
= VIII. Approximation Algorithms: MAX-CUT Problem

Closely follow the book and use the same
numberring of theorems/lemmas etc.

ALGORITHMS
[]
—— -

% I. Sorting Networks Outline of this Course 3

(Tentative) List of Topics

[Algorithms (I, Il)] [Complexity Theory] [Advanced Algorithms]
7 B

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication (Serial and Parallel)

[l Linear Programming (Formulating, Applying and Solving) 6
= V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem 6—-
= VII. Approximation Algorithms: Randomisation and Rounding

= VIII. Approximation Algorithms: MAX-CUT Problem ﬁ_

Closely follow the book and use the same
ALGORITHMS numberring of theorems/lemmas etc.

J‘I% I. Sorting Networks Outline of this Course 3

Outline

Introduction to Sorting Networks

I. Sorting Networks Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time

= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

.-,,',-, I. Sorting Networks Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size
= sequence of comparisons is set in advance

.-,,!,-, I. Sorting Networks Introduction to Sorting Networks

Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons
= can only handle inputs of a fixed size

= sequence of comparisons is set in advance Allows to sort n numbers

= Comparisons can be performed in parallel in sublinear time!

.-,,',-, I. Sorting Networks Introduction to Sorting Networks 3

Overview: Sorting Networks

(Serial) Sorting Algorithms

Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

= we already know several (comparison-based) sorting algorithms:

Sorting Networks
= only perform comparisons
= can only handle inputs of a fixed size

= Comparisons can be performed in parallel

= sequence of comparisons is set in advance [ajows to sort n numbers
in sublinear time!

]

o\

A}

[Simple concept, but surprisingly deep and complex theory!j

\-,,I,;, I. Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

,,a < I. Sorting Networks Introduction to Sorting Networks

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

" comparator is a device with, on given two inputs, x and y, returns two
outputs x’ and y

x x 1 A 3 = min(x, y)
compa.rator 3 \ 7
y y ! y' = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

]

-,,a,;, I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y, returns two
operates in O(1)] outputs x’ and y”

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

]

-,,a,;, I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ and y’
= wire connect output of one comparator to the input of another

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

]

-,,a,;, I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ and y’
= wire connect output of one comparator to the input of another

= special wires: ninput wires ay, ap, . . ., an and n output wires by, bo, ..., by
X ——>| > x’ = min(x, y) x L a3 oy min(x, y)
comparator 3 7
y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

]

-,,a,;, I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

Comparison Network

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ and y’
= wire connect output of one comparator to the input of another
= special wires: n input wires ay, ap, . . ., an and n output wires by, bo, ..., bp

AN
[Convention: use the same name for both a wire and its value.]

7 3

X —> > x’ = min(x, y) x ———e——— x' =min(x, y)
comparator 3 7

y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

Y

\-,,',-, I. Sorting Networks Introduction to Sorting Networks 4

Comparison Networks

A sorting network is a comparison network which
Comparison Network works correctly (that is, it sorts every input)

= A comparison network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ and y’
= wire connect output of one comparator to the input of another

= special wires: n input wires ay, ap, . . ., an and n output wires by, bo, ..., bp
X —> > x’ = min(x, y) x L a3 oy min(x, y)
comparator 3 7
y ——> > y = max(x, y) y 2oy = max(x, y)
(@) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x" = 3, y’ = 7 are shown.

Y

\-,,',-, I. Sorting Networks Introduction to Sorting Networks 4

Example of a Comparison Network (Figure 27.2)

a

a

as

as

by

bo

ba

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

A horizontal line represents
a sequence of distinct wires

v
a m—— - by
A C
a by
E
a bs
B D
as by

ggg I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

L

A horizontal line represents
a sequence of distinct wires

]

v
a
A C
a
E
as
B D
as

by

bo

ba

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

L

A horizontal line represents
a sequence of distinct wires

]

v
a ——
A C
a
E
as
B D
as

by

bo

ba

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

L

A horizontal line represents
a sequence of distinct wires

]

v
a
A C
a
E
as
B D
as

by

bo

ba

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic

J

(7
a by
A C
a b2
E
as bs
D
as by

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic

J

v
a by
A C
a T . b
E
as — bs
D
as b

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic

J

v
ay by
A C
a -~ by
E
as — be
as . b

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

must be acyclic

[Interconnections between comparators}

74
ay by
A C
a o LY b
E
ol b
B
as . by

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v
a by
A C
a . . b
E
PN I S bs
B
as . b

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic

J

v
ay by
A C
a . by
D E
as — be
a, bs

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic

J

74
a by
A C
a o by
D E
a; - bs
a, bs

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic v/

J

v
a by
A C
a T . b
E
as — bs
D
as b

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators

must be acyclic

J

74
ay by
A C
a s 1 b
=
a; ‘ ¢ bs
B(D
ay . by

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

[V

a by
A C

a . t— b

=
as ‘ . bs
B(D
as . i by

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v
aj b1
A C
a ’ ¢ b
| e
as ’ . bs
B(D
as N— by

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v
aj b1
A C
a » so—b
| e
as f bs
B(D{
as . i . b4

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

74

aj b1
A C

a » so—b

| e
as . ‘ bs
B D{
as . i . b4

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v

aj b1
A C

a ’ ¢ b

| e
QG ————o . ‘ bs
B D{
as *—s - by

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

v

aj b1
A C

a ’ ¢ b

| e
QG ————o . ‘ bs
B D{
as * e - by

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

[Interconnections between comparators}

must be acyclic

v

aj b1
A C

a ’ ¢ b

| e
Q3 ———— L ‘ bs
B
as * e - by

[

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

}

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

"ot that 1t S @ Sowﬁn\cj Netvor K-
a in9,,) muh@,@ﬁﬁ,}l

ZJ
A C
a R by
]E
as o bs
B D
as

/ by
qutqf*/ 72,93, Qy)

o
I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9
a
5 A C
a
2 E
as
6 B D
as

by

bo

ba

ggg I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5
a
5 A 9 C
a
2 2 E
as
6 B 6 b
as

by

bo

ba

ggg I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2
a

5 A 9 C 6
a

2 2 5 E
as

6 B 6 D9
as

by

bo

ba

ggg I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 5 2

aj b1
5 A 9 C 6

as bo
2 2 5 E

as bs
6 B 6 b 9

as b4

N

[This network is in fact a sorting network!]

E:g I. Sorting Networks Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 2

aj b1
5 A C 6

as bo
2 5 E

as bs
6 b 9

as b4

N

Depth of a wire:

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

9 2

aj b1
5 A C 6

as bo
2 5 E

as b3
6 b 9

as b4

N

Depth of a wire:

= Input wire has depth 0

I. Sorting Networks

Introduction to Sorting Networks

Example of a Comparison Network (Figure 27.2)

w05 9 2 2b1

a SOA /;9 ’ 62 35b2

w20 Y E56b3

a46(>‘286{! D92 9b4
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

%‘ I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth 0 1
N

Depth of a wire:
= Input wire has depth 0

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

ao by
2 2 5 E 6

as bs
6 B 6 b 9 9

as b4

depth 0 L
N

Depth of a wire:
= Input wire has depth 0
= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as bs
6 B 6 b 9 9

as b4

depth 0 1 1 2
N

Depth of a wire:
= Input wire has depth 0
= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as bs
6 B 6 b 9 9

as b4

depth 0 1 1 2 2
N

Depth of a wire:
= Input wire has depth 0
= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

9 5 2 2

aj b1
5 A 9 C 6 5

as bo
2 2 5 E 6

as b3
6 B 6 b 9 9

as b4

depth O 11 2 2 3
N

Depth of a wire:
= Input wire has depth 0
= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

% I. Sorting Networks Introduction to Sorting Networks 5

Example of a Comparison Network (Figure 27.2)

2 2
a 2 b
C
6
ao f AS 2
E
2 2 5 63
as b3
6 B 6 b 9 97
as b4
depth O 11 2 2 3
. Maximum depth of an output
D?ﬁzgﬁf;ixr&s depth 0 wire equals total running time

= |f a comparator has two inputs of depths dx and d,, then outputs have
depth max{dy, d,} + 1

%‘ I. Sorting Networks Introduction to Sorting Networks 5

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

-,,a,-,, I. Sorting Networks Introduction to Sorting Networks 6

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

—— Lemma 27.1

If a comparison network transforms the input a = {(ai, a,...,an) into
the output b = (b1, bs, ..., bn), then for any monotonically increasing

function f, the network transforms f(a) (f(a1),f(a2), ..., f(an)) into
l(_tf_) (f(b1), f(b2), - - -, f(bn)).
) Vi
R

{L - \f
L) — £()

J‘I% I. Sorting Networks Introduction to Sorting Networks 6

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

—— Lemma 27.1

If a comparison network transforms the input a = {(ai, a,...,an) into
the output b = (b1, bs, ..., bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai),f(a2),...,f(an)) into
f(b) = (f(b1), f(b2), ..., f(bn)).

f(2) F[é)

() ———¢——— min(f(x), f(v)) = f(min(x, y))

JLQ) ——————— max(f(x), f(») = f(max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

1
I. Sorting Networks Introduction to Sorting Networks 6

Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

—— Lemma 27.1

If a comparison network transforms the input a = {(ai, a,...,an) into
the output b = (b1, bs, ..., bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(ai1),f(a2),...,f(as)) into

f(b) = (f(b1), f(be), - .., F(bn)).

\

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly. —

ggg I. Sorting Networks Introduction to Sorting Networks 6

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

I. Sorting Networks Introduction to Sorting Networks 7

£ Fd
Gl
VY

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:

ggg I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

ggg I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:) (d"} P> '
= For the sake of contradiction, suppose the network doés not correctly sort.

* Leta= (a1, ay, ..., an) be the input withi< a;, but the network places a;
before a; in the output —

ggg" I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

ggg' I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

Egg' I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

= Since the network places a; before a;, by the previous lemma

Egg' I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

= Since the network places a; before a;, by the previous lemma
= f(rf) is placed before f(a;)

T

Egg' I. Sorting Networks Introduction to Sorting Networks 7

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

» Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

<
F(x) = 0 !fx < a,
1 ifx> a;.

Since the network places a; before a;, by the previous lemma

= f(a)) is placed before f(a;)

= But f(g)) = 1 and f(a;) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly O

E:g' I. Sorting Networks Introduction to Sorting Networks 7

Some Basic (Recursive) Sorting Networks

1 -

21 I -

3 ! —

g | n-wire Sorting Network | 7279
n—1 L

n l ! —
n+1

Egg' I. Sorting Networks Introduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

1 —

- —

3 I *

g ! n-wire Sorting Network |~ Bubble Sort
n-1 —

n — *
n+1

Egg' I. Sorting Networks Introduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

OO =

n-wire Sorting Network | Bubble Sort

n—1—

n —

n-wire Sorting Network

! 22?

n+1

I. Sorting Networks Ini

troduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

OO =

n-wire Sorting Network | Bubble Sort

n—1—

n —

n-wire Sorting Network

| Insertion Sort

n+1

I. Sorting Networks Ini

troduction to Sorting Networks 8

Some Basic (Recursive) Sorting Networks

Bubble Sort

Insertion Sort

1 A . —
3 ! -3 —
g | n-wire Sorting Network
n—1 —
; ! — Ty
N1 2N v
(These are Sorting Networks, but with depthf ©(n).
- =
2 — 1 I
i 1
g n-wire Sorting Network |
n—1 -
n+1
Egg I. Sorting Networks Introduction to Sorting Networks 8

Outline

Batcher’s Sorting Network

I. Sorting Networks Batcher’s Sorting Network

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

o

[Sequences of one or two numbers are defined to be bitonic.]

J‘I% I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

.-,,I-, I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

.-,,!,;, I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
* (1,4,6,8,3,2) ?

.-,,!,;, I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
* (1,4,6,8,3,2) v

.-,,!,;, I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) v
* (6,9,4,2,3,5) 7

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:
= (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
* (9,8,3,2,4,6) ?

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
*= (9,8,3,2,4,6) v

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

= (1,4,6,8,3,2
* (6,9,4,2,3,5
*= (9,8,3,2,4,6

= (4,5,7.1,2,6

v
v
v
2
A=

- = = >

.-,,I-, I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
*= (9,8,3,2,4,6) v
. (4 427

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

» (1,4,6,8,3,2) v

* (6,9,4,2,3,5) v

*= (9,8,3,2,4,6) v

= (4 2]

= binary sequences: ?

I. Sorting Networks Batcher’s Sorting Network 10

Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-

ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

Examples:

* (1,4,6,8,3,2) v
* (6,9,4,2,3,5) v
*= (9,8,3,2,4,6) v
* (4.5 74276)

= binary sequences: 0'1/0%, or, 1'0/1%, for i,j, k > 0.

,,', I. Sorting Networks Batcher’s Sorting Network

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

-.,a,-,, I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,
N

LWe always assume that nis even.J

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

-,,a,-,, I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

bitonic

00 = = =0 0

-,,a,-,, I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire j + n/2fori=1,2,...,n/2.

0 — 0
0 0\ bitonic,
1 0 =
I 1 0
bitonic
1 1
0 0 L
bitonic
0 | (R —
0 — |

-,,a,;, I. Sorting Networks Batcher’s Sorting Network 1

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

0 — 0 0 — 0
0 0\ bitonic, 0 0 bitoni
. o clean . | itonic
L 1 0 L 1 0
bitonic bitonic
1 1 1 1
0 0 bitonic 1 1\ bitonic,
0 | itonic I | clean
0 — | 0 — |

I. Sorting Networks Batcher’s Sorting Network 11

Towards Bitonic Sorting Networks

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

—— Lemma 27.3 \

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is

\. J

bitonic, bitoni
clean itonic
bitonic bitonic,
itonic clean

I. Sorting Networks Batcher’s Sorting Network 11

bitonic

bitonic

oo == =—0 0
- - o - o o o °

O - = - - - o ©
—__ - — o = o o

Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.

—— Lemma 27.3 \

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

} bitonic

bitonic,
clean
bitonic bitonic,
1onic clean

I. Sorting Networks Batcher’s Sorting Network 11

bitonic

bitonic

oo == =—0 0
- - o - o o o °

O - = - - - o ©
—__ - — o = o o

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 01/0%, for some i, j, k > 0.]

E:g I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 01/0%, for some i, j, k > 0.]

divide compare combine
0 top bitonic,
clean
bitonic ‘E' sl IS
1= o
bitonic

n bottom

E:g 1. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

divide compare combine
0 top top 0 bitonic,
|| clean
bitonic | iyt it i | () n R T n
— — L
0 bottom bottom i bitonic
L L1]
(@)
0 . 0
[<P [1] / bitonic
- | L Do
bitonic { ™ e R [T 1| i ——
1 bitonic,
T bottom bottom clean
L ®) L

% I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 01/0%, for some i, j, k > 0.]

top top 0 bitonic,
0 [0] [0] clean
N N —

bitonic
bottom bottom o

[=]=]]

(©)

bitonic { e D [IO |18 [ETER | 18

bitonic
bottom bottom o

[0]]
1 top top 0 bitonic,
— [0] [0] clean

(d)

% I. Sorting Networks Batcher’s Sorting Network 12

Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0.]

top top bitonic,
0 [0] [0] clean
bitonic { wperde i — i o
! n n bitonic
1 bottom bottom
0
o (©)
[0]
1 top top bitonic,
— [0] [0] clean
bitonic { werde i — ——
0 o] o]
bottom bottom bitonic
o (d)

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

% I. Sorting Networks Batcher’s Sorting Network 12

The Bitonic Sorter

— 0 0 0
[0
BironIc- 0 0
SORTER[1/2] | 1 0 0
HALF- — 1 0 0
CLEANER[n] — 1 ! 0
Brronic- — 0 0 1
SORTER[n/2] | 0 1 1
0 1 1

(a) ; J

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

=
I. Sorting Networks Batcher’s Sorting Network 13

The Bitonic Sorter

| Brronic-
| SORTER[n/2]
HALF- 1
__| CLEANER[n]
| Brronic-
| SORTER[n/2]

(a)

bitonic

==l |~ |lole e |

S = =]

— =l |lole e |

9 9 o9 o

(b)

- - - o oo oo

sorted

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Recursive Formula for depth D(n):

D(n) =

0 ifn=1,
D(n/2) +1

if n =2k,

I. Sorting Networks

Batcher’s Sorting Network

The Bitonic Sorter

— | - 0 0 0 I 0
- | Bironic- — 0 0 0 0
— | SorTER[n/2] | — 1 0 0 I 0
—| HALF- 1 — bitoni 1 0 0 ol .
_ | CLeaNER[n] | L itonic) 1 1 I o [ore
]] BiToNIC- — 0 0 0 1
— | SORTER[n/2] | 0 1 1 1
— | | 0 1] L
@ (b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Henceforth we will always

Recursive Formula for depth D(n): assume that n is a power of 2.

Z
0 ifn=1,

P =1 pinj2) +1 it n= 2t

E:g I. Sorting Networks Batcher’s Sorting Network 13

The Bitonic Sorter

— | Brronic-
— | SORTER[n/2]
—| HALE- 1

_ | CLEANER[n] |

— | Brronic-
— L | SoRrTER[n/2]

(a)

bitonic sorted

S = =]
==l |~ |lole e |
— =l |lole e |
9 9 o9 o
- - - o oo oo

(b)

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[7/2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Recursive Formula for depth D(n):

D(n) =

Henceforth we will always
assume that n is a power of 2.
z
0 ifn=1,
D(n/2) +1 ifn=2%,

BITONIC-SORTER([n] has depth log n and sorts any zero-one bitonic sequence.

ggg I. Sorting Networks

Batcher’s Sorting Network 13

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

-.,a,-,, I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:

-.,a 5 I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

I. Sorting Networks Batcher’s Sorting Network

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111
= concatenating X with Y (the reversal of Y) = 0000011111110000

-,,a,;, I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

= concatenating X with Y (the reversal of Y) = 0000011111110000
S

L This sequence is bitonic!]

.-,,',-, I. Sorting Networks Batcher’s Sorting Network 14

Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

= concatenating X with Y (the reversal of Y) = 0000011111110000
S

LThis sequence is bitonic! J

fices to perform a bitonic sort on X concatenated with Y*.

{Hence in order to merge the sequences X and Y, it suf-

J

i
E:E I Sorting Networks Batcher’s Sorting Network 14

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

\-,,',-, I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (a1, @, ..., an/2, @n, 8n—1,- .., @n/24+1)

\-,,',-, I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

i
E:E I Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,8n,8n_1, ..., 8n/211)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs jand n—ifori=1,2,...,n/2

I. Sorting Networks Batcher’s Sorting Network 15

£ Fd
Gl
YEY

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

0 0, 0 b,
0 b, 0 0 b,
0 by bitonic 1 0 by bitonic
0 1 0
ay b, - by
as I] b bitonic 1 1 B
dg 1 bg I 0 0 by -
sorted 0l bitonic 0 Ly bitonic
7 6,
L] b, 0 L bs

(b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (ap /241, Gn/242, - - -» an) into two bitonic sequences (b, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER([n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gnj2s ns Ap—1s - - - > Anj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bnja+1).

I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

r
a a 0 0 b,
0 0
a a b
sorted a‘ B itonic”/ 2 aj 1 0 bj i‘y{nig] &
Ayl - ay 1 0 " by
bitonic 1 1
a 5 bg
a - a7 0 0 by -
sorted tonic bifonic
a " /L ag 0 1 be
a as 0 1 N
(a) (b)

[Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.]

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (ap /241, /o425 - » ap) into two bitonic sequences (by, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER([n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gnj2s ns Ap—1s - - - > Anj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bnja+1).

ggg I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)

= We know it suffices to bitonically sort (ay, @, ..., @n/2,@n, @1, - .., @nj2+1)

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

a 0, 0 by a 0, 0 by
0 0 0 0
a b a b
sorted j 1 0 bj bitonic aj 1 0 bj bitonic
“ : I . bs bitonic 4 : . by
as 0 1 bs s 1 1 by
0 1 0 0
a b a b
sorted ° 0 0 ® Y} bitonic 7 0 1 7} bitonic
a by e bs
ag —La L pg as O v L b
(a) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (ap /241, /o425 - » ap) into two bitonic sequences (by, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER([n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gnj2s ns Ap—1s - - - > Anj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bnja+1).

ggg I. Sorting Networks Batcher’s Sorting Network 15

Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (&n/241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (a1, a, . .

= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2

» Remaining part is identical to BITONIC-SORTER[7]

sorted

sorted

a 0, 0 by a 0, 0 by
a 0 0 by - a 0 0 by -
X 1 0 by bitonic a 1 0 by bitonic
ay 1 0 by - ay 1 0 by
as 0 I 1 b bitonic . 1 1 b

0 1y a 0 0
6 6 I 7 7 I
@ 0 0 by bitonic a 0 1 b bitonic
ag 1 1 by as 0 o1 bs

(a) (b)

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER([n], for n = 8.
(a) The first stage of MERGER[n] transforms the two monotonic input sequences (aj, ay, ..., ap/2)
and (@p 241, Gn/242, - - -» an) into two bitonic sequences (b, by, ..., bpy2) and (bpj241, bnja12,
..., by). (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
(a1, @z, ...y nj2—1, Gn/2s ns Ap—1s - - - > Apj2+25 An/2+1) is transformed into the two bitonic se-
quences (b1, by, ..., bpy2) and (bn, by—1, ..., bpja+1).

I. Sorting Networks Batcher’s Sorting Network 15

-»8n/2,8n, 8n-1,y- -, 8n/241)

Construction of a Merging Network (2/2)

L 0 0 0 I 0

1 [—| BITONIC- — d 0 0 0 0
SORTER[n/2] | sorte 1 1 1 0

| 1 0 0 I 1

I I 1 1 sorted

— 0 I 1

BITONIC- — a 1 1 L 1

SORTER[1/2] | sorte 1 1 1 1

— 1 1 L] 1

(@) (b)

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[#n] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to
compare inputs i and n —i+1fori =1,2,...,n/2. Here,n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[7/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

I. Sorting Networks Batcher’s Sorting Network 16

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER(N]

= depth log n

BrroNic-

— || SorTeRr[n/2]
| HALF- I
| Cueaner[n] |
= sorts any bitonic sequence — — Brroxic-
— || SORTER[n/2]
I. Sorting Networks Batcher’s Sorting Network 17

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER(N]

= sorts any bitonic sequence
= depth log n

2. MERGER([n]

= merges two sorted input sequences
={depth log n

HALF-
CLEANER[n]

BrroNic-

SORTER[1/2]

BrTONIC-

SORTER[n/2]

Bironic-
SORTER[n/2]

Brronic-
SORTER[1/2]

.-,,!,;, I. Sorting Networks Batcher’s Sorting Network

Construction of a Sorting Network

BrroNic-
SORTER[1/2]

Main Components

HALF-
CLEANER[n]

1. BITONIC-SORTER|[N] 1.
= sorts any bitonic sequence
= depth log n

2. MERGER([n]

= merges two sorted input sequences Brronc.
= depth logn SORTER[n/2]

BrToNIC-
SORTER[n/2]

Brronic-
SORTER[1/2]

n
FTTTTTTT

Batcher’'s Sorting Network
= SORTER(nN] is defined recursively:
= If n = 2k, use two copies of SORTER[n/2] to

SORTER[/2] ii
sort two subsequences of length n/2 each.

Then merge them using MERGER[n]. Sy _
= If n =1, network consists of a single wire.

L ety

#a

-,,I, I. Sorting Networks Batcher’s Sorting Network 17

Construction of a Sorting Network

Main Components

1. BITONIC-SORTER([N]
= sorts any bitonic sequence
= depth log n

2. MERGER([n]

= merges two sorted input sequences
= depth logn

Batcher’s Sorting Network

= SORTER(nN] is defined recursively:

= If n = 2k, use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.

Then merge them using MERGER[n].

= If n =1, network consists of a single wire.

AN

[can be seen as a parallel version of merge sort

HALF-
CLEANER[n]

BrroNic-
SORTER[1/2]

BrToNIC-
SORTER[n/2]

BiTonIC-
SORTER[/2]

Brronic-
SORTER[1/2]

SORTER[1/2]

SORTER[1/2]

MERGER[n1]

ggg I. Sorting Networks

Batcher’s Sorting Network

Unrolling the Recursion (Figure 27.12)

| SorteRr[n/2]

MERGER[7]

| SorteR[n/2]

I. Sorting Networks Batcher’s Sorting Network

Unrolling the Recursion (Figure 27.12)

| SorteRr[n/2]

| SorteR[n/2]

MERGER|[2]

:]—i: MERGER [4] [
= ST
T MERGER[7] MERGER[8]
MERGER [4] [
= o] |
I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)

o [[MERGER[2]
"] Sorter [n/2] [MERGER[4] [
] [[MERGER[2] [
: : MERGER[7] MERGER[8]
MERGER[2]
"] Sorter [n/2] [MERGER[4] [
: : : MERGER[2] [
1 (4] [N 0
S I Y DEN
P D
N D
)
1 0 I,] 0
0 i l ! 1
S D oW k !
Py) e
LI m
depth 1 2 2 3 4 4 4 4 5 5 6
% I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)

SORTER[n/2] MERGER[4]

MERGER[7] MERGER[8]

SORTER[n/2] MERGER[4]

MERGER[2]

1 0 0 0

0 ! é 1 ! ? l 0 Recursion for D(n):

1 0

0 1 1 7 ! 0 {o ifn=1,
1 0 0 o D(n)= : K
o T IIO) 1 _D_(_n@-Hogn if n=2".
0 0 0 1

1o 1 !
de(:nhl 223 44445561-D(>' Gj"\+ 1(j

)"\ I (o5 C
”L°3“7(ﬂ03n /L\Jr(l;ﬁh 4j 2)

% I. Sorting Networks Batcher’s Sorting Network

Unrolling the Recursion (Figure 27.12)

o [[MERGER[2] [[

"] Sorter [n/2] [MERGER[4] [[

] [[MERGER[2] [[

o T MERGER[7] T MERGER[8]

o [MERGER[2] [

"] Sorter [n/2] [MERGER[4] [[

: : : MERGER[2] : :
i K I

0 é 1 ? o Recursion for D(n):

1 0

0 - Lo 0 ifn=1

- k)

1 0 0 l 0 D(n) = . K
0 Il il I D(n/2) +logn if n= 2",
0 (4] I (4] 1 . 5

a0 1) Solution: D(n) = ©(log? n).
depth 1 2 2 3 4 4 4 45 56

Eg I. Sorting Networks Batcher’s Sorting Network 18

Unrolling the Recursion (Figure 27.12)

o [[MERGER[2] [[

"] Sorter [n/2] [MERGER[4] [[

] [[MERGER[2] [[

o T MERGER[7] T MERGER[8]

o [MERGER[2] [

"] Sorter [n/2] [MERGER[4] [[

: : : MERGER[2] : :

1 0 0 0

041 1 Lo l o Recursionfor D(n):

1 0 1 0

0t L 1 Lo 0 ifn=1,
| 0 0 o D(n)= : P
0 Il il I D(n/2) +logn if n= 2",
0 (4] I (4] 1 . 5

a0 1 - Solution: D(n) = ©(log? n).

depth 1 2 2 3 4 4 4 45 56

SORTER[n] has depth ©(log® n) and sorts any input.

I. Sorting Networks Batcher’s Sorting Network

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth{O(log n).

J‘I% I. Sorting Networks Batcher’s Sorting Network

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).]
N

[Quite elaborate construction, and involves huges constants.J

Egg I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,» andthe n/2 largerkeysin b, /241, .. ., bn.

.-,,!,-, I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).]

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,2 and the n/2 largerkeysin b, /241, .. ., bn.
N

[Perfect halver of depth log, n exist ~ yields sorting networks of depth[©((log n)?).]

ggg I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,» andthe n/2 largerkeysin b, /241, .. ., bn.

Approximate Halver

An (n,e)-approximate halver, e < 1, is a comparator network that for

every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bnjo41, . .-, bn and at most ek of its k largest keys in by, ..., by2.

.-,,!,;, I. Sorting Networks Batcher’s Sorting Network 19

A Glimpse at the AKS Network

Ajtai, Komlés, Szemerédi (1983)
| There exists a sorting network with depth O(log n).

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,» andthe n/2 largerkeysin b, /241, .. ., bn.

Approximate Halver

An (n,e)-approximate halver, e < 1, is a comparator network that for
every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bnjo41, - .-, bn and at most ek of it@k largest keys in by, ..., by/a.

'[We will prove that such networks can be constructed in constant depth!

.

J‘I% I. Sorting Networks Batcher’s Sorting Network 19

	Outline of this Course
	Introduction to Sorting Networks
	Batcher's Sorting Network

