VIl. Approximation Algorithms: Randomisation
and Rounding

Thomas Sauerwald

Easter 2015

B UNIVERSITY OF
¥ CAMBRIDGE

Outline

Randomised Approximation

e 5 VII. Randomisation and Rounding Randomised Approximation

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C* satisfy:

c C
max (—) p(n)

e 5 VII. Randomisation and Rounding Randomised Approximation 3

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C™ satisfy:

c cr
— < .
max (-,) < p(n)

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

e 5 VII. Randomisation and Rounding Randomised Approximation 3

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio
A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C* satisfy:

c C*
max (2. Z) <0

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n.

= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n.

VII. Randomisation and Rounding Randomised Approximation 3

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and
optimal cost C™ satisfy:

c cr
— < .
max (-,) < p(n)

N
\

[Call such an algorithm randomised p(n)-approximation algorithm.]

extends in the natural way to randomised algorithms]
Approximation Schemes L

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).)
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)

e
VII. Randomisation and Rounding Randomised Approximation 3

Outline

MAX-3-CNF

-,,a,;, VII. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A+ -+

,,a 5 VII. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

VII. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

clauses as possible.
N

L Relaxation of the satisfiability problem. Want to com- J

pute how “close” the formula to being satisfiable is.

VII. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

v

N
L Relaxation of the satisfiability problem. Want to com- J

pute how “close” the formula to being satisfiable is.

ggg VII. Randomisation and Rounding MAX-3-CNF 5

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

v

N
L Relaxation of the satisfiability problem. Want to com- J

pute how “close” the formula to being satisfiable is.

Example:

(I VXaVX)A (X1 VXV X)A (X VXV Xs) A (X1 V X2V X3)

ggg VII. Randomisation and Rounding MAX-3-CNF 5

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

v

N
[Relaxation of the satisfiability problem. Want to com- J

pute how “close” the formula to being satisfiable is.

Example:

(I VXaVX)A (X1 VXV X)A (X VXV Xs) A (X1 V X2V X3)
N
[x1 =1,x%=0,x =1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)j

E:g VII. Randomisation and Rounding MAX-3-CNF 5

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

v

N
L Relaxation of the satisfiability problem. Want to com- J

pute how “close” the formula to being satisfiable is.

Example:

(I VXaVX)A (X1 VXV X)A (X VXV Xs) A (X1 V X2V X3)
N
[x1 =1,x%=0,x =1, x4 =0and xs = 1 satisfies 3 (out of 4 cIauses)]

Idea: What about assigning each variable independently at random?

ggg VII. Randomisation and Rounding MAX-3-CNF 5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:

VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}

J‘I% VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

VII. Randomisation and Rounding MAX-3-CNF 6

£ Fd
Gl
YEY

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr [clause i is not satisfied] = 52 35°38

VII. Randomisation and Rounding MAX-3-CNF 6

£ Fd
Gl
YEY

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = ==

2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
ol
';E:E VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = ==

2 2 8
. - 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.
n::é VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = ==

2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[Y,-]:Pr[Y,-:1]-1:g,

= Let Y := 3", V; be the number of satisfied clauses. Then,

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = ==

2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[Y,-]:Pr[Y,-:1]-1:g,

= Let Y := 3", V; be the number of satisfied clauses. Then,

E[Y]

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = ==

2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[Y,-]:Pr[Y,-:1]-1:g,

= Let Y := 3", V; be the number of satisfied clauses. Then,

E[Y] =E

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = = -
2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.

= Let Y := 3", V; be the number of satisfied clauses. Then,

>v]
i=1 A

(Linearity of Expectations)

E[Y] =E

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = = -
2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.

= Let Y := 3", V; be the number of satisfied clauses. Then,

m m
S v,} ~SEv)
i=1] i=t
(Linearity of Expectations)

E[Y] =E

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = = -
2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.

= Let Y := 3", V; be the number of satisfied clauses. Then,

m m m 7
> Y,} =D ElYil=>_3
i=1] =1 i=1
(Linearity of Expectations)

E[Y] =E

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = ==

2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[Y,-]:Pr[Y,-:1]-1:g,

= Let Y := 3", V; be the number of satisfied clauses. Then,

m m m 7 7
ZY:}_ E[Y,-]:Z§:§~m
i=1] =1 i=1

(Linearity of Expectations)

E[Y] =E

ggg VII. Randomisation and Rounding MAX-3-CNF 6

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = = -
2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.

= Let Y := 3", V; be the number of satisfied clauses. Then,

Y| = E[W]ZZgzg""‘
=1 1 g i= i=1
(Linearity of Expectations) (maximum number of satisfiable clauses is ngJ

Egg VII. Randomisation and Rounding MAX-3-CNF 6

E[Y] =E

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

1 1 1 1
Pr[clause i is not satisfied] = = - = - = = -
2 2 8
. s 1 7
= Pr[clause i is satisfied] =1 — = = =
8 8
= E[V] =PV =1]1=.

= Let Y := 3", V; be the number of satisfied clauses. Then,

m m m 7 7
E[Y] =E ZY,} = E[Y,-]:Zgzg-m O
i=1 i=1 i=1 N

A=
(Linearity of Expectations) (maximum number of satisfiable clauses is mg

Egg VII. Randomisation and Rounding MAX-3-CNF 6

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

VII. Randomisation and Rounding MAX-3-CNF 7

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, xo,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

VII. Randomisation and Rounding MAX-3-CNF 7

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

y
[There s w € 2 such that Y(w) > E[Y]f]

J‘I% VII. Randomisation and Rounding MAX-3-CNF 7

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 . -
[There is w € Q such that Y(w) > E| Y}fg Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

ggg VII. Randomisation and Rounding MAX-3-CNF 7

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 . -
[There is w € Q such that Y(w) > E| Y]i{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is s

7'5

J‘I% VII. Randomisation and Rounding MAX-3-CNF 7

tisfiable.

Q

e

oy [N

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 . -
[There is w € Q such that Y(w) > E| Y]i{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

1
VII. Randomisation and Rounding MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

VII. Randomisation and Rounding MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

Egg VII. Randomisation and Rounding MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1 1
E[Y |x=1]+= -E[Y | x =0].
13

——

E[Y]=
#{
Y is defined as in

the previous proof. E C \/] _ Z % . P C Y:Zf 7
_ e
ECYIx,21] :a% g PrCV=g]

N |

.

VII. Randomisation and Rounding MAX-3-CNF 8

£
Gl
VY

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

/1

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

CE[Y]=3-E[Y [x=1]+3-E[Y | x=0].

1

SN

=
Y is defined as in
the previous proof.

J

[One of the two conditional expectations is greater than E | Y]L]

Egg VII. Randomisation and Rounding MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

1 1
E[Y]=5-E[Y|x=1]+-E[Y|x=0].
_— 2 2
ﬁ SN
Y is defined as in
the previous proof. [One of the two conditional expectations is greater than E | Y]}]
J /1

Algorithm: Assign x; so that the conditional
expectation is maximized and recurse.

% VII. Randomisation and Rounding MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

E[Y]f CE[Y | xs=1]+ E[Y|x170]
— ~
Y is defined as in
the previous proof. [One of the two conditional expectations is greater than E | Y]'{]
J

GREEDY-3-CNF(¢, n, m)
1: fojl=1,2,...,n

2: Compute E[Y | X1 =vi...,X_1 = Vj_1,
3: Compute E[Y | X1 = vi,...,X—1 = Vj—1 0
4 Let x; = v; so that the conditional expectation 1S maximized

5: return the assignment vy, va,..., vy

E:g VII. Randomisation and Rounding MAX-3-CNF 8

Analysis of GREEDY-3-CNF(¢, n, m)

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.
p—

VII. Randomisation and Rounding MAX-3-CNF

5 Fd
Gl
YEY

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

g&g VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

VII. Randomisation and Rounding MAX-3-CNF 9

£ Fd
Gl
YEY

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

= Step 1: polynomial-time algorithm

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

E[Y|X1 :V1,...,Xj_1 :Vj—hxj:‘l}

VII. Randomisation and Rounding MAX-3-CNF 9

£
Gl
VY

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

VII. Randomisation and Rounding MAX-3-CNF 9

£
Gl
VY

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

computable in O(1)

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

computable in O(1)

V‘Gnalcw DLSS“; \-men"[', 'L’:‘
3 (or less) “literals in one
clouse

VII. Randomisation and Rounding MAX-3-CNF 9

£
Gl
VY

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xy=v,....X_1=Vi_, 5=V | 2E[Y|Xy=v,...,x_1 = Vj_:lj
X; s skl
v-onolom

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIXxi=Vi,..,X_1=V_1,5=V | 2E[Y[Xx=Wv,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIXxi=Vi,..,X_1=V_1,5=V | 2E[Y[Xx=Wv,...,X_1=Vj_1]
>E[Y|xi=wv,...,X_2=V_2]
>E[Y]

ggg VII. Randomisation and Rounding MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,
X =Vim, X5 =V | ZE[Y X1 =wv,..., X1 = Vji_1]

E[Y‘X1 = Vi, ..
>E[Y|xi=wv,...,X_2=V_2]

>E[Y]:g-m.

ggg VII. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=

= Step 2: satisfies at least 7/8 - m clauses v’
= Due to the greedy choice in each iterationj =1,2,...,n,
Xt =V, =V 2E[Y X = v, Xy = V]

E[Y‘X1 = Vi, ..
>E[Y|xi=wv,...,X_2=V_2]

>E[Y]:g-m.

ggg VII. Randomisation and Rounding MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"~/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIx=Vv,...,X_1=V_q,5=1] :ZE[YI\M =Vy,L X = Vg, X =1]
i=

= Step 2: satisfies at least 7/8 - m clauses v’
= Due to the greedy choice in each iterationj =1,2,...,n,

E[YIXxi=Vi,..,X_1=V_1,5=V | 2E[Y[Xx=Wv,...,X_1=Vj_1]
>E[Y|x1=v,....X_2=V_2]
7

ggg VII. Randomisation and Rounding MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

(VX VX)) A VX VXa) A (X Vxe VX)) A VXV Xa) A (X Vxe V) A (KT Ve V) AV Xe Vxs) AV XV xa) A (xi V Xs V xe) A (X2 V X3 V Xe)

VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(VX VX)) A VX VXa) A (X Vxe VX)) A VXV Xa) A (X Vxe V) A (KT Ve V) AV Xe Vxs) AV XV xa) A (xi V Xs V xe) A (X2 V X3 V Xe)

VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(X1 Vxe VX)) A(Xi VXeVX) A (X1 VX VX)) AT VXV X)) A VX VX)) AV XV Xs)AXTVXeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)

VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(X1 Vxe VX)) A(Xi VXeVX) A (X1 VX VX)) AT VXV X)) A VX VX)) AV XV Xs)AXTVXeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)

VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(X TR A (O NFT T A (XM Ta) A RV X V X)) A (a NXTa) ARV XV Xa) ARV xe V Xa) A GV Xz V Xs) A (X Mo Ra) A (% V X V Xa)

%g VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXE) A (X VXs)A (e VX3) ATA (X2 VX5V Xa)

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXE) A (X VXs)A (e VX3) ATA (X2 VX5V Xa)

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXE) A (X VXs)A (e VX3) ATA (X2 VX5V Xa)

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGY X)) ATA K RG) A (Y X3) A (X K3) AT A (VX5 V Xs)

%g VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(G)ATATA(GV Xa)

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(G)ATATA(GV Xa)

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(G)ATATA(GV Xa)

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATACEYTIATATA) AT AT AGEV Xs)

%g VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

% VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

%g VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

%g VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

%g VII. Randomisation and Rounding MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

?72?| 8.75
x1 =0
0?7?| 8.625
X2 =0 X2 =1
00??| 8 01??| 9.25
x3 =0 X3 =1 x3 =0 X3 =1 x3 =0
000?| 8 001?| 8 010?| 9 011?] 9.5 100?
SNEAYS STAYS NFAYS INFANS

S IS
I \ I \ I \ I \ I

9 10

[e) - (e} - [« - o - o
8 8 9 7 9 9 9

% VII. Randomisation and Rounding

Xq =1
1?22?| 8.875
X2 =0 X2 =1
10??| 9 11??] 8.75
X3 =1 x3 =0 x3 =1
9 101?] 9 110?] 9 111?] 8.5
NFAVS NFAVS NTAYS

&

I \ 4 \ Il \

(-} S - (@) -
9 9 8 9

9 9

MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

?72?| 8.75
x1 =0
0???| 8.625
X2 =0 X2 =1
00??| 8 01??| 9.25
x3 =0 X3 =1 x3 =0 X3 =1 x3 =0
000?| 8 001?| 8 010?| 9 011?] 9.5 100?
SNEAYS STAYS NFAYS INVANS

S IS
I \ I \ I \ I \ I

9 10

[e) - (e} - [« - o - o
8 8 9 7 9 9 9

% VII. Randomisation and Rounding

Xq =1
1?22?| 8.875
X2 =0 X2 =1
10??| 9 11??] 8.75
X3 =1 x3 =0 x3 =1
9 101?] 9 110?] 9 111?] 8.5
NFAVS NFAVS NTAYS

&

I \ 4 \ Il \

(-} S - (@) -
9 9 8 9

9 9

MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

&

o - o \\»
9 9 8 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.]

?27?|_8.75
x1 =0 x1 =1
0???| 8.625 1?72?) 8.875

XZIO X2:1 X2:0 X2:1

00??| 8 01??| 9.25 10??] 9 117?| 8.75
x3 =0 X3 =1 x3 =0 X3 =1 x3 =0 X3 =1 x3 =0 x3 =1

000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?| 8.5

AT ANy A V- AV-NEE A V- A V- AV-B Y A V-
Il \ I \ 4 \ Il \

[« -+ o -+ o -+ o - Q// \\) Q// ! 4 ! g
(fo00) 1001)
8 8 9 7 9 9 9 9

9 10 9 9

% VII. Randomisation and Rounding MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

VII. Randomisation and Rounding MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

-..a % VII. Randomisation and Rounding MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-SAT unless P=NP.

-..a % VII. Randomisation and Rounding MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem
GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-SAT unless P=NP.

N

\
[Roughly speaking, there is nothing smarter than just guessing.]

-,,a- VII. Randomisation and Rounding MAX-3-CNF 11

Outline

Weighted Vertex Cover

-,,a,;, VII. Randomisation and Rounding

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

(=)=
NG‘
w

« ()
~(2)

.,a VII. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

(2)®
NG‘
w

@
~(2)

.,a VII. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.

(20>
NG‘
w

« ()
~(2)

.,a VII. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

(20>
NG‘
w

« ()
~(2)

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

Applications:

(20>
NG‘
w

« ()
~(2)

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

w

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

el

« ()
~(2)

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

Applications:

w

4
()
2
(O—@
3 1

= Every edge forms a task, and every vertex represents a person/machine

which can execute that task
= Weight of a vertex could be salary of a person

.

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V'orve V.
N

[This is (still) an NP-hard problem.]

Applications:

w

4
()
2
(O—@
3 1

= Every edge forms a task, and every vertex represents a person/machine

which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

.

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

& @ © ©
T 1t 1 1

J‘I% VII. Randomisation and Rounding Weighted Vertex Cover 14

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER (G)

é g, :gG.E lﬂ\nore.s aJ.L

3 while E' # 0 vertex _WU'SLJ(;
4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v

7 return C

100

® © @O ©
1 1 1 1
N
[Computed solution has weight 101]

VII. Randomisation and Rounding Weighted Vertex Cover 14

£ Fd
Gl
VY

The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

®» © @ ©
1 1 1 1
N
[Optimal solution has weight 4.]

£ Fd
Gl
VY

VII. Randomisation and Rounding Weighted Vertex Cover 14

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

-.,a 5 VII. Randomisation and Rounding Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
vev
subject to x(u)+x(v) > 1 foreach (u,v) € E

x(v) € {0,1} foreachv e V

VII. Randomisation and Rounding Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
vev
subject to x(u) + x(v)

x(v)

%

for each (u,v) € E
{0,1} foreachv e V

m

Linear Program

minimize > w(v)x(v)

veV
subject to x(u) +x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

= - 0
l—') move ‘Fﬂrhﬂaﬂa, O SK(V)€4

-.,a- VII. Randomisation and Rounding Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

vev
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € {0,1} foreachv e V
optimum is a lower bound on the optimal
) weight of a minimum weight-cover.
Linear Program
/
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

.-,,!,;, VII. Randomisation and Rounding Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
vev
subject to x(u)+x(v) > 1 foreach (u,v) € E

x(v) € {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]_

.

\-,,I,;, VII. Randomisation and Rounding Weighted Vertex Cover 15

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
c=9
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}

o Y R R

return C

VII. Randomisation and Rounding Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
c=9
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}
return C

W =

N B

ﬁ&lmt- as the

Theorem 35.7 Gr{UlJ for un I.J?-ﬁL'fe{

APPROX-MIN-WEIGHT-VC is a polynomial-time@pproximation algo-
rithm for the minimum-weight vertex-cover problem:

o
E:E VII. Randomisation and Rounding Weighted Vertex Cover 16

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
c=9
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}
return C

W =

N B

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

)

L
[is polynomial-time because we can solve the linear program in polynomial time]

Egg VII. Randomisation and Rounding Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =X(e) = 3, X(d) =1,%(c) = o]
|4

3
b

4
(@)
()
2

O

3

fractional solution of LP
with weight = 5.5

Egg' VII. Randomisation and Rounding

Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =X(e) = % X(d)=1,X%(c) = OJ [x(a) =x(b) = x(e) =1, x(d) =1, x(c) = 0]
|74

3 3
b b

4 4
(&) (@)
Rounding
N e

(&)
2

2

3 1 3

fractional solution of LP rounded solution of LP
with weight = 5.5 with weight = 10

% VII. Randomisation and Rounding Weighted Vertex Cover 17

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =X(e) = % X(d)=1,X%(c) = OJ [x(a) =x(b) = x(e) =1, x(d) =1, x(c) = 0]
|74

3 3 3
b b b

4 4 4
(&) (@) (@)
Rounding
N °

(&) ()
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

% VII. Randomisation and Rounding Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2):

-.,a 5 VII. Randomisation and Rounding

Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2):

.-,.a.;, VII. Randomisation and Rounding

Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem

-,,a,-,, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

.-,,I-, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:

VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1

VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2

VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
w(C*)>2z" = Z w(v)x(v)

veV

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1
C >z = > S =
w(C) 2z =3 wvx(v) >) w(v): 3

veV vev: x(v)>1/2

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1 1
C>z" = > === .
w(C*) > z Z w(v)x(v) > Z w(v) 5 2W(C)

veV vev: x(v)>1/2

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1 1
CY>z" = > =)
w(C) 2z =Y W) = Y. w(v)- 5 =w(O)

veV vev: x(v)>1/2

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
_ 1 1
CY>z" = E > E =)
w(C") >z w(v)x(v) > w(v) 2 2W(C) O

veV vev: x(v)>1/2

\-,,';;, VII. Randomisation and Rounding Weighted Vertex Cover 18

Outline

Weighted Set Cover

VII. Randomisation and Rounding

Weighted Set Cover

The Weighted Set-Covering Problem

Set Cover Problem

and a cost function ¢ : F — R*

st X= U S.

Sec

= Given: set X and a family of subsets F,

= Goal: Find a minimum-cost subset C C F

VII. Randomisation and Rounding

Weighted Set Cover

20

The Weighted Set-Covering Problem

Set Cover Problem

= Given: set X and a family of subsets F,
and a cost function ¢ ; F — R*

= Goal: Find a minimum-cost subset C C F

Sum over the costs | St X = U S.
of all sets in C sec

@

o bl -

VII. Randomisation and Rounding Weighted Set Cover

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem St |
= Given: set X and a family of subsets F, d d L
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F ® ® 2 ()
Sum over the costs | St X = U S.

of all sets in C sec et o ®

L S Ss

S1 Sz Sa S4 SS SG
c:2 3 3 5 1 2

.-,,!,-, VII. Randomisation and Rounding Weighted Set Cover 20

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem Si L]
= Given: set X and a family of subsets F, d s o)
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F ® e 7l e
Sum over the costs | St X = U S.

of all sets in C Sec o o L4

! S Ss

81 82 83 S4 SS SG
Remarks: c:2 3 3 5 1 2
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

-,,a,-,, VII. Randomisation and Rounding Weighted Set Cover 20

Setting up an Integer Program

.-,,!.-, VII. Randomisation and Rounding

Weighted Set Cover

21

Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
seF

subject to SToys = 1 for each x € X
SeF: xeS

y(S) € {0,1} foreach S e F

.,a VII. Randomisation and Rounding Weighted Set Cover 21

Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to SToys = 1 for each x € X
SeF: xeS
y(S) € {0,1} foreach S e F
Linear Program
minimize > e(S)y(S)
ser
subject to dToys) = for each x € X
SeF: xeS
y(S) € [0,1] foreach S e F

-.,a- VII. Randomisation and Rounding

Weighted Set Cover

21

Back to the Example

.

[] [] []
Sy
o o | o
S,
o| (o _ZJ
[[[
S3 Ss
S1 Sg 83 S4 85 86
c 2 3 3 5 1 2
VII. Randomisation and Rounding Weighted Set Cover

22

Back to the Example

y(): 1/2 1)2

[J [J [J
Si
o| 0 o
S
. Q_ZJ
[J [J [J
Ss3 Ss
S1 Sg 83 S4 85 86
c: 2 3 3 5 1 2

1/2 12 1 1/2

4,';}, VII. Randomisation and Rounding

Weighted Set Cover

22

Back to the Example

i
o |

[] [] []
Ss3 Ss

S1 Sg 83 S4 85 86
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2

Cost equals 8.5

ggg VII. Randomisation and Rounding Weighted Set Cover 22

Back to the Example

i
o |

[] [] []
Ss3 Ss

S1 Sg 83 S4 85 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1)2
TAY
[The strategy employed for Vertex-Cover would take all 6 sets!j

Cost equals 8.5

E:g VII. Randomisation and Rounding Weighted Set Cover 22

Back to the Example

[J [J [J
S
o| [T To
° o | o
[J [J [J
)
Si S Ss Si S S
c: 2 3 3 5 1 2
y(): 12 12 1/2 1/2 1 1/2 Cost equals 8.5

/\

[The strategy employed for Vertex-Cover would take all 6 sets!j
N\

7 X

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!j

VII. Randomisation and Rounding

Weighted Set Cover 22

Randomised Rounding

S1 Sg Ss 34 SS SG
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 1 1/2

VII. Randomisation and Rounding Weighted Set Cover

£
Gl
YEY

23

Randomised Rounding

S1 82 83 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

-.,a- VII. Randomisation and Rounding Weighted Set Cover 23

Randomised Rounding

S1 82 S3 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

~> hhay or may nolt
be FCAlLiblel

Let C C F be a random subset with each set S being/included indepen-
dently with probability y(S).

n other werdls, () is|the LP soluba
then we obtain an i?m %'(_) L}}:

Yo (8)= L A with prob. 4 (S)
¥Sed: 4 (S) {) r;w‘. Q—Hm

> EL9'(9)] = 4CO

VII. Randomisation and Rounding Weighted Set Cover 23

Lemma

Randomised Rounding

S1 82 83 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies

E[c(C)] = c(S)-¥(S)

SeF

-.,a- VII. Randomisation and Rounding Weighted Set Cover 23

Randomised Rounding

S1 82 S3 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 12 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)
SeF
= The probability that an element x € X is covered satisfies

Pr{erS]21—l.

e
Sec

VII. Randomisation and Rounding Weighted Set Cover 23

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

Elc(O)]

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)]

Sec

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

E[o(C)] =E [Zc(S) =E {Z 1s€cc(8)]
SeF

Sec

this S o |
rondowm wa&‘&‘b .

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)] =E {Z 13660(3):|
Sec SeF
ho WL Can_n = 2 Prisccl-«S)
, . SeF
QPPlﬁ Ll('\CDJI{?ar
of &Fa,b’t{ons

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)] =E {Z 136c0(3)]
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)] =E {Z 136c0(3)]
Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)

SeF SeF

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 136CC(S):|

Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF SeF
= Step 2: The probability for an element to be (not) covered

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 136CC(S):|

Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix ¢ UsecS]

.,a VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g+ €(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘;

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 136CC(S):|

Sec SeF

=Y Pr[Sec]-c(S)= > y(S) c(9).

SeF SeF
= Step 2: The probability for an element to be (not) covered
PrixZUsccSl =] PriSgc]

SeF: xe$

-,,a,;, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 136CC(S):|

Sec Ser
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

.-,,!,;, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec SeF

=Y Pr[Sec]-c(S)= > y(S) c(9).

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

(1 + x < eX for any xﬁ

.-,,I-, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec SeF

=Y Pr[Sec]-c(S)= > y(S) c(9).

SeF SeF
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

< I e®
(1 + x < e for any xﬁ SeFixes

.-,,I-, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec Ser
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xes SeF: xeS

(1+x<eXforanyx5 &

.-,,I-, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec Ser
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

— g~ 2ser: xesY(5)

.-,,',-, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec Ser
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1

.-,,',-, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF SeF
= Step 2: The probability for an element to be (not) covered v/

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1

.-,,',-, VII. Randomisation and Rounding Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[c(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C v/

Ef[c(C)] =E [ZC(S)] =E {Z 1SECC(S):|

Sec SeF
= > Pr[Sec]-c(S)=>_ y(S)-c(9)
SeF SeF
= Step 2: The probability for an element to be (not) covered v/

Prix¢usecS1 = J] Pris¢cl= [(1-x)

SeF: xe$ SeF: xeS8

-y(s
< J[e® y solves the LP!
(1 + x < e* forany xﬁ SeF:xes

= g 2ser:xesV(8) < g1 O

.-,,',-, VII. Randomisation and Rounding Weighted Set Cover 24

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — le

.,a VII. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

Z;

[Problem: Need to make sure that every element is covered!j

.-,,',-, VII. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

Z;

[Problem: Need to make sure that every element is covered!j

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

.-,,I-, VII. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

Z“;

[Problem: Need to make sure that every element is covered!j

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F, c)

1: compute y, an optimal solution to the linear program
22C=10

3: repeat 2In ntimes

4: foreach Se F

5: let C = C U {S} with probability y(S)

6: return C

o

\-,,',-, VII. Randomisation and Rounding Weighted Set Cover 25

The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — L.

Z“;

[Problem: Need to make sure that every element is covered!j

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F, c)

1: compute y, an optimal solution to the linear program
22C=10

3: repeat 2In ntimes

4: foreach Se F

5: let C = C U {S} with probability y(S) -
6: return C

[clearly runs in polynomial—time!]

o

\-,,I,;, VII. Randomisation and Rounding Weighted Set Cover 25

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover

-,,a,-,, VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

1 2Inn
Prx & UsccS] < (E)

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1

1 2Inn
Prx ¢ UsccS] < (E) :§~

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2inn 1
Prx & UsccS] < (E) :¥~
= This implies for the event that all elements are covered:

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :¥~
= This implies for the event that all elements are covered:

PriX = USGCS] =

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :¥~
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AUB] gPr[A]+Pr[B]>

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[pr[AuB] gPr[A]+Pr[B]>2 1= Pr[x ¢UgccS]

xeX

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (g) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-#
xeX

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (g) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (g) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

= Step 2: The expected approximation ratio

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3~ g = ¢(S) - y(S).

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3~ g = ¢(S) - y(S).
= Linearity = E[c(C)] < 2In(n) - 3" sc 7 ¢(S) - ¥(S)

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (E) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—-Pr |: U {x QUSGCS}:|
xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3~ g = ¢(S) - y(S).
= Linearity = E[c(C)] < 2In(n) - Y"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (g) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—Pr |: U {x QUSGCS}:|

xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is 3~ g = ¢(S) - y(S).
= Linearity = E[c(C)] < 2In(n) - Y"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — ‘3 so that
1 2inn 1
Prx & UsccS] < (g) :E‘
= This implies for the event that all elements are covered:

Pr{X =UgccS]=1—Pr |: U {x QUSGCS}:|

xeX

[Pr[AuB] gPr[A]+Pr[B]>2 1= Prix¢UscS] > 1 fn-lz :17%.
xeX n

= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is 3~ g = ¢(S) - y(S).
= Linearity = E[c(C)] < 2In(n) - Y"gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*) O

VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

[By Markov’s inequality, Pr[c(C) < 4In(n) - ¢(C*)] > 1/2.]

.-,,',-, VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= The expected approximation ratio is 2In(n).

= With probability at least 1 — 1; the returned set C is a valid cover of X.

\
[By Markov’s inequality, Pr [¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1 — 2 — 1 > 1,
solution is within a factor of 4 In(n) of the optimum.

VII. Randomisation and Rounding Weighted Set Cover

£ Fd
Gl
VY

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

\
[By Markov’s inequality, Pr [¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1 — 2 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

ggg VII. Randomisation and Rounding Weighted Set Cover 2

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

\
[By Markov’s inequality, Pr [¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1 — 2 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

i
E:E VII. Randomisation and Rounding Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 13 the returned set C is a valid cover of X.
= The expected approximation ratio is 2In(n).

\
[By Markov’s inequality, Pr [¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1 — 2 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

[Thank you and Best Wishes for the Exam!]

=

J‘I% VII. Randomisation and Rounding Weighted Set Cover 26

