PERL(1) PerProgrammers Reference Guide PERL(1)

NAME
perl — The Perl 5 language interpreter
SYNOPSIS
perl [=sTtuUWX] [=hv][=V[:configval]

[—ew] [—d[t][:debuger]] [-D[number/lis}]
[-pna][—Fpattern] [—I[octal]] [—O[octal/hexadecimal
[=Idir][=m[-]module] [-M[-]'module../][—f] [=C [number/list]] [-S]
[=x[dir]] [—i[exension]
[[-€]-E] 'command’] [——] [programfile] [argumend]...

GETTING HELP

The perldoc program g¥es you access to all the documentation that comes with Ret.can get more
documentation, tutorials and community support online at <http://www.perl.org/>.

If you're nev to Perl, you should start by runningerldoc perlintro , Which is a general intro for
beginners and provides some background to help yoigaie the rest of Pesl'extensive documentation.
Runperldoc perldoc to learn more things you can do whrldoc

For ease of access, the Perl manual has been split up i@@lsgections.

Overview
perl Perl overview (this section)
perlintro Perl introduction for beginners
perltoc Perl documentation table of contents
Tutorials
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays
perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial
perlboot Perl OO tutorial for beginners
perltoot Perl OO tutorial, part 1
perltooc Perl OO tutorial, part 2
perlbot Perl OO tricks and examples
perlperf Perl Performance and Optimization Techniques
perlstyle Perl style guide
pericheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial
perlfaq Perl frequently asked questions
perlfaql General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.14.2 2014-02-04 1

PERL(1)

perlsyn
perldata
perlop
perisub
perlfunc
perlopentut
perlpacktut
perlpod
perlpodspec
perlpodstyle
perlrun
perldiag
perllexwarn
perldebug
perlvar
perire

perlrebackslash

perlrecharclass

perlreref

perlref

perlform

perlobj

perltie
perldbmfilter

perlipc
perlfork
perlnumber

perlthrtut

perlport
perllocale
perluniintro
perlunicode
perlunifaq
perluniprops
perlunitut
perlebcdic

perlsec
perimod
perimodlib
perimodstyle
perimodinstall
perlnewmod
perlpragma
perlutil
perlcompile

perlfilter

perlglossary

PerProgrammers Reference Guide

Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl

Perl
Perl
Perl

Perl

Perl
Perl
Perl
Perl
Perl
Index
Perl

Considerations

Perl
Perl
Perl
Perl
Perl
Perl
Perl
utilities
Perl
Perl

Perl

PERL(1)

syntax

data structures

operators and precedence

subroutines

built-in functions

open() tutorial

pack() and unpack() tutorial

plain old documentation

plain old documentation format specification
POD style guide

execution and options

diagnostic messages

warnings and their control

debugging

predefined variables

regular expressions, the rest of the story
regular expression backslash sequences
regular expression character classes
regular expressions quick reference
references, the rest of the story

formats

objects

objects hidden behind simple variables
DBM filters

interprocess communication
fork() information
number semantics

threads tutorial

portability guide
locale support
Unicode introduction
Unicode support
Unicode FAQ
of Unicode Version 6.0.0 properties in Perl
Unicode tutorial
for running Perl on EBCDIC platforms

security
modules: how they work
modules: how to write and use
modules: how to write modules with style
modules: how to install from CPAN
modules: preparing a new module for distribution
modules: writing a user pragma

packaged with the Perl distribution
compiler suite intro

source filters

Glossary

2014-02-04 pen/5.14.2

PERL(1)

PerProgrammers Reference Guide

Internals and C Language Interface

perlembed
perldebguts
perixstut
perixs
perliclib
perlguts
perlcall
perimroapi
perlreapi
perlreguts

perlapi
perlintern
perliol
perlapio

perlhack
perlsource
perlinterp
perlhacktut
perlhacktips
perlpolicy
perlgit

Miscellaneous
perlbook
perlcommunity
perltodo

perldoc

perlhist
perldelta
perli5141delta
perl5140delta
perl51311delta
perl51310delta
perl5139delta
perl5138delta
perl5137delta
perl5136delta
perl5135delta
perl5134delta
perl5133delta
perl5132delta
perl5131delta
perl5130delta
perl5123delta
perl5122delta
perl5121delta
perl5120delta
perl5115delta
peri5114delta
perl5113delta
perl5112delta
perli511idelta
perl5110delta
perl5101delta

perl v5.14.2

Perl ways to embed perl in your C or C++ application
Perl debugging guts and tips
Perl XS tutorial
Perl XS application programming interface
Internal replacements for standard C library functions
Perl internal functions for those doing extensions
Perl calling conventions from C
Perl method resolution plugin interface
Perl regular expression plugin interface
Perl regular expression engine internals
Perl API listing (autogenerated)
Perl internal functions (autogenerated)
C API for Perl's implementation of 10 in Layers
Perl internal 10 abstraction interface
Perl hackers guide
Guide to the Perl source tree
Overview of the Perl intepreter source and how it works
Walk through the creation of a simple C code patch
Tips for Perl core C code hacking
Perl development policies
Using git with the Perl repository
Perl book information
Perl community information
Perl things to do
Look up Perl documentation in Pod format
Perl history records
Perl changes since previous version
Perl changes in version 5.14.1
Perl changes in version 5.14.0
Perl changes in version 5.13.11
Perl changes in version 5.13.10
Perl changes in version 5.13.9
Perl changes in version 5.13.8
Perl changes in version 5.13.7
Perl changes in version 5.13.6
Perl changes in version 5.13.5
Perl changes in version 5.13.4
Perl changes in version 5.13.3
Perl changes in version 5.13.2
Perl changes in version 5.13.1
Perl changes in version 5.13.0
Perl changes in version 5.12.3
Perl changes in version 5.12.2
Perl changes in version 5.12.1
Perl changes in version 5.12.0
Perl changes in version 5.11.5
Perl changes in version 5.11.4
Perl changes in version 5.11.3
Perl changes in version 5.11.2
Perl changes in version 5.11.1
Perl changes in version 5.11.0
Perl changes in version 5.10.1

2014-02-04

PERL(1)

PERL(1)

perl5100delta
perl595delta
perl594delta
perl593delta
perl592delta
perl591delta
perl590delta
perl589delta
perl588delta
perl587delta
perl586delta
perl585delta
perl584delta
perl583delta
perl582delta
perl581delta
perl58delta
perl573delta
perl572delta
perl571delta
perl570delta
perl561delta
perl56delta
perl5005delta
perl5004delta

perlartistic
perlgpl
Language-Specific
perlcn
perljp
perlko
perltw

Platform-Specific
perlaix
perlamiga
perlbeos
perlbs2000
perice
perlcygwin
perldgux
perldos
perlepoc
perlfreebsd
perlhaiku
perlhpux
perlhurd
perlirix
perllinux
perlmacos
perlmacosx
perimpeix
perlnetware
perlopenbsd
perlos2
perlos390
perlos400
perlplan9

PerProgrammers Reference Guide

Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl
Perl

Perl
GNU

Perl
Perl

Perl
Perl

Perl
Perl
Perl
Perl
Perl

Perl
Perl
Perl
Perl

Perl

Perl
Perl
Perl

Perl

Perl
Perl
Perl

Perl

Perl
Perl
Perl
Perl
Perl

Perl

changes in version 5.10.0
changes in version 5.9.5
changes in version 5.9.4
changes in version 5.9.3
changes in version 5.9.2
changes in version 5.9.1
changes in version 5.9.0
changes in version 5.8.9
changes in version 5.8.8
changes in version 5.8.7
changes in version 5.8.6
changes in version 5.8.5
changes in version 5.8.4
changes in version 5.8.3
changes in version 5.8.2
changes in version 5.8.1
changes in version 5.8.0
changes in version 5.7.3
changes in version 5.7.2
changes in version 5.7.1
changes in version 5.7.0
changes in version 5.6.1
changes in version 5.6
changes in version 5.005
changes in version 5.004

Artistic License
General Public License

for Simplified Chinese (in EUC-CN)

for Japanese (in EUC-JP)
for Korean (in EUC-KR)

for Traditional Chinese (in Big5)

notes for AIX
notes for AmigaOS
notes for BeOS

notes for POSIX-BC BS2000

notes for WinCE
notes for Cygwin
notes for DG/UX
notes for DOS
notes for EPOC
notes for FreeBSD
notes for Haiku
notes for HP-UX
notes for Hurd
notes for Irix

notes for Linux
notes for Mac OS (Classic)
notes for Mac OS X
notes for MPE/iX
notes for NetWare
notes for OpenBSD
notes for OS/2
notes for 0S/390
notes for OS/400
notes for Plan 9

2014-02-04

PERL(1)

pen/5.14.2

PERL(1) PerProgrammers Reference Guide PERL(1)

perlgnx Perl notes for QNX
perlriscos Perl notes for RISC OS
perlsolaris Perl notes for Solaris
perlsymbian Perl notes for Symbian
perltru64 Perl notes for Tru64
perluts Perl notes for UTS
perlvmesa Perl notes for VM/ESA
perlvms Perl notes for VMS
perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

On Debian systems, you need to install plee-doc package which contains the majority of the standard
Perl documentation and tiperldocprogram.

Extensve alditional documentation for Perl modules wsiable, both those distributed with Perl and third-
party modules which are packaged or locally installed.

You should be able to vie Perl's documentation with youman(1) program operldoc(1).

In general, if something strange has gone wrong with your program and you're not sure where you should
look for help, try the-w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl officially stands for Practical Extraction and Report Language, except when it doesn't.

Perl was originally a language optimized for scanning arbitrary text files, extracting information from those
text files, and printing reports based on that informatitinquickly became a good language for man
system management tasks. Over the years, Perl has grto a general-purpose programming language.
It's widely used for eerything from quick “one-liners'to full-scale application delopment.

The language is intended to be practical (easy to Ugseef, complete) rather than beautiful {tidegant,
minimal).

Perl combines (in the authsrpinion, aryway) some of the best features ofs€d awk, and sh, so geople
familiar with those languages shouldvidittle difficulty with it. (Language historians will also note some
vestiges ofcsh, Pascal, andwen BASIC-PLUS.) Expressiosyntax corresponds closely to &€peession
syntax. Unlile most Unix utilities, Perl does not arbitrarily limit the size of your datd you've gt the
memory Perl can slurp in your whole file as a single string. Recursion is of unlimited dépith.the
tables used by hashes (sometimes call@gkociatve arays’) grow as recessary to pvent degraded
performance. Pedan use sophisticated pattern matching techniques to sgaralaounts of data quickly
Although optimized for scanning text, Perl also hasyrauoellent tools for slicing and dicing binary data.

But wait, theres nore...

Begun in 1993 (see perlhist), Perérgion 5 is nearly a complete rewrite that provides the viailp
additional benefits:

* modularity and reusability using innumerable modules
Described in perlmod, perlmodlib, and perimodinstall.
+ embeddable and extensible
Described in perlembed, perixstut, perlxs, perlcall, perlguts, and xsubpp.
» roll-your-own magic variables (including multiple simultaneo@ implementations)
Described in perltie and AnyDBM_ File.
» subroutines can mobe overridden, autoloaded, and prototyped
Described in perlsub.
» arbitrarily nested data structures and anonymous functions
Described in perlreftut, perlref, perldsc, and perllol.
e object-oriented programming

Described in perlobj, perlboot, perltoot, perltooc, and perlbot.

perl v5.14.2 2014-02-04 5

PERL(1) PerProgrammers Reference Guide PERL(1)

e support for light-weight processes (threads)
Described in perlthrtut and threads.
» support for Unicode, internationalization, and localization
Described in perluniintro, perllocale and Locale::Maketext.
» lexical scoping
Described in perlsub.
* regular expression enhancements
Described in perlre, with additional examples in perlop.
» enhanced debugger and intereetierl environment, with integrated editor support
Described in perldebtut, perldebug and perldebguts.
e POSIX1003.1 compliant library
Described irPOSIX
Okay, that'sdefinitelyenough hype.

AVAILABILITY

Perl is a@ailable for most operating systems, including virtually all Unielifatforms. Se€ Supported
Platforms’ in perlport for a listing.

ENVIRONMENT

See perlrun.

AUTHOR

Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wisbdatadke use of Perl
in their applications, or if you wish to simply express your gratitude to Larry and the Redpdes,
please write to perl-thanks@pergjor

FILES
"@INC" locations of perl libraries
SEE ALSO
http://www.perl.org/ the Perl homepage
http://www.perl.com/ Perl articles (O'Reilly)
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.pm.org/ the Perl Mongers
DIAGNOSTICS

BUGS

Theuse warnings pragma (and thew switch) produces somevdy diagnostics.

See perldiag forx@lanations of all Ped’ dagnostics. Thaise diagnostics pragma automatically
turns Perk normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the ermith an indication of the next token or &k
type that was to bexamined. (Ina <ript passed to Perl vige switches, eacheis counted as one line.)

Setuid scripts ha alditional constraints that can produce error messages such as “Insecure dggendenc
See perlsec.

Did we mention that you should definitely consider using-thewitch?

The-w switch is not mandatory.

Perl is at the meycof your machines definitions of various operations such as type castf(), and
floating-point output witlsprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so d¢€kiferl.
doesnt apply tosysread(andsyswrite())

While none of the built-in data typesvaaany abitrary size limits (apart from memory size), there are still
a few abitrary limits: a gven variable name may not be longer than 251 characters. Line numbers

2014-02-04 pen/5.14.2

PERL(1) PerProgrammers Reference Guide PERL(1)

displayed by diagnostics are internally stored as short integers,ysaréhigmited to a maximum of 65535
(higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, orfrl -V) to perlbug@perl.ay . If you've sicceeded in compiling

perl, the perlbug script in theils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Listgrdont tell anyone | said that.

NOTES

The Perl motto isThere’s more than one way to do”itD ivining hov mary more is left as anxercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hdwithe Camel Book for
why.

perl v5.14.2 2014-02-04 7

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

NAME
perlsyn — Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the bottom.
Loops, subroutines and other control structuresvajiou to jump around within the code.

Perl is afree-form language, you can format and indent itvaeer you like. Whitespacenostly serves to
separate tokens, unéikanguages lik Bithon where it is an important part of the syntax.

Many of Perl's g/ntactic elements amptional. Rather than requiring you to put parentheses arovey e
function call and declarevery variable, you can often lea such explicit elements dand Perl will figure
out what you meant. This is known@e What | Mean, abbreviatedwIM . It dlows programmers to be
lazy and to code in a style with which thare comfortable.

Perlborrows s/ntax and concepts from mgrianguages: awk, sed, C, Bourne Shell, Smalltalk, Lisp and
even English. Otherlanguages hee lorroved syntax from Perl, particularly its regulaxpeession
extensions. Sdf you hare programmed in another language you will see familiar pieces in Fady
often work the same, but see perltrap for information aboutthey differ.

Declarations
The only things you need to declare in Perl are report formats and subroutines (and sometirees not e
subroutines). Avariable holds the undefined valuen@ef) until it has been assigned a defineadue,
which is anything other thanndef . When used as a numbemndef is treated a®; when used as a
string, it is treated as the empty strifi§y,; and when used as a reference thattibaing assigned to, it is
treated as an errotf you enable warnings, you'll be notified of an uninitialized value wierneu treat
undef as a string or a numbewell, usually Boolean contexts, such as:

my $a;

if (%a) {}
are eempt from warnings (because theare about truth rather than definedness). Operators sueh, as
—-—,+=, —=, and .=, that operate on undefined left values such as:

my $a;

$a++;

are also alays exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect xectitere of the primary
sequence of statementsdeclarations all tad eff ect at compile timeTypically all the declarations are put

at the bginning or the end of the scripowever, if you're using lexically-scoped mate variables created
with my() , you'll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to be able to access thosetprvariables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the programYou can declare a subroutine without defining it by saginlg name , thus:

sub myname;
$me = myname $0 or die "can't get myname";

Note thatmyname(functions as a list operatatot as a unary operator; so be careful toarsénstead of
[| in this case.However, if you were to declare the subroutinesa® myname ($) , thenmyname
would function as a unary operatep étheror or|| would work.

Subroutines declarations can also be loaded up withethére statement or both loaded and imported
into your namespace withuse statement. Seeerlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration actselikn @dinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

Comments
Text from a"#" character until the end of the line is a comment, and is ignored. Exceptions i#£lude
inside a string or regular expression.

8 2011-09-26 perns5.14.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

Simple Statements
The only kind of simple statement is an expressi@uated for its side &fcts. Ewery simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged if the block takes up more than one line, because you may
evantually add another line.) Note that there are some operatersviéit { anddo {} that look like
compound statements, but ateftheyre just TERMs in an expression), and thus need xqplicé
termination if used as the last item in a statement.

Truth and Falsehood
The number 0, the string® and" , the empty lis{) , andundef are all false in a boolean context. All
other values are trueNegaion of a true value by or not returns a special falseale. Wherevduated
as a string it is treated as, but as a numbeitt is treated as 0.

Statement Modifiers
Any simple statement may optionally be followed bySENGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
when EXPR
for LIST
foreach LIST

The EXPRfollowing the modifier is referred to as theondition”. Its truth or falsehood determineswviho
the modifier will behee.

if executes the statement on€éeand only if the condition is trueunless is the opposite, itx@cutes the
statementinlessthe condition is true (i.e., if the condition is false).

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

when executes the statementhen$_ smart matcheEXPR and then eithebreak s aut if it's enclosed in
agiven scope or skips to theext element when it lies directly insidefar loop. Seealso ‘Switch

statements”.
given ($something) {
$abc = 1 when ["abc/;
$just_a = 1 when /"a/;
$other = 1;

}

for (@names) {
admin($_) when [g w/Alice Bob/];
regular($_) when [gw/Chris David Ellen/];

}

The foreach modifier is an iterator: itxecutes the statement once for each item inLBa& (with $_
aliased to each item in turn).

print "Hello $_\n" foreach qw(world Dolly nurse);

while repeats the statemenhile the condition is trueuntil does the opposite, it repeats the statement
until the condition is true (or while the condition is false):

Both of these count from 0 to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;

The while anduntil modifiers hae the usual While loop" semantics (conditionalvauated first),
except when applied to @-BLOCK (or to the deprecatedtb-SUBROUTINE statement), in which case
the block &ecutes once before the conditionalvslaated. Thiss so that you can write loops like:

perl v5.14.2 2011-09-26 9

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

10

do {
$line = <STDIN>;

} until $line eq".\n";
See ‘do” in perlfunc. Notealso that the loop control statements described laterN@itt work in this

construct, because modifiers dotake loop labels.Sorry. You can alvays put another block inside of it
(for next) or aound it (forlast) to do hat sort of thing.For next , just double the braces:

do {{

next if $x == $y;

do s omething here
1 until $x++ > $z;

For last , you hare o be nore elaborate:

LOOP: {
do {
last if $x = $y**2;
do s omething here
} while $x++ <= $z;

}

NOTE: The behaviour of any statement modified with a statement modifier conditional or loop construct
(e.g.my $x if ...) is undefined The value of thamy variable may beundef , any previously
assigned value, or possiblyydining else. Don't rely on it. Future versions of perl might do something
different from the version of perl you try it out on. Here be dragons.

Compound Statements

In Perl, a sequence of statements that defines a scope is called aJ3uowtimes a block is delimited by
the file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of\a).e

But generally a Hock is delimited by curly brackets, also known as brad&s. will call this syntactic
construct 88LOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK

if (EXPR) BLOCK else BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
unless (EXPR) BLOCK

unless (EXPR) BLOCK else BLOCK

unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK

LABEL while (EXPR) BLOCK continue BLOCK
LABEL until (EXPR) BLOCK

LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach VAR (LIST) BLOCK

LABEL foreach VAR (LIST) BLOCK continue BLOCK
LABEL BLOCK continue BLOCK

Note that, unlik C and Pascal, these are defined in terms of BLOCKSs, not statements. This means that the
curly brackets areequired-—no dangling statements alled. If you want to write conditionals without
curly brackets there areva@eal other ways to do it. The following all do the same thing:

if (lopen(FOQ)) { die "Can't open $FOO: $!"; }
die "Can't open $FOO: $!" unless open(FOO);
open(FOO) or die "Can't open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom' : die "Can't open $FOO: $!";
a bit exotic, that last one

The if statement is straightfoavd. Becaus®LOCKs are alays bounded by curly brackets, there is
never any ambiguity about whichf anelse goes with. If you us@nless in place ofif , the sense of
the test is neersed. Lileif , unless can be followed bglse . unless can &en be bllowed by one or

2011-09-26 perl v5.14.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

more elsif statements, though you may want to think twice before using that particular language
construct, asweryone reading your code will fia o think at least twice before thean understand what’
going on.

Thewhile statementecutes the block as long as the expression is file.until statementecutes
the block as long as thepression isdlse. ThaLABEL is optional, and if present, consists of an identifier
followed by a colon.The LABEL identifies the loop for the loop control statememéxt , last , and
redo . If the LABEL is omitted, the loop control statement refers to the innermost enclosing Todap.
may include dynamically looking back your call-stack at run time to findL&BEL. Such desperate
behavior triggers a warning if you use te® warnings pragma or thew flag.

If there is acontinue BLOCK, it is adways executed just before the conditional is about to tauated
again. Thusit can be used to increment a loogriable, &en when the loop has been continued via the
next statement.

Extension modules can also hook into the Perl parser to definkimés of compound statementhese
are introduced by aeyword which the extension recognizes, and the syntaxwoilp the leyword is
defined entirely by thex¢éension. Ifyou are an implementosee ‘PL_keyword_plugin’ in perlapi for the
mechanism. Ifyou are using such a module, see the moslglEumentation for details of the syntax that
it defines.

Loop Control
Thenext command starts the next iteration of the loop:

LINE: while (<STDIN>) {

next LINE if I"'#/; # discard comments
}
The last command immediatelyxé@s the loop in question.The continue block, if ary, is ot
executed:
LINE: while (<STDIN>) {
last LINE if I"$/; # exit when done with header
}

The redo command restarts the loop block withowtlaating the conditional agn. Thecontinue
block, if ary, is not executed. Thiscommand is normally used by programs that want to lie to theesselv
about what was just input.

For example, when processing a file diketc/termcap If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (s/\$//) {
$_ =<>
redo unless eof();
}

now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =" sN\$//) {
$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!
}

now process $line

}

Note that if there were aontinue block on the abeée wde, it would get xecuted only on lines
discarded by the gex (since redo skips the continue block). A continue block is often used to reset line

perl v5.14.2 2011-09-26 11

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

counters om?pat? one-time matches:

i nspired by :1,$g/fred/s//WILMA/

while (<>) {
m?(fred)? && S/IWILMA $1 WILMA/;
m?(barney)? && S//BETTY $1 BETTY/;
m?(homer)? && s//IMARGE $1 MARGE/;

} ¢ ontinue {
print "SARGV $.: $_";
close ARGV if eof; # reset$.
reset if eof; # reset ?pat?
}

If the word while is replaced by the evd until , the sense of the test isreesed, but the conditional is
still tested before the first iteration.

The loop control statements domiork in anif orunless , since thg aren't loops. Yu can double the
braces to makthem such, though.

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last", but doesn't document as well
do s omething here

1

This is caused by the fact that a block by itself acts as a loopkttates once, see “Basic BLOCKs”.

The form while/if BLOCK BLOCK , available in Perl 4, is no longervailable. Replaceany
occurrence off BLOCK by if (do BLOCK)

For L oops
Perl's C-stylefor loop works lile the correspondinghile loop; that means that this:

for ($i = 1; $i < 10; $i++) {

}

is the same as this:
$i=1,;
while ($i < 10) {

} c oﬁ.t.inue{
$i++;
}

There is one minor difference: if variables are declared mitin the initialization section of thior , the
lexical scope of those variables is exactlyftre loop (the body of the loop and the control sections).

Besides the normal array indoping,for can lend itself to manother interesting applicationddere’s
one that woids the problem you get into if yoxgicitly test for end-of-file on an interagé file descriptor
causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do s omething

}

Usingreadline (or the operator formsEXPR> as he conditional of dor loop is shorthand for the
following. Thisbehaviour is the same asvaile loop conditional.

for (prompt(); defined($_ = <STDIN>); prompt()) {
do something

}

12 2011-09-26 perl v5.14.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

Foreach Loops
Theforeach loop iterates wer a rormal list value and sets thariableVAR to be each element of the list
in turn. If the variable is preceded with theylword my, then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop agdns its former alue
upon exiting the loop. If the variable was previously declared mithit uses that variable instead of the
global one, but i8 dill localized to the loop. This implicit localization occuwslyin aforeach loop.

The foreach keyword is actually a synonym for thier keyword, so you can ustoreach for
readability orfor for brevity. (Or because the Bourne shell is more familiar to you tisnso writing
for comes more naturally If VAR is omitted,$_ is set to each value.

If any element ofLIST is an Ivalue, you can modify it by modifyin@gR inside the loop.Corversely if any
element ofLIST is NOT an Ivalue, ap attempt to modify that element willafl. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you're loopirag o

If any part of LIST is an arrayforeach will get very confused if you add or ren@dements within the
loop body for example wittsplice . So don't do that.

foreach probably won't do what you expect if/AR is a tied or other speciabxiable. Dont do that
either.

Examples:
for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;
}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM") {
print $count, "\n"; sleep(1);
}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:\\n:]*/, SENV{TERMCAP})) {
print "ltem: $item\n";
}

Here's how a C pogrammer might code up a particular algorithm in Perl:
for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {
if ($ary1[$i] > $ary2[$i]) {
last; # can't go to outer :—(
}

$ary1[$i] += Sary2[$i];
}

t his is where that last takes me

}

Whereas here’how a Rerl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1l) {

INNER: for my $jet (@ary2) {
next OUTER if $wid > $jet;
$wid += $jet;

}

See hw much easier this is™t’'s deaner safer, and faster It's deaner because stless noisy It's safer
because if code gets added between the inner and outer loops later on; tbdeneon’'t be acidentally
executed. Thenext explicitly iterates the other loop rather than merely terminating the inner Ané.
it's faster because PeReeutes doreach statement more rapidly than it would the eglgintfor loop.

perl v5.14.2 2011-09-26 13

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

Basic BLOCKs
A BLOCK by itself (labeled or not) is semantically ecplient to a loop that»ecutes once. Thus you can
use ag of the loop control statements in it to Veaa restart the block. (Note that this MOT true in
eval{} , sub{} , or ocontrary to popular belieflo{} blocks, which doNOT count as loops.)The
continue block is optional.

TheBLOCK construct can be used to emulate case structures.

SWITCH: {
if (/"abc/) { $abc = 1; last SWITCH; }
if (/"'def/) { $def = 1, last SWITCH; }
if (/"xyz/) { $xyz = 1, last SWITCH; }
$nothing = 1;

}

Such constructs are quite frequently used, because older versions of Perl had nevaftfitial statement.

Switch statements
Starting from Perl 5.10, you can say

use feature "switch";
which enables a switch feature that is closely based on the Perl 6 proposal.

The leywords given andwhen are analogous tewitch andcase in other languages, so the code
abore muld be written as

given($_) {
when (/"abc/) { $abc =1, }
when (/"def/) { $def =1, }
when (I"xyz/) { $xyz = 1, }
default { $nothing = 1; }

}

This construct is very flexible and powerful. For example:

use feature ":5.10";
given($foo) {
when (undef) {
say '$foo is undefined';
}

when ("foo") {
say '$foo is the string "foo™;
}

when ([1,3,5,7,9]) {
say '$foo is an odd digit";
continue; # Fall through

}
when ($_ < 100) {
say '$foo is numerically less than 100';

when (\&complicated_check) {
say 'a complicated check for $foo is true';

}
default {

die g(l don't know what to do with $foo);
}

}
given(EXPR) will assign the value dEXPRto $_ within the lexical scope of the block, sesiimilar to
do{my$_=EXPR;..}
except that the block is automatically broken out of by a succeskfr or an explicitoreak .
Most of the power comes from implicit smart matching:

14 2011-09-26 perl v5.14.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

when($foo)
is exactly equialent to
when($_ ™ $foo)

Most of the timewhen(EXPR) is treated as an implicit smart match®f, i.e.$ ~ EXPR . (See
“ Smart matching in detdilf or more information on smart matching.) But wietPRis one of the bels
exceptional cases, it is used directly as a boolean:

* agabroutine or method call

» aregular xpression match, i.éREGEX/ or $foo =~ /REGEX/ , or a regded regular gpression
match {/REGEX/ or $foo I" /REGEX/).

+ awmmparisonsuch & <10 or$xeq"abc" (orof courseés_""$c)
» defined(...) , exists(...) , or eof(...)
e aregded expressiof(...) ornot (...) , or a bgical exclusie-or (...) xor (...)

» afiletest operatomwith the exception ofs, -M —A, and —C, that return numerical values, not boolean
ones.

e the.. and... flip-flop operators.
In those cases the valueEBXPRis used directly as a boolean.

Furthermore, Perl inspects the operands of the binary boolean operators to decide whether to use smart
matching for each one by applying the abtest to the operands:

 If EXPRIis... && ... or...and ... , the test is applied recuvsly to both operands. oth
operands pass the test, then the expression is treated as boolean; otherwise, smart matching is used.

e If EXPRIis... || ... R/ - or...or... , the test is applied recuvsly to the first
operand (which may be a highgrecedenc@&ND operatoy for example). If the first operand is to use
smart matching, then both operands will do so; if it is not, then the second argument will not be either.

These rules look complicated, but usuallyythdll do what you want. For example:
when (N\d+$/ && $_<75){...}

will be treated as a boolean match because the rules say bgtx aeech and an explicit test dh_ will
be treated as boolean.

Also:
when ([qw(foo bar)] && /baz/) { ... }

will use smart matching because oolyeof the operands is a boolean; the other uses smart matching, and
that wins.

Further:
when ([qw(foo bar)] || /'baz/) { ... }

will use smart matching (only the first operand is considered), whereas
when (/"baz/ || [qw(foo ban)]) { ... }

will test only the rgex, which causes both operands to be treated as bodlganh out for this one, then,
because an arrayref isxays a true value, which makes it effeety redundant.

Tautologous boolean operators are still going to be optimiaegl. on't be £mpted to write
when (‘foo' or 'bar) { ... }

This will optimize down tdfoo' , so'bar' will never be onsidered (een though the rules say to use a
smart match orfoo'). For an alternation li this, an array ref will wrk, because this will instige
smart matching:

when ([qw(foo bar)] { ... }

This is somewhat equalent to the C—style switch statemertfallthrough functionality (not to be confused
with Pel's fallthrough functionality — see below), wherein the same block is used Yeratease
statements.

perl v5.14.2 2011-09-26 15

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

16

Another useful shortcut is that, if you use a literal array or hash as the argumgieenta, it is turned into
a reference. Sgiven(@foo) is the same agiven(\@foo) , for example.

default behaes exactly likewhen(1 ==1) , which is to say that it alays matches.
Breaking out

You can use thebreak keyword to break out of the enclosirgjven block. Ewery when block is
implicitly ended with éreak .

Fall-through
You can use theontinue keyword to fall through from one case to the next:

given($foo) {
when (/x/) { say '$foo contains an x'; continue }
when (ly/) { say '$foo contains a y' }
default { say '$foo does not contain ay'}

}

Return value

When agiven statement is also a valid expression (e.g. whentie last statement of a block), it
evduates to :

e anempty list as soon as an explimiéak is encountered.

« the value of the lastveluated expression of the successfhien/default clause, if theres one.
» the value of the lastveluated expression of tiggiven block if no condition is true.

In both last cases, the last expressiovauated in the context that was applied todhen block.
Note that, unlikef andunless , failedwhen statements alays evaluate to an empty list.

my $price = do { given ($item) {
when (['pear’, 'apple']) {1}

break when 'vote'; # My vote cannot be bought
1lel0 when /Mona Lisa/;
‘unknown’;

3

Currently,given blocks cart aways be used as proper expressions. This may be addressed in a future
version of perl.

Switching in a loop

Instead of usingiven() , you can use foreach() loop. For example, herg’ane way to count he
mary times a particular string occurs in an array:

my $count = 0;
for (@array) {

when (“foo") { ++$count }
}

print “\@array contains $count copies of ‘foo\n";

At the end of allwhen blocks, there is an implicitext . You can eerride that with anplicit last if
you're only interested in the first match.

This doesrt work if you explicitly specify a loop variable, as fior $item (@array) . You hare ©
use the default variab® . (You can usdor my $_ (@array))

Smart matching in detail

The behaviour of a smart match depends on what type of thing its arguments are. The behaviour is
determined by the following table: the firstwthat applies determines the match behaviour (which is thus
mostly determined by the type of the right operand). Note that the smart match implicitly derefergnces an
non-blessed hash or array ref, so ttttash” and “‘Array” entries apply in those cases.ofFblessed
references, the “Objectentries apply.)

Note that the‘Matching Code’ column is not akvays an exact renditionFor example, the smart match
operator short-circuits whewer possible, bugrep does not.

2011-09-26 perl v5.14.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

$a $b Type of Match Implied Matching Code
Any undef undefined Idefined $a
Any Object invokes ™ overloading on $object, or dies

Hash CodeRef sub truth for each key[1] !grep { !$b—>($_) } keys %$a
Array CodeRef sub truth for each elt[1] !grep { !$b—>($) } @%a

Any CodeRef scalar sub truth $b—>(%a)

Hash Hash hash keys identical (every key is found in both hashes)
Array Hash hash keys intersection grep { exists $b—>{$_} } @%a
Regex Hash hash key grep grep /$a/, keys %$b
undef Hash always false (undef can't be a key)

Any Hash hash entry existence exists $b—>{$a}

Hash Array hash keys intersection grep { exists $a—>{$_} } @%b
Array Array arrays are comparable[2]

Regex Array array grep grep /$a/, @$b

undef Array array contains undef grep !defined, @$b

Any Array match against an array element[3]

grep$a™ % , @%b

Hash Regex hash key grep grep /$b/, keys %$a
Array Regex array grep grep /$b/, @%a

Any Regex pattern match $a ="/$b/
Object Any invokes ™ overloading on $object, or falls back:
Any Num numeric equality $a==%b

Num numish[4] numeric equality $a==%b

undef Any undefined ldefined($b)

Any Any string equality $a eq $b

1 - empty hashes or arrays will match.

2 - t hatis, each element smart—-matches the element of same index in the
other array. [3]

3 - If a ¢ ircular reference is found, we fall back to referential equality.

4 - either a real number, or a string that looks like a number

Custom matching via overloading

You can change the way that an object is matchedvestaading theé™ operator This may alter the usual
smart match semantics.

It should be noted that will refuse to work on objects that démverload it (in order to @oid relying on
the objects underlying structure).

Note also that smart matshmatching rules tad precedenceer overloading, so iffobj has smart match
overloading, then

$obj ™ X

will not automatically inoke the overload method with X as an gument; instead the table afeois
consulted as normal, and based in the type of&jaading may or may not bevioked.

See woerload.
Differences from Perl 6

The Perl 5 smart match agdzen /when constructs are not absolutely identical to their Perl 6 analogues.
The most visible dference is that, in Perl 5, parentheses are required around the argugigah(p
andwhen() (except when this last one is used as a statement modifieentReses in Perl 6 arevays
optional in a control construct suchif3 , while() , or when() ; they can't be nade optional in Perl 5
without a great deal of potential confusion, because Perl 5 would parse the expression

perl v5.14.2 2011-09-26 17

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

given $foo {

}

as though the gument togiven were an element of the ha8tfoo, interpreting the braces as hash-
element syntax.

The table of smart matches is not identical to that proposed by the Perl 6 specification, mainly due to the
differences between Perlstend Perl 55 data models.

In Perl 6,when() will always do an implicit smart match with its argument, whilst it isveaient in Perl
5 to auppress this implicit smart match in certain situations, as documentes @lite difference is largely
because Perl 5 does notee internally havea boolean type.)

Goto
Although not for the dint of heart, Perl does supportgato statement. Therare three forms:
goto —LABEL, goto —EXPR, andgoto —-&NAME. A loop’s LABEL is not actually a alid target for a
goto ; it's just the name of the loop.

Thegoto —LABEL form finds the statement labeled witABEL and resumesxecution there.It may not

be used to go into grconstruct that requires initialization, such as a subroutineforeach loop. It
also cart be used to go into a construct that is optimizedya It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines,itss usually better to use some other construct
such adast ordie . The author of Perl has ver felt the need to use this form gbto (in Perl, that
is — Cis another matter).

The goto —EXPR form expects a label name, whose scope will be resolved dynamidaibyallows for
computed goto s per FORTRAN, but isnt necessarily recommended if you're optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto —&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used BYTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (excgpt that an
modifications to@_in the current subroutine are propagated to the other subroutine.) Afgatthe not

even caller() will be able to tell that this routine was called first.

In almost all cases lkthis, it's uisually a &r, far better idea to use the structured contreV fleechanisms
of next , last , orredo instead of resorting togoto . For certain applications, the catch and tihgair
ofeval{} anddie()for exception processing can also be a prudent approach.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source stide it's expecting the bginning
of a nev statement, if the compiler encounters a line that begins with an equal sign and a waind lik

=headl Here There Be Pods!

Then that text and all remaining text up through and including a ligierieg with=cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text fiedly
=item snazzle($)
The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.
=cut back to the compiler, nuff of this pod stuff!
sub snazzle($) {

my $thingie = shift;

Note that pod translators should look at only paragraphs beginning with a podreifectiakes parsing
easier), whereas the compiler actually wado look for pod escapesen in the middle of a paragraph.

18 2011-09-26 perl v5.14.2

PERLSYN(1) PerProgrammers Reference Guide PERLSYN(1)

This means that the following secret stufll be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldrt’rely upon thevarn() being podded out fover. Not all pod translators are well-
behaed in this regard, and perhaps the compiler will become pickier.

One may also use pod diregs to quickly comment out a section of code.

Plain Old Comments (Not!)
Perl can process line diregs, much lile the C preprocessoiJsing this, one can control Perliidea of
filenames and line numbers in error caming messages (especially for strings that are processed with
eval()). Thesyntax for this mechanism is almost the same as for most C preprocessors: it matches the
regular expression

example: '# line 42 "new_filename.plx"
n# \s*
line\s+ (\d+) \s*
(2:\s("?)([M"+)\g2)? \s*
$Ix

with $1 being the line number for the next line, a8l being the optional filename (specified with or
without quotes). Note that no whitespace may precedg, tirdike modern C preprocessors.

There is a fairly obvious gotcha included with the line divectbebuggers and profilers will only stothe
last source line to appear at a particular line number ixea §le. Careshould be taken not to cause line
number collisions in code yalilike to cebug later.

Here are some examples that you should be able to type into your command shell:

% perl

| ine 200 "bzzzt"

t he "# on the previous line must be the first char on line
die 'foo’;

__END__

foo at bzzzt line 201.

% perl

| ine 200 "bzzzt"

eval qg[\n#line 2001 ""\ndie 'foo']; print $@;
__END__

foo at - line 2001.

% perl

eval gg[\n#line 200 "foo bar"\ndie ‘foo"]; print $@;
__END__

foo at foo bar line 200.

% perl

| ine 345 "goop"

eval "\n#line " . _ _LINE__ . "™, _FILE__ ."\"\ndie 'foo";
print $@;

__END__

foo at goop line 345.

perl v5.14.2 2011-09-26 19

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

NAME

perldata — Perl data types

DESCRIPTION

20

Variable names

Perl has three built-in data types: scalars, arrays of scalars, and ass@miayis of scalars, known as
“hashes! A scalar is a single string (of yarsize, limited only by the \&ilable memory), numberor a
reference to something (which will be discussed in perlrBfdrmal arrays are ordered lists of scalars
indexed by number starting with 0. Hashes are unordered collections of scalar valuexedday their
associated stringely

Values are usually referred to by name, or through a named reference. The first character of the name tells
you to what sort of data structure it refefhe rest of the name tells you the particular value to which it
refers. Usuallythis name is a singlelentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by
(or by the slightly archait); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (seé®ackages’in perimod for details).It's possible to substitute

for a simple identifieran epression that produces a reference to the value at runfirhis. is described in

more detail bely and in perlref.

Perl also has its own built-iraviables whose names dbfollow these rules.They havestrange names so
they don't accidentally collide with one of your normahrables. Stringthat match parenthesized parts of
a reqular expression are s under names containing only digits after th¢see perlop and perlre)n
addition, segeral special variables that provide windows into the innerkiag of Perl hae rames
containing punctuation characters and control characters. These are documented in perlvar.

Scalar values arewadys named with '$’, een when referring to a scalar that is part of an array or a hash.
The '$’ symbol works semantically lig the English word ‘the” in that it indicates a single value is
expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb'} # the 'Feb' value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by '@’, which works much as theea®td *
or “those’ does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a','c"} # same as ($days{'a'},$days{'c?})

Entire hashes are denoted by '%’:
%days # (keyl, vall, key2, val2 ...)

In addition, subroutines are named with an initial '&’, though this is optional when unambiguous, just as
the word ‘do” is often redundant in English. Symbol table entries can be named with an initiaut*', b
you dont really care about that yet (ifer :-).

Every variable type has its own namespace, as\iwaaon-variable identifiers. This means that you can,
without fear of conflict, use the same name for a scald@ble, an arrgyr a lkash — oyfor that matterfor

a filehandle, a directory handle, a subroutine name, a format name, or aTlaiseineans tha$foo and
@foo are two different \ariables. lialso means th&foo[l] is a part of@foo, not a part ofsfoo . This
may seem a bit weird, but thaitkay, because it is weird.

Because variable referencewayfs start with '$’, '@’, or '%’, the ‘reserved’words arert'in fact resered
with respect to variable name$hey are resered with respect to labels and filehandlesyéar, which
don't havean initial special charactetYou cant havea filehandle namedlo6g’’, for instance. Hint: you
could say open(LOG,'logfile") rather than open(log,'logfile") . Using uppercase
filehandles also impkas readability and protects you from conflict with future reservedda. Casds
significant——"FOQ0", “Foo”, and ‘foo’’ are all different names.Names that start with a letter or
underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the
appropriate typeFor a description of this, see perlref.

2011-09-26 perl v5.14.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

Names that start with a digit may contain only more digitames that do not start with a letter
underscore, digit or a caret (i.a.control character) are limited to one chargatay., $%or $$. (Most of
these one character nameséa pedefined significance to Perkor instance$$ is the current process
id.)

Context
The interpretation of operations and values in Perl sometimes depends on the requirements okthe conte
around the operation oalue. Thereare two major contexts: list and scalaCertain operations return list
values in contexts wanting a list, and scalar values otherwfsthis is true of an operation it will be
mentioned in the documentation for that operation. In other words, \Reldads certain operations based
on whether the expected return value is singular or pliBame words in English work thisay like
“fish” and “sheep”.

In a reciprocal fashion, an operation yides either a scalar or a list context to each of garaents. Br
example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> opgevatamh responds by reading one line from
STDIN and passing it back to the integer operation, which will then find thgeintalue of that line and
return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to veadlme available up to the
end of file, and pass that list of lines back to the sort routine, which will then sort those lines and return
them as a list to whater the context of the sort was.

Assignment is a little bit special in that it uses its lefuanent to determine the context for the right
argument. Assignmertb a scalar wluates the right-hand side in scalar cahtevhile assignment to an
array or hashwaluates the righthand side in list coxtte Assignmento a list (or slice, which is just a list
anyway) alsoluates the right-hand side in list context.

When you use these warnings pragma or Ped —w command-line option, you may seamings
about useless uses of constants or functiong@id' contet”’. Void context just means the value has been
discarded, such as a statement containing tndgd"; or getpwuid(0); . It still counts as scalar
context for functions that care whether or not they’re being called in list context.

Userdefined subroutines may choose to care whethgrateebeing called in a void, scalar list context.
Most subroutines do not need to botithough. That because both scalars and lists are automatically
interpolated into listsSee ‘wantarray’ in perlfunc for hav you would dynamically discern your functien’
calling context.

Scalar values
All data in Perl is a scalaan aray of scalars, or a hash of scala#sscalar may contain one single value in
ary of three different flaors: a numbera gring, or a reference. In general, gersion from one form to
another is transparent. Although a scalar may not directly hold mulahles; it may contain a reference
to an array or hash which in turn contains multiple values.

Scalars arem’necessarily one thing or anothérheres no pace to declare a scalaanable to be of type
“string’, type “number’, type “‘reference’, or anything else. Because of the automatic v@asion of

scalars, operations that return scalars tdo@éd to care (and in fact, cannot care) whether their caller is
looking for a string, a numbeor a ieference. Peiik a contextually polymorphic language whose scalars

can be strings, numbers, or references (which includes objects). Although strings and numbers are
considered pretty much the same thing for nearly all purposes, references are strongly-typed, uncastable
pointers with builtin reference-counting and destructeogation.

A scalar value is interpreted aRUE in the Boolean sense if it is not the null string or the number O (or its
string equialent, “‘0’’). The Boolean contet is just a special kind of scalar context where no/esion to
a dring or a number isver performed.

There are actually twvarieties of null strings (sometimes referred to‘aspty” strings), a defined one

and an undefined one. The defined version is just a string of length zero, slich &ke undefined

version is the value that indicates that there is no real value for something, such as when there was an error
or at end of file, or when you refer to an uninitializediable or element of an array or hash. Although in

early versions of Perl, an undefined scalar could become defined when first used in apdeiiegea

perl v5.14.2 2011-09-26 21

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

22

defined value, this no longer happersept for rare cases of auteification as explained in perlrefyou
can use thdefined(Joperator to determine whether a scalar value is defined (this has no meaning on arrays
or hashes), and thendef()operator to produce an undefined value.

To find out whether a gén gring is a valid non-zero numheét's ometimes enough to test it against both
numeric 0 and also lexicdD'’' (although this will cause noises if warnings are ofat's because strings
that arent numbers count as 0, just asytu® in awk:

if (Bstr == 0 && $strne "0") {
warn "That doesn't look like a number";

}

That method may be best because otherwise ymitwvreat IEEE notations lilke NaN or Infinity

properly At other times, you might prefer to determine whether string data can be used numerically by
calling thePOSIX::strtod()function or by inspecting your string with a regular expression (as documented
in perlre).

warn "has nondigits" if N\D/,
warn "not a natural number" unless /\d+$/; # rejects -3
warn "not an integer" unless I"=\d+$/; # rejects +3
warn "not an integer" unless /"[+-]\d+$/;
warn "not a decimal number" unless /"=\d+\.2\d*$/; # rejects .2

warn "not a decimal number" unless /"=?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"
unless /"([+=]?)(?=\d\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

The length of an array is a scalalue. You may find the length of arra@days by evaluating $#days ,

as incsh Howeva, this isnt the length of the array; &'the subscript of the last element, which is a
different value since there is ordinarily a Oth eleméssigning to$#days actually changes the length of
the array Shortening an array this way destroys intervenirdu®s. Lengtheningn array that as
previously shortened does not reepvalues that were in those elements. (It used to do so in Perl 4, but we
had to break this to malaure destructors were called when expected.)

You can also gain some minuscule measure fidiency by pre-extending an array that is going to get big.
You can also extend an array by assigning to an element thatieafnd of the arrayYou can truncate an
array down to nothing by assigning the null list () to it. The following arevelguit:

@whatever = ();
$#whatever = -1;

If you evaluate an array in scalar cortgit returns the length of the arragNote that this is not true of
lists, which return the last value, dikhe C comma operatonor of built-in functions, which return
whatever they feel like returning.) Thédollowing is alvays true:

scalar(@whatever) == $#whatever — $[+ 1,

Version 5 of Perl changed the semantic$of files that dort' set the value o$[no longer need to arry
about whether another file changed &sue. (Inother words, use [is deprecated.) So in general you
can assume that

scalar(@whatever) == $#whatever + 1;
Some programmers choose to use an explicitesion so as to le& rothing to doubt:
$element_count = scalar(@whatever);

If you evaluate a hash in scalar coxtgit returns false if the hash is emptythere are ankey/value pairs,

it returns true; more preciselhe \alue returned is a string consisting of the number of usekkbts and
the number of allocatedubkets, separated by a slashhis is pretty much useful only to find out whether
Perl’s internal hashing algorithm is performing poorly on your data Bet.example, you stick 10,000
things in a hash, butvaluating %HASHN scalar conte reveals "1/16" , which means only one out of
sixteen lickets has been touched, and presumably contains all 10,000 of your items. Thigj@nsed to
happen. Ifa fed hash is wauated in scalar context, tHRCALARmethod is called (with a fallback to
FIRSTKEY).

You can preallocate space for a hash by assigning t&keys) function. Thisrounds up the allocated
buckets to the next power of two:

2011-09-26 perl v5.14.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors
Numeric literals are specified inyaaf the following floating point or integer formats:

12345

12345.67

.23E-10 # a very small number

3.14 15 92 # a very important number

4 294 967_296 # underscore for legibility

Oxff # hex

Oxdead_beef # more hex

0377 # octal (only numbers, begins with 0)
0b011011 # binary

You ae allowed to use underscores (underbars) in numeric literals between digitgtitityie You could,
for example, group binary digits by threes (as for a Unix-style mode argument such as 0b110_100_100) or
by fours (to represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double qudthey work much lilke quotes in the
standard Unix shells: double-quoted string literals are subject to backslash and variable substitution; single-
guoted strings are not (except for and\\). The usual C-style backslash rules apply for making
characters such aswlie, tab, etc., as well as some more exotic forms. See “Quote and Queote-lik
Operators’in perlop for a list.

Hexadecimal, octal, or binaryepresentations in string literals (e.g. 0fare not automatically comrted
to their integer representatioithe hex()andoct() functions mak these cowversions for you.See ‘hex” in
perlfunc and “oct’in perlfunc for more details.

You can also embed newlines directly in your strings, i.ey tam end on a different line than thieegn.

This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote characterhich may be much further on in the scriMariable substitution inside
strings is limited to scalamviables, arrays, and array or hash slices. (In other words, names beginning with
$ or @, followed by an optional bracketed expression as a subscript.) The following code segment prints
out “The price is$100.”

$Price = '$100' # not interpolated
print "The price is $Price.\n"; # i nterpolated

There is no double interpolation in Perl, so$i€0 is left as is.

By default floating point numbers substituted inside strings use the.tdt4s the decimal separatoif
use locale is in effect, andPOSIX::setlocale(has been called, the character used for the decimal
separator is affected by the_NUMERIC locale. Segerllocale andPOSIX.

As in some shells, you can enclose the variable name in braces to disambiguate it fraiingfollo
alphanumerics (and underscore¥pu must also do this when interpolating a variable into a string to
separate the variable name from a fwelloy double-colon or an apostrophe, since these would be otherwise
treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/peri\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl wouldvgalooked for a$whospeak , a$who::0 , and a$who's variable. The
last two would be theb0 and thebs variables in the (presumably) non-existent packape.

In fact, an identifier within such curlies is forced to be a string, asyisiaaple identifier within a hash
subscript. Neitheneed quoting. Our earliexample,$days{'Feb'} can be written a$days{Feb}

and the quotes will be assumed automaticalBut arything more complicated in the subscript will be
interpreted as anxpression. Thismeans for example thaversion{2.0}++ is equvaent to
$version{2}++ , not to$version{'2.0'}++

Version Strings

A literal of the formv1.20.300.4000 is parsed as a string composed of characters with the specified
ordinals. Thisform, known as v-strings, provides an altewgtimore readable way to construct strings,
rather than use the somewhat less readable interpolation"fefi\x{14}\x{12c}\x{fa0}"

perl v5.14.2 2011-09-26 23

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

24

This is useful for representing Unicode strings, and for comparing vefsiombers’ using the string
comparison operatorsmp, gt , It etc. Ifthere are tw or more dots in the literal, the leadingmay be
omitted.

print v9786; # prints SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by bodguire anduse for doing a version check. Note that using the
v=strings for IPv4 addresses is not portable unless you also useth&ton(Jinet_ntoa()routines of the
Socket package.

Note that since Perl 5.8.1 the single-number v—stringe {6) are not v—strings before the> operator
(which is usually used to separate a hash kom a hash value); instead yhere interpreted as literal
strings (V65"). They were v-strings from Perl 5.6.0 to Perl 5.8.0, but that caused more confusion and
breakage than good. Multi-number v-stringselik65.66 and 65.66.67 continue to be v-strings
always.

Special Literals

The special literals FILE , LINE__, and _ PACKAGE_ _represent the current filename, line
number and package name at that point in your prograihey may be used only as separatectiog; thg
will not be interpolated into strings. If there is no current package (due to an paggbge; directive),
__PACKAGE_ _is the undefined value. (But the empigckage; is no longer supported, as aérgion
5.10.)

The two control characters "D and “Z, and the token&ND _and _ DATA__ nmay be used to indicate

the logical end of the script before the actual end of filey fallowing text is ignored.

Text after _ DATA__ may be read via the filehandRACKNAME::DATA where PACKNAMEs the
package that as current when the_DATA __ token was encountered. The filehandle is left open pointing
to the contents after DATA . It is the programs responsibility toclose DATA when it is done
reading from it. For compatibility with older scripts written before DATA__ was introduced, END
behaes like DATA___ in the top le@el script (but not in files loaded wittequire or do) and leaves the
remaining contents of the file accessiblemi@n::DATA .

See SelfLoader for more description of DATA__, and an example of its uséNote that you cannot read
from the DATA filehandle in aBEGIN block: the BEGIN block is eecuted as soon as it is seen (during
compilation), at which point the corresponding ATB.__ (or __END_)token has not yet been seen.

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quotedTstesg.
are known asbarewords”. As with filehandles and labels, a baad that consists entirely ofwercase
letters risks conflict with future reserved words, and if you useuskewarnings pragma or the-w
switch, Perl will warn you about grsuch words. Perllimits barevords (like identifiers) to about 250
characters. Futunreersions of Perl are likely to eliminate these arbitrary limitations.

Some people may wish to owtldarevords entirely If you say
use strict 'subs’;

then ay baravord that wuld NOT be interpreted as a subroutine call produces a compile-time error
instead. Theestriction lasts to the end of the enclosing blo&k. inner block may countermand this by
sayingno strict 'subs'

Array Interpolation

Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the" variable $LIST_SEPARATORIf “use English;’ is specified), space by dafilt. The
following are equiaent:

$temp = join($", @ARGV);
system “"echo $temp";
system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate ambiguity:
Is /$foo[bar]/ to be interpreted ash{foo}[bar]/ (where[bar] is a character class for the

2011-09-26 perl v5.14.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

regular expression) or a${foo[bar]}/ (where[bar] is the subscript to arra@foo)? If @foo
doesnt otherwise exist, then &' doviously a character clas$f @foo exists, Perl takes a good guess about
[bar] , and is almost abays right. If it does guess wrong, or if yo@'just plain paranoid, you can force
the correct interpretation with curly braces asvabo

If you're looking for the information on koto use here-documents, which used to be here,sthaén
moved to “Quote and Quote-li& Operators’in perlop.

List value constructors
List values are denoted by separatingvitiial values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is sim@juthefithe
final element, as with the C comma operatar example,

@foo = (‘cc', '-E', $bar);
assigns the entire list value to ar@foo, but
$foo = (‘cc', '-E', $bar);

assigns the value ofaviable$bar to the scalar ariable$foo . Note that the value of an actual array in
scalar context is the length of the array; the following assigns the val&&to

@foo = (‘cc', '-E', $bar);

$foo = @foo; # $foo gets 3
You may hare an optional comma before the closing parenthesis of a list literal, so that you can say:
@foo = (
11
21
31
);

To use a here-document to assign an awag line per element, you might use an approaehthiis:

@sauces = <<End_Lines =~ m/(\S.x\S)/qg;
normal tomato
spicy tomato
green chile
pesto
white wine
End_Lines

LISTs do automatic interpolation of sublists. That is, whersa is evaluated, each element of the list is
evduated in list context, and the resulting list value is interpolated il just as if each indidual
element were a memberldBT. Thus arrays and hashes lose their identity in a HSMe list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements @foo followed by all the elements @@bar, followed by all the elements
returned by the subroutine named SomeSub called in listxtpfddowed by the ky/value pairs of
%glarch . To make a Ist reference that do@&T interpolate, see perlref.

The null list is represented by (). Interpolating it in a list has fecef Thus((),(),()) is equvalent to ().
Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

This interpolation combines with thadts that the opening and closing parentheses are opticuap{e

when necessary for precedence) and lists may end with an optional comma to mean that multiple commas
within lists are lgd syntax. The listl,,3 is a concatenation of tists,1, and3, the first of which ends

with that optional commal,,3 is (1,),(3) is 1,3 (And similarly for1,,,3 is (1,),(,),3 is

1,3 and so on.) Not that wet'advise you to use this obfuscation.

A list value may also be subscriptedelik rormal array You must put the list in parentheses toid
ambiguity For example:

perl v5.14.2 2011-09-26 25

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

26

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = (a','b','c','d",'e",'f")[$digit-10];

A "reverse comma operator".
return (pop(@foo),pop(@f00))[0];

Lists may be assigned to only when each element of the list is ig&lfdessign to:
(%a, $b, $c) = (1, 2, 3);

($map{'red’}, $map{'blue'}, Smap{'green’}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assigrutmef in a list. This is useful for thiwing avay some of
the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar cortereturns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set$xto 3, not2
$x = (($foo,$bar) = f()); # set $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpfete8@as

It's dso the source of a useful idiom foreeuting a function or performing an operation in list context and
then counting the number of return values, by assigning to an empty list and then using that assignment in
scalar context. For example, this code:

$count = () = $string =~ \d+/g;

will place into$count the number of digit groups found $string . This happens because the pattern
match is in list context (since it is being assigned to the empty list), and will therefore return a list of all
matching parts of the string. The list assignment in scalar xtowi#t translate that into the number of
elements (here, the number of times the pattern matched) and assign®batirto . Note that simply

using

$count = $string =~ N\d+/g;

would not hae worked, since a pattern match in scalar cointdgll only return true or false, rather than a
count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the ligtfhe first one in the list will soak up all the
values, and anything after it will become undefined. This may be usefuhyrf)ar local().

A hash can be initialized using a literal list holding pairs of items to be interpretectpsalla value:

same as map assignment above
%map = (‘red',0x00f,'blue’,0x0f0,'green’,0xf00);

While literal lists and named arrays are often interchangeables thathe case for hashes. Just because
you can subscript a lisalue like a rormal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into &y/value pairs. That' why it's good to use references sometimes.

It is often more readable to use tire operator betweendy/value pairs.The => operator is mostly just a
more visually distinctie synonym for a comma, it it also arranges for its left-hand operand to be
interpreted as a string if #'a larevord that would be a Igd simple identifier => doesnt quote compound

2011-09-26 perl v5.14.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

identifiers, that contain double colons. This makes it nice for initializing hashes:

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,
);
or for initializing hash references to be used as records:
$rec ={
witch => 'Mable the Merciless',
cat => 'Fluffy the Ferocious',
date => '10/31/1776',
2

or for using call-by-named-parameter to complicated functions:
$field = $query—>radio_group(

name => 'group_name’,

values => [‘eenie','meenie','minie'],
default => ‘meenie’,

linebreak => 'true’,

labels => \%labels

);
Note that just because a hash is initialized in that order daeeah that it comes out in that orde&ee
“sort” in perlfunc for examples of hoto arrange for an output ordering.
Subscripts

An array can be accessed one scalar at a time by specifying a dollad)sitirei the name of the array
(without the leading@®, then the subscript inside square bedsk or example:

@myarray = (5, 50, 500, 5000);
print "The Third Element is", $myarray[2], "\n";

The array indices start with 0. A gative subscript retriges its value from the end. In ouxample,
$myarray[-1] would have been 5000, animyarray[-2] would have been 500.

Hash subscripts are similanly instead of square brackets curly brackets are used. For example:
%scientists =

(
"Newton" => "[saac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",
);

print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";
You can also subscript a list to get a single element from it:
$dir = (getpwnam("daemon"))[7];
Slices

A slice accesses geral elements of a list, an arfay a fash simultaneously using a list of subscripts.
more corenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @olks[0,-1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @&NV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

perl v5.14.2 2011-09-26 27

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

28

@daysJ[3..5] = gw/Wed Thu Fri/;

@colors{'red','blue’,'green'}

(0xff0000, 0x0000ff, 0x00ff00);
@folks[0, -1] @olks[-1, 0];

The previous assignments are exactly egent to
($days[3], $days[4], $days[5]) = gw/Wed Thu Fri/;
($colors{'red}, $colors{'blue'}, $colors{'green’})

= (0xff0O000, 0x0000ff, 0x00ff00);
($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash thdicitig, aforeach construct will alter
some — oeven dl — of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }

foreach (@hash{gw[key1 key2]}) {

s/M\s+//; # trim leading whitespace
s\s+$//; # trim trailing whitespace
s/(w+)A\u\L$l/g; # "titlecase" words
}
A slice of an empty list is still an empty list. Thus:
@a = ()[1,0]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (0,1)[2,3]; # @c has no elements
But:
@a = (1)[1,0]; # @a has two elements
@b = (1,undef)[1,0,2]; # @b has three elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%—-8s %s\n", $user, $home;

}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the right-
hand side of the assignment. The null list contains no elements, so when the passworhéilgsted, the
result is 0, not 2.

Slices in scalar context return the last item of the slice.

@a = qwlfirst second third/;

%h = (first => 'A’, second =>'B");

$t = @a[o, 1J; # $t is n ow 'second'
$u = @h{first', 'second’}; # $u is n ow'B'

If you're confused about whyou use an '@’ there on a hash slice instead of a '%’, think ofatttils.

The type of bracket (square or curlyvgms whether i an aray or a hash being looked at. On the other
hand, the leading symbol ('$’ or '@’) on the array or hash indicates whether you are getting back a singular
value (a scalar) or a plural one (a list).

Typeglobs and Filehandles

Perl uses an internal type calledy@eglobto hold an entire symbol table entrfhe type prefix of a
typeglob is a*, because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, butwmadhat we hae real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:
*this = *that;

makes$this an alias fosthat , @this an alias for@that , %this an alias fofsthat , &this an alias
for &that, etc. Much safer is to use a reference. This:

local *Here::blue =\$There::green;
temporarily maks$Here::blue an alias foi$There::green , but doesnt make @Here::blue an

2011-09-26 perl v5.14.2

PERLDATA(2) PerlProgrammers Reference Guide PERIB.(1)

alias for @There::green , or %Here::blue an alias for%There::;green , ec. See“ Symbol
Tables’ in perlmod for more xamples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to creafdetandles. Ifyou need to
use a typeglob to ga avay a filehandle, do it this way:

$fth = *STDOUT;
or perhaps as a real referenceg likis:
$th = *STDOUT;
See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle usinp¢ad) operator These last until their block
is exited, but may be passed baékr example:

sub newopen {
my $path = shift;

local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}

$fh = newopen(/etc/passwd’);

Now that we hse te *foo{THING} notation, typeglobs aren'used as much for filehandle
manipulations, although thee still needed to pass brandanéle and directory handles into or out of
functions. Thas because'HANDLE{IO} only works if HANDLE has already been used as a hantite.
other words, *FH must be used to createweymbol table entries*foo{THING} cannot. Whenn
doubt, useéFH.

All functions that are capable of creating filehandieget() opendir() pipe() sodketpair(), sysopen()
soket(), and accept() automatically create an angmous filehandle if the handle passed to them is an
uninitialized scalar ariable. This allows the constructs such agen(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that willamiently be closed automatically
when the scope ends, pided there are no other references to them. This largely eliminates the need for
typeglobs when opening filehandles that must be passed around, as in the following example:

sub myopen {
open my $fh, "@_"
or die "Can't open '@ _": $!";

return $fh;
}
{
my $f = myopen("</etc/motd");
print <$f>;
$f i mplicitly closed here
}
Note that if an initialized scalar variable is used instead the result feyedif my $fh='zzz';
open($fh, ...) is equvalent toopen(*{'zzz', ...) . use strict 'refs' forbids such
practice.

Another way to create anonymous filehandles is with the Symbol module or with the 10::Handle module
and its ilk. These modules V& te advantage of not hiding different types of the same name during the
local(). See the bottom of “opeRILEHANDLE" i n perlfunc for an example.

SEE ALSO
See perlvar for a description of Psrkuilt-in variables and a discussion ofy# variable names.See
perlref, perlsub, and “Symbol ables’ in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

perl v5.14.2 2011-09-26 29

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

NAME

perlop — Perl operators and precedence

DESCRIPTION

30

Operator Precedence and Associativity
Operator precedence and associativity work in Perl more or ledhdikdo in mathematics.

Opeiator precedenceneans some operators aveleated before otherg-or example, in2 + 4 * 5 | the
multiplication has higher precedence4d® 5 is evaluated first yielding2 + 20 == 22 and not6 *
5 == 30.

Opeiator associativitydefines what happens if a sequence of the same operators is used one after another:

whether the wduator will evaluate the left operations first or the rightor example, in8 - 4 - 2,
subtraction is left associat © Perl evaluates the expression left to rigl8. — 4 is evaluated first making
the expressiod — 2 == 2 andnot8 - 2 == 6.

Perl operators v te following associatity and precedence, listed from highest precedencewntesto
Operators borrowed from C keep the same precedence relationship with eacrevethevhere Cs
precedence is slightly sevg. (This makes learning Perl easier for C folk®ith very fav exceptions,
these all operate on scalar values onty array values.

left terms and list operators (leftward)
left ->

nonassoc ++ -

right **

right ! "\ a ndunary +and -

left = I~

left * !/ % X

left + - .

left << >>

nonassoc named unary operators
nonassoc < ><=>=lJtgtleg e

nonassoc == l=<=>eqgnecmp
left &

left | "

left &&

left I I

nonassoc .

right ?:

right = += —=*= etc.

left , =>

nonassoc list operators (rightward)
right not

left and

left or xor

In the following sections, these operators aneam in precedence order.
Many operators can beverloaded for objects. See@load.

Terms and List Operators (Leftward)
A TERM has the highest precedence in Pdithey include variables, quote and quoteeligperators, ay
expression in parentheses, and/ donction whose guments are parenthesizedctually, there arert’

really functions in this sense, just list operators and unary operators behaving as functions because you put

parentheses around thgaments. Thesare all documented in perlfunc.

If any list operator grint(), etc.) or ary unary operatorgndir(), etc.) isfollowed by a left parenthesis as the
next token, the operator and arguments within parentheses arettake of highest precedence, just kk
normal function call.

In the absence of parentheses, the precedence of list operators ptioh assort , or chmod is either
very high or very lav depending on whether you are looking at the left side or the right side of the aperator
For example, in

2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort avel@ated before the sort, but the commas on the left\ataated
after In other words, list operators tend to gobble up all arguments thawvf@hal then act lik a $mple
TERM with regard to the precedingxpression. Beareful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or t his.
print ($foo), exit; # Or even this.

Also note that
print ($foo & 255) + 1, "\n";

probably does’do what you expect at first glanc@he parentheses enclose the argument ligbriat
which is ealuated (printing the result dfoo & 255). Thenone is added to the return valuepoint
(usually 1). The result is somethingdiknis:

1+ 1, " \n" # Obviously not what you meant.
To do what you meant propetlyou must write:

print(($foo & 255) + 1, "\n");
See “Named Unary Operatorsbr more discussion of this.

Also parsed as terms are @ {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructdits and{} .

See also “Quote and Quote-ilOperators’'towad the end of this section, as well as “I/O Operators”.

The Arrow Operator
"—>" s an infix dereference operatqust as it is in C and+€ If the right side is eitherfa.] ,{...} ,
ora(...) subscript, then the left side must be either a hard or symbolic reference to aa kashy or a
subroutine respeetily. (Or technically speaking, a location capable of holding a hard referencs,af it’
array or hash reference being used for assignment.) See perlreftut and perliref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method name or
a ubroutine reference, and the left side must be either an object (a blessed reference) or a class name (that
is, a package name). See perlobj.

Auto-increment and Auto-decrement
“++"and “—=""work as in C.That is, if placed before a variable, yhacrement or decrement thariable
by one before returning the value, and if placed afterement or decrement after returning the value.
$i=0; $=0;
print $i++; # prints 0
print ++3j; # prints 1
Note that just as in C, Perl doesdefinewhen the variable is incremented or decremented. You justkno
it will be done sometime before or after theue is returned. This also means that modifying@atble
twice in the same statement will lead to undefined behaaid statements like:
$i = $i ++;
print ++ $i + $i ++;
Perl will not guarantee what the result of thewahgatements is.

The auto-increment operator has a litthdr& builtin magic to it. If you increment a variable that is
numeric, or that hasver been used in a numeric context, you get a normal increment. wivlag the

variable has been used in only string contexts since it was set, and has a value that is not the empty string
and matches the pattefija—zA-Z]*[0-9]*\z/ , the increment is done as a string, preserving each
character within its range, with carry:

perl v5.14.2 2011-09-26 31

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

32

print ++($foo = "99"); # prints "100"
print ++($foo = "a0"); # prints "al"
print ++($foo = "Az"); # prints "Ba"
print ++($foo = "zz"); # prints "aaa"

undef is aways treated as numeric, and in particular is chang@dhtefore incrementing (so that a post-
increment of an undef value will retudrather tharundef).

The auto-decrement operator is not magical.

Exponentiation

Binary “**' ' is the exponentiation operatoit binds e/en more tightly than unary minus, so —-2**4 is
—(2**4), not (-2)**4. (This is implemented using £pow(3) function, which actually arks on doubles
internally.)

Symbolic Unary Operators

Unary “I'" performs logical ngation, i.e., “not”. Seealsonot for a lower precedence version of this.

Unary ‘="’ performs arithmetic rggtion if the operand is numeric, includingyastring that looks lile a
number If the operand is an identifiea 4ring consisting of a minus sign concatenated with the identifier

is returned. Otherwise, if the string starts with a plus or minus, a string starting with the opposite sign is
returned. Oneffect of these rules is that —bauard is equalent to the string'“-barevord”. If, however,

the string bgins with a non-alphabetic character (excludirg or *‘=""), Perl will attempt to covert the

string to a numeric and the arithmetigat#on is performed. If the string cannot be cleanlyvented to a
numeric, Perl will gre the warningArgument “the string’ ’ i sn’t numeric in negation (=) at ...

Unary '’ performs bitwise ngetion, i.e., 15 complement. Br example,0666 & "027 is 0640. (See

also ‘Integer Arithmetic’ and “Bitwise String Operators) Note that the width of the result is platform-
dependent: "0 is 32 bits wide on a 32-bit platform, but 64 bits wide on a 64-bit platform, so if you are
expecting a certain bit width, remember to use the' ‘Berator to mask bfhe excess bits.

When complementing strings, if all charactergeherdinal values under 256, then their complements will,
also. Butif they do mot, all characters will be in either 32— or 64-bit complements, depending on your
architecture. Sofor example, ™\x{3B1}" is "W{FFFF_FCA4E}" on 32-bit machines and
"“Y{FFFF_FFFF_FFFF_FCA4E}' on 64-hit machines.

Unary ‘+'" has no effect whatswer, even on grings. Itis useful syntactically for separating a function
name from a parenthesized expression thatldvotherwise be interpreted as the complete list of function
arguments. (Seexamples abee under “Terms and List Operators (Leftward)”.)

Unary ‘\'’ creates a reference to whade follows it. See perlreftut and perlreDo not confuse this
behaior with the behavior of backslash within a string, although both forms deegahe notion of
protecting the next thing from interpolation.

Binding Operators

Binary “=""" binds a scalar expression to a pattern match. Certain operations search or modify the string
$_ by dehwult. Thisoperator makes that kind of operation work on some other string. The Ggimemt

is a search pattern, substitution, or transliteratibhe left argument is what is supposed to be searched,
substituted, or transliterated instead of theadif$. When used in scalar comte the return glue
generally indicates the success of the operatiime exceptions are substitution (s///) and transliteration
(y/ll) with the/r (non-destructie) option, which cause thesturn value to be the result of the substitution.
Behavior in list contet depends on the particular operatBee ‘Regexp Quote-Lile Operators'for details

and perlretut for examples using these operators.

If the right agument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time. Note that this means that its contents will be interpolated twice,
so

W ="\
is not ok, as the gex engine will end up trying to compile the pattérnwhich it will consider a syntax
error.
Binary “I”"is just like “=""" except the return value is gaed in the logical sense.
Binary “I” " with a non-destruote substitution (s///r) or transliteration (y//Ir) is a syntax error.

2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Multiplicati ve Operators
Binary “*" ' multiplies two numbers.

Binary “/"’ divides two numbers.

Binary “%’’ is the modulo operatpmwhich computes the division remainder of its first argument with
respect to its secondgument. Gien integer operand$a and$b: If $b is positve, then$a % $b is $a
minus the largest multiple &b less than or equal ®a. If $b is negaive, then$a % $b is $a minus the
smallest multiple offb that is not less thafia (i.e. the result will be less than or equal to zerb)the
operandsba and$b are floating point values and the absolute valugbofthat isabs($b)) is less than
(UV_MAX + 1) , only the integer portion dfa and$b will be used in the operation (Note: hé&fg¢_MAX
means the maximum of the unsigned integer tyffehe absolute value of the right operaath$($b))is
greater than or equal (WV_MAX + 1) , “%'’ computes the floating-point remaindkr in the equation
($r = $a — $i*$b) where$i is a certain intger that ma&s $r have the same sign as the right
operand$b (not as the left operangla like C functionfmod()) and the absolute value less than that of
$b. Note that wheruse integer is in scope,'%’’ gives you direct access to the modulo operator as
implemented by your C compileThis operator is not as well defined forgative goerands, but it will
execute faster.

Binary “X'’ is the repetition operatoiin scalar context or if the left operand is not enclosed in parentheses,

it returns a string consisting of the left operand repeated the number of times specified by the right operand.
In list context, if the left operand is enclosed in parentheses or is a list formgd/STRING/ , it repeats

the list. If the right operand is zero or gative, it returns an empty string or an empty list, depending on the

context.
print '-' x 80; # print row of dashes
print "\t" x ($tab/8), ' ' x ($tab%8); # t ab over
@ones = (1) x 80; # a |listof801's
@ones = (5) x @ones; # setall elements to 5

Additi ve Operators
Binary “+'’ returns the sum of twnumbers.

Binary “~'’' returns the difference of wnumbers.
Binary “.” concatenates tw4drings.

Shift Operators
Binary “<<’’ returns the &lue of its left argument shifted left by the number of bits specified by the right
argument. Aguments should be irgers. (Sealso “Integer Arithmetic”.)

Binary “>>"' returns the value of its left argument shifted right by the number of bits specified by the right
argument. Aguments should be irgers. (Sealso “Integer Arithmetic”.)

Note that both'«<’’ and “>>"" in Perl are implemented directly usingc<’ and “>>"" in C. If use
integer (see ‘Integer Arithmetic”) is in force then signed C igiers are used, else unsigned Cgats
are used. Either ay, the implementation ishigoing to generate results ¢gar than the size of the igter
type Perl was built with (32 bits or 64 bits).

The result of wverflowing the range of the integers is undefined because it is undefined also in C. In other
words, using 32-bit ingers,1 << 32 is undefined. Shifting by a ngaive rumber of bits is also
undefined.

Named Unary Operators
The various named unary operators are treated as functions with one argument, with optional parentheses.

If any list operator grint(), etc.) or ary unary operatorgndir(), etc.) isfollowed by a left parenthesis as the
next token, the operator andgaiments within parentheses are taken to be of highest precedencegjast lik
normal function call.For example, because named unary operators are higher precedence than ||:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but, because * is higher precedence than named operators:

perl v5.14.2 2011-09-26 33

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

chdir $foo * 20; # chdir ($foo * 20)

chdir($foo) * 20; # (chdir $foo) * 20

chdir ($foo) * 20; # (chdir $foo) * 20

chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)

rand(10) * 20; # (rand 10) * 20

rand (10) * 20; # (rand 10) * 20

rand +(10) * 20; # rand (10 * 20)
Regarding precedence, the filetest operatorss tik, —M etc. are treated li&k ramed unary operatorsuto
they don't follow this functional parenthesis rule. That means, for example;-ft&file).".bak" is

equivaent to—f "$file.bak"
See also “Terms and List Operators (Leftward)”.

Relational Operators
Binary “<’’ returns true if the left argument is numerically less than the right argument.

Binary “>' returns true if the left argument is numerically greater than the right argument.

Binary “<="'returns true if the left argument is numerically less than or equal to the right argument.
Binary “>="' returns true if the left argument is numerically greater than or equal to the right argument.
Binary “It'’ returns true if the left argument is stringwise less than the right argument.

Binary “gt” returns true if the left argument is stringwise greater than the right argument.

Binary “le”’ returns true if the left argument is stringwise less than or equal to the right argument.
Binary “ge” returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators
Binary “=="'returns true if the left argument is numerically equal to the right argument.

Binary “!="" returns true if the left argument is numerically not equal to the right argument.

Binary “<=>""returns -1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the rightgument. Ifyour platform supports NaNs (not-a-numbers) as numexiigces,

using them with‘<=>"" returns undef. NaN is nok"’, *'=="", *‘>"’, *'<="" or *’>="" anything (esen NaN),

so those 5 returrafse. NaN != NaN returns true, as does NaN != anything else. If your platform tdoesn’
support NaNs then NaN is just a string with numeric value 0.

perl —le '$a = "NaN"; print "No NaN support here" if $a == $a'
perl —le '$a = "NaN"; print "NaN support here" if $a != $a’

Binary “eq” returns true if the left argument is stringwise equal to the right argument.
Binary “ne” returns true if the left argument is stringwise not equal to the right argument.

Binary “cmp” returns -1, 0, or 1 depending on whether the left argument is stringwise less than, equal to,
or greater than the right argument.

Binary does a smart match between its arguments. Smart matching is descriBethit fnatching in
detail” in perlsyn.

“It', “le’, “‘ge”, ‘‘gt’” and “cmp” use the collation (sort) order specified by the current localsef
locale isin efect. Segerllocale.

Bitwise And
Binary “&’ ' returns its operands ANDed together bit by bit. (See diseger Arithmetic’ and “Bitwise
String Operators”.)

Note that ‘&’ ' has lower priority than relational operators, so for example the ésacke essential in a
test like

print "Even\n" if ($x & 1) == 0;

Bitwise Or and Exclusive Or
Binary “|"" returns its operands ORed together bit by KBee also‘Integer Arithmetic’ and “Bitwise
String Operators”.)

34 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Binary “’ returns its operands XORed together bit by bit. (See digeder Arithmetic’ and “Bitwise
String Operators”.)

Note that 9"" and “’ have lower priority than relational operators, so for example the brackets are
essential in a test like

print "false\n" if (8 | 2) != 10;

C-style Logical And
Binary “&&' * performs a short-circuit logica®dND operation. Thais, if the left operand is false, the right
operand is notwen evaluated. Scalaor list context propagates down to the right operand if akiated.

C-style Logical Or
Binary “||” performs a short-circuit logicabR operation. Thats, if the left operand is true, the right
operand is notwen evaluated. Scalaor list context propagates down to the right operand if akiated.

C-style Logical Defined-Or
Although it has no direct equalent in C, Perk// operator is related to its C—style dn fact, it's exactly
the same a§ , except that it tests the left hand selefinedness instead of its trutfihus,$a // $b s
similar to defined($a) || $b (except that it returns the value & rather than the value of
defined($a)) and yields the same result dsfined($a) ? $a : $b (except that the ternary-
operator form can be used as alle, while$a // $b cannot). Thids very useful for providing dafilt
values for \ariables. Ifyou actually want to test if at least one$af and$b is defined, usdefined($a
1/ $b)

The|| ,// and&&operators return the last valuealeiated (unlile Cs || and&&, which return 0 or 1).
Thus, a reasonably portable way to find out the home directory might be:

$home = $ENV{HOME}
/I SENV{LOGDIR}
I (getpwuid($<))[7]
/I die "You're homeless\n";

In particular this means that you shouldnise this for selecting betweendwsggregaes for assignment:

@a=@b | @c; # t his is wrong
@a = scalar(@b) || @c; # r eally meant this
@a=@b? @b: @c; # t his works fine, though

As more readable alternats to && and|| when used for control fig Perl provides theand and or
operators (see beld. Theshort-circuit behavior is identical. The precedenceanfd” and “or’’ is much
lower, howeve, 0 that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C-style operators that would/adeen written like this:

unlink("alpha", "beta", "gamma")
[| (gripe(), next LINE);

Using “or” for assignment is unlikely to do what you want; seeviaelo

Range Operators
Binary “.."” i s the range operatowhich is really tvo different operators depending on the crtdn list
contet, it returns a list of values counting (up by ones) from the left value to the dgld. vifthe left
value is greater than the right value then it returns the emptyTlrs. range operator is useful for writing
foreach (1..10) loops and for doing slice operations on arrays. In the current implementation, no
temporary array is created when the range operator is used apithgs®n irforeach loops, but older
versions of Perl might burn a lot of memory when you write somethiegHik:

for (1 .. 1_000_000) {
code

}

The range operator also works on strings, using the magical auto-increment, see belo

In scalar context,..” returns a booleanalue. Theoperator is bistable, l&ka fip-flop, and emulates the
line-range (comma) operator gbd awk, and various editors. Each..” operator maintains itswmn

perl v5.14.2 2011-09-26 35

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

36

boolean state,ven across calls to a subroutine that contains it. It is false as long as its left operasd.is f
Once the left operand is true, the range operator stays true until the right operandaisTE®@yhich the
range operator becomes falseaiag It doesnt become false till the next time the range operator is
evduated. lItcan test the right operand and becoaisef on the same@uation it became true (as awk),

but it still returns true once. If you dotwant it to test the right operand until the nexdleation, as irsed

just use three dots (*“..) instead of tw. Inall other rgards, “..." b ehaves just like “..” d oes.

The right operand is nowvauated while the operator is in théalse” state, and the left operand is not
evduated while the operator is in thé&rue” state. Theprecedence is a little lower than || and &&he
value returned is either the empty string for false, or a sequence number (beginning with 1) fdéhérue.
sequence number is reset for each range encounfénedfinal sequence number in a range has the string
“ EQ” appended to it, which doedreffect its numeric value, but\gis you something to search for if you
want to exclude the endpointYou can exclude the beginning point by waiting for the sequence number to
be greater than 1.

If either operand of scalat.” i s a @nstant expression, that operand is considered true if it is eg)atio(
the current input line number (tBe variable).

To be pedantic, the comparison is actuatf(EXPR) == int(EXPR) , but that is only an issue if you
use a floating point expression; when implicitly ustg as described in the previous paragraph, the
comparison isnt(EXPR) == int($.) which is only an issue wheh is set to a floating pointalue
and you are not reading from a filEurthermore;'span” .. "spat" or2.18..3.14 will not do
what you want in scalar conte because each of the operands aveluated using their intger
representation.

Examples:
As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for
if ($.==101.. $.==200){print; }

next LINE if (1 .. /"$/); # skip header lines, short for
nextLINEIf($.==1..7%/));
(typically in a loop labeled LINE)
si/> [if ('$/ .. eof()); # quote body
parse mail messages
while (<>) {
$in_header = 1 ..177%,
$in_body = ['$/ .. eof;

if ($in_header) {
do s omething
} else {#in body
do s omething else

}
} ¢ ontinue {
close ARGV if eof; # reset $. each file
}
Heres a smple example to illustrate the difference between tleramge operators:
@lines = (" - Foo",
"01 - Bar",
"l - Baz",
- Quux");

foreach (@lines) {
if (/O/ .. 11)){
print "$_\n";
}

2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

This program will print only the line containingar”. If the range operator is changed.to , it will also
print the “Baz’ line.

And nov some examples as a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no—op
@foo = @foo[$#foo—-4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical auto-increment algorithm if the operands are
strings. You can say

@alphabet = ("A" .. "Z");

to get all normal letters of the English alphabet, or
$hexdigit = (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit, or
@z2 = ("01".."31"); print $z2[$mday];

to get dates with leading zeros.

If the final value specified is not in the sequence that the magical incremmaldt produce, the sequence
goes until the next value would be longer than the final value specified.

If the initial value specified ishpart of a magical increment sequence (that is, a non-empty string matching
["Ta—zA-Z]*[0-9]*\z/), only the initial value will be returnedso the following will only return an
alpha:

use charnames "greek";
my @greek _small = ("\N{alpha}" .. "\N{omega}");
To get the 25 traditional lowercase Greek letters, including both sigmas, you could use this instead:
use charnames "greek";
my @greek _small= map {chr}
ord "\N{alpha}" .. ord "\N{omega}";
However, because there amaany other lowercase Greek characters than just those, to matehckse

Greek characters in a regular expression, you would use the pattern
[(?:(?=\p{Greek})\p{Lower})+/

Because each operand igleated in integer form2.18 .. 3.14 will return two dements in list
context.
@list = (2.18 .. 3.14); # same as @list= (2 .. 3);

Conditional Operator
Ternary “?:"” is the conditional operatpjust as in C. It works much kkan f-then-else. Ifthe agument
before the ? is true, the argument before the : is returned, otherwise the argument after the : isFeturned.
example:

printf "I have %d dog%s.\n", $n,
($n==1)?2":"s"

Scalar or list context propagates downward into the 2nd or 3rd argument, wehisteelected.

$a = $ok ? $b : $c; # geta scalar
@a =3%0k ? @b : @c; # getan array
$a=%0k ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd argumenigablhealaes (meaning that you can
assign to them):

($a_or_b ? $a: $b) = $c;

Because this operator produces an assignable result, using assignments without parentheses will get you in
trouble. For example, this:

$a%2?%a+=10:%a+=2
Really means this:

perl v5.14.2 2011-09-26 37

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

(32 % 2) ? ($a +=10) : $a) +=2

Rather than this:
($a% 2) ? ($a +=10) : ($a +=2)

That should probably be written more simply as:
$a+=($a % 2)?10: 2;

Assignment Operators
“="is the ordinary assignment operator.

Assignment operators work as in C. That s,
$a +=2;

is equiaent to
$a=%a+ 2,

although without duplicating grside efects that dereferencing the Ivalue might triggach as frontie().
Other assignment operators work similarihe following are recognized:
*k— += *= &= <<= &&=
—-= /= |: >>= ||:
= Op= = /=
X=
Although these are grouped by familyey al have the precedence of assignment.

Unlike in C, he scalar assignment operator produces a vallddv Modifyingan assignment is egalent
to doing the assignment and then modifying the variable that was assigned to. This is useful for modifying
a wopy of something, lile this:

($tmp = $global) =" tr [0-9] [a—j];
Likewise,

(Pa+=2)*=3;
is equiaent to

$a +=2;
$a *= 3;

Similarly, a list assignment in list conteproduces the list of lvalues assigned to, and a list assignment in
scalar context returns the number of elements produced byphnession on the right hand side of the
assignment.

The Triple-Dot Operator
The triple-dot operator.. , sometimes called thewhatever operator’, the “yada-yada operator”, or the
"et cetea" operator is a paceholder for code. Perl parses it without erbot when you try toxecute a
whatever, it throws an exception with the tedhimplemented

sub unimplemented{ ... }
eval { unimplemented() };

if (3@ eq "Unimplemented") {
say "Oh look, an exception——whatever.";
}

You can only use the triple-dot operator to stand in for a complete stateiifeage examples of the triple-
dot work:

{. .}

sub foo{... }
eval {... };

38 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

sub foo {
my ($self) = shift;

}

do {
my $variable;

say "Hurrah!";
} while $cheering;

The yada—yada-or whaterer — cannot stand in for anxpression that is part of a larger statement since
the ... is also the three-dotevsion of the binary range operator (see “Range OperatorBhese
examples of the whater operator are still syntax errors:

print ...;
open(PASSWD, ">", "/dev/passwd") or ...;

if ($condition && ...) { say "Hello" }

There are some cases where Perl tcanmediately tell the difference between an expression and a
statement. &r instance, the syntax for a block and an anonymous hash reference constructor look the same
unless there’ smething in the braces thatvgi Rerl a hint. The whater is a gyntax error if Perl doest’

guess that thé . ..} is a block. In that case, it doesthink the... is the whateer because it
expecting an expression instead of a statement:

my @transformed = map { ... } @input; # syntax error

You can use g inside your block to denote that the. .. } is a block and not a hash reference
constructarNow the whatger works:

my @transformed = map {; ... } @input; # ; disambiguates

my @transformed = map { ...; } @input; # ; disambiguates
Comma Operator

Binary “,” i s the comma operatoin scalar context it aluates its left argument, throws that valweag,
then @aluates its right argument and returns thetie. Thiss just like Cs comma operator.

In list context, it just the list argument separatend inserts both its arguments into the ligthese
arguments are alsoa@uated from left to right.

The => operator is a synonym for the commecept that it causes its left operand to be interpreted as a
string if it begins with a letter or underscore and is composed only of letters, digits and understises.
includes operands that might otherwise be interpreted as operators, constants, single number v-strings or
function calls. If in doubt about this behavithre left operand can be quoted explicitly.

Otherwise, the=> operator behaes exactly as the comma operator or list argument sepaegtwrding to
context.

For example:
use constant FOO => "something";

my %h = (FOO => 23);
is equiaent to:
my %h = ("FOQ", 23);
It is NOT:
my %h = ("something", 23);

The => operator is helpful in documenting the correspondence betwsysnakd values in hashes, and
other paired elements in lists.

perl v5.14.2 2011-09-26 39

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

%hash = ($key => $value);
login($username => $password);

List Operators (Rightward)
On the right side of a list operatthe comma hasery low precedence, such that it controls all comma-
separated expressions found there. The only operators wihr lorecedence are the logical operators
“and’, “‘or’”’, and ‘not”, which may be used tovaluate calls to list operators without the need fxirae
parentheses:

open HANDLE, "< $file"
or die "Can't open $file: $1\n";

See also discussion of list operators in “Terms and List Operators (Leftward)”.

Logical Not
Unary ‘not” returns the logical mgtion of the expression to its rightt’s the equialent of “I'* except for
the very lav precedence.

Logical And
Binary “and” returns the logical conjunction of the dveurrounding &pressions. I8 equivalent to &&
except for the very v precedence. Thimeans that it short-circuits: the right expressiorvauated only
if the left expression is true.

Logical or, Defined or, and Exclusive Or
Binary “or’’ returns the logical disjunction of thedvaurrounding &pressions. I8 equivalent to|| except
for the very lov precedence. Thimakes it useful for control flow:

print FH $data or die "Can't write to FH: $!";

This means that it short-circuits: the right expressionakiated only if the left gpression isdlse. Dudo
its precedence, you must be careful woié using it as replacement for tfje operator It usually works
out better for flav control than in assignments:

$a = $b or $c; # bug: this is wrong
($a = $b) or $c; # r eally means this
$a =$b || $c; # better written this way

However, when it's a Ist-context assignment and yaw trying to usg| for control flov, you probably
need “or’ so that the assignment takes higher precedence.

@info = stat($file) || die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you couldwabys use parentheses.

Binary “xor’’ returns the xclusve-OR of the tvo surrounding &pressions. ltcannot short-circuit (of
course).

C Operators Missing From Perl
Here is what C has that Perl doesn't:

unary & Address-of operatofBut see the “Voperator for taking a reference.)
unary * Dereference-address operafBerl's prefix dereferencing operators are typed: $, @, %, and &.)
(TYPE) Type-casting operator.

Quote and Quote-like Operators
While we usually think of quotes as literal values, in Pery thumction as operators, providingnous
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaiors, but also provides aay for you to choose your quote character for @frthem. Inthe following
table, &} represents gnpair of delimiters you choose.

40 2011-09-26 perl v5.14.2

PERLOP(1)

PerProgrammers Reference Guide

PERLOP(1)

Customary Generic Meaning Interpolates
af} Literal no
qaq{} Literal yes
ax{} Command yes*
aw{} Word list no
I m{} Pattern match yes*
ar{} Pattern yes*
s{{} Substitution yes*
tr{}{} Transliteration no (but see below)
v{{} Transliteration no (but see below)

<<EOF here—doc

* u nless the delimiter is ".

yes*

Non-bracleting delimiters use the same character fore and aft, but the four sagslobraclets (round,

angle, square, curly) all nest, which means that
g{foo{bar}baz}

is the same as
‘foo{bar}baz’

Note, howeer, that this does notwabys work for quoting Perl code:
$s={ if(aeq"}") ... }; # WRONG

is a syntax errofThe Text::Balanced
to do this properly.

module (standard as of v5.8, and fr@PAN before then) is able

There can be whitespace between the operator and the quoting characégtsywber¥ is being used as
the quoting characteig#foo# is parsed as the stridigo , while g #foo# is the operatoq followed by
a omment. Itsargument will be taken from the next line. This allows you to write:

s {foo} # Replace foo
{bar} # with bar.
The following escape sequences ar@lable in constructs that interpolate, and in transliterations:
Sequence Note Description
\t tab (HT, TAB)
\n newline (NL)
\r return (CR)
\f form feed (FF)
\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\x{263A} [1,8] hex char (example: SMILEY)
\x1b [2,8] restricted range hex char (example: ESC)
\N{name} [3] named Unicode character or character sequence
\N{U+263D} [4,8] Unicode character (example: FIRST QUARTER MOON)
\c[[5] control char (example: chr(27))
\0{23072} [6,8] octal char (example: SMILEY)
\033 [7,8] restricted range octal char (example: ESC)

[1] The result is the character specified by the hexadecimal number between the Seacty. ' below
for details on which character.

Only hexadecimal digits are valid between the braces. Ifhaidrcharacter is encountered, anving
will be issued and the valid character and all subsequent characteaid\or invalid) within the

braces will be discarded.

If there are no valid digits between the braces, the generated character NsLihecharacter
(\x{00}). However, an explicit empty brace\k{}) will not cause a warning (currently).

(2]

The result is the character specified by theadecimal number in the range 0x00 to OxEee ‘[8]”

belaw for details on which character.

perl v5.14.2

2011-09-26 41

PERLOP(1)

42

3]
[4]

5]

[6]

[7]

PerProgrammers Reference Guide PERLOP(2)

Only hexadecimal digits areald following \x . When\x is followed by fewer than tavalid digits,

ary valid digits will be zero-padded. This means thét will be interpreted a&07 , and a lone
<\x> will be interpreted ax00 . Except at the end of a string, having fewer thao walid digits will
result in a varning. Notethat although the arning says the ilgd character is ignored, it is only
ignored as part of the escape and will still be used as the subsequent character in thE&aostring.
example:

Original Result Warns?
"\X7" "“\x07" no
"\x" "\x00" no
"\x7q" "\x07q" yes
"\xq" "\x00q" yes

The result is the Unicode character or character sequergehyiname See charnames.

\N{U+ hexadeci mal nunber} means the Unicode character whose Unicode code point is
hexadecimal number

The character followindc is mapped to some other character as shown in the table:

Sequence Value

\c@ chr(0)
\cA chr(1)
\ca chr(1)
\cB chr(2)
\cb chr(2)
\cz chr(26)
\cz chr(26)
\c[chr(27)
\c] chr(29)
\c” chr(30)
\c? chr(127)
Also,\c\ Xyields chr(28) ." X" for ary X, but cannot come at the end of a string, because the

backslash would be parsed as escaping the end quote.

On ASCII platforms, the resulting characters from the listvabme the complete set @fSClil controls.
This isnt the case orEBCDIC platforms; see‘OPERATOR DIFFERENCES in perlebcdic for the
complete list of what these sequences mean onAsiii andEBCDIC platforms.

Use of ag other character following théc'’ besides those listed almis dscouraged, and some are
deprecated with the intention of removing those in Perl 5.16. What happensy fof thiese other
characters currently though, is that the value isreégby inveting the 7th bit (0x40).

To get platform independent controls, you can\Ie..}

The result is the character specified by the octal number between the bracef3]' Seelow for
details on which character.

If a character that ishan cctal digit is encountered, aanning is raised, and the value is based on the
octal digits before it, discarding it and all following characters up to the closing bitaisea fatal
error if there are no octal digits at all.

The result is the character specified by the three-digit octal number in the range 000 td B> (o
not use abee 077, see next paragraph). See “[&elow for details on which character.

Some contets allov 2 or even 1 dgit, but ary usage without exactly three digits, the first being a zero,
may give wintended results(For example, see “Octal escapar’perlrebackslash.) Startirig Perl
5.14, you may us®{} instead, which woids all these problems. Otherwise, it is best to use this
construct only for ordinal®)77 and belev, remembering to pad to the left with zeros to mttkee
digits. For larger ordinals, either use{} , or corvert to something else, such as tolaad use
\x{} instead.

Having fewer than 3 digits may lead to a misleadireyning message that says that what follows is
ignored. Br example,"\128" in the ASCII character set is equaent to the tw characters\n8"

2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

but the warninglllegal octal digit '8' ignored will be throwvn. To avoid this warning,
make aure to pad your octal number wifs: "\0128"

[8] Several constructs ah@ gecify a character by a numberhat number gies the charactes' position
in the character set encoding (imé@ from 0). This is called synonymously its ordinal, code position,
or code point. Perl works on platforms thatéa rative excoding currently of either ASCII/Latin1 or
EBCDIC, each of which allav specification of 256 characterén general, if the number is 255 (0xFF
0377) or belw, Perl interprets this in the platforsynative encoding. Ifthe number is 256 (0x100,
0400) or abwe, Perl interprets it as a Unicode code point and the result is the corresponding Unicode
character For example\x{50} and\o{120} both are the number 80 in decimal, which is less than
256, so the number is interpreted in theveatharacter set encodingn ASCII the character in the
80th position (indeed from 0) is the letter'P”, and in EBCDIC it is the ampersand symbo&.”.
\x{100} and\o{400} are both 256 in decimal, so the number is interpreted as a Unicode code
point no matter what the ned encoding is. The name of the character in the 100th position Kedle
by 0) in Unicode i$ ATIN CAPITAL LETTER A WITH MACRON .

There are a couple of exceptions to thevelrale. \N{U+ hex numnber} is aways interpreted as a
Unicode code point, so thatN{U+0050} is “P"” even on EBCDIC platforms. And if

use encoding s in efect, the number is considered to be in that encoding, and is translated from
that into the platforns rmative encoding if there is a corresponding maticharacter; otherwise to
Unicode.

NOTE: Unlike C and other languages, Perl has\mnoescape sequence for the vertical ¥b { ASCII 11),
but you may uséck or\x0Ob . (\v does hae meaning in regular expression patterns in Perl, see perlre.)

The following escape sequences a@lable in constructs that interpolate, but not in transliterations.

\l lowercase next character only

\u tittecase (not uppercase!) next character only
\L lowercase all characters till \E seen

\U uppercase all characters till \E seen

\Q quote non-word characters till \E

\E end either case modification or quoted section

(whichever was last seen)
\L ,\U, and\Q can stack, in which case you need tador each. For example:

say "This \Qquoting \ubusiness \Uhere isn't quite\E done yet,\E is it?";
This quoting\ Business\ HERE\ ISN\'T\ QUITE\ done\ yet), is it?

If use locale is in effect, the case map used\by, \L , \u , and\U is taken from the current locale.
See perllocale. If Unicode (foxample,\N{} or code points of 0x100 or beyond) is being used, the case
map used byl , \L, \u, and \U is as defined by Unicode. That means that case-mapping a single
character can sometimes produceessa characters.

All systems use the virtudin" to represent a line terminat@alled a ‘newline”. Thereis no such thing
as an uwarying, physical newline charactelt is only an illusion that the operating system, deviceetsi,
C libraries, and Perl all conspire to pregenNotall systems reathr" asASCIl CRand"\n" asASCII
LF. For example, on the ancient Macs (pre-MacOS X) of yestenthase used to bev@sed, and on
systems without line terminatgrinting "\n" might emit no actual data. In general, tis¢ when you
mean a ‘hewline” for your system, but use the literaSCIl when you need an exact charactéor
example, most networking protocolgpect and prefer @R+LF ("\015\012" or "\cM\cJ") for line
terminators, and although theften accept just\012" , they seldom tolerate just015" . If you getin
the habit of using\n" for networking, you may be burned some day.

For constructs that do interpolateanables beginning with$" or " @ are interpolated. Subscripted
variables such a$a[3] or $href->{key}[0] are also interpolated, as are array and hash sligafs.
method calls such &obj—>meth are not.

Interpolating an array or slice interpolates the elements in,oselearated by the value &', so &

equivalent to interpolatingjoin $", @array . “Punctuation” arrays such as@* are usually
interpolated only if the name is enclosed in bra@{s} , but the arrays® , @+ and @-are interpolated
even without braces.

For double-quoted strings, the quoting fra@ is applied after interpolation and escapes are processed.

perl v5.14.2 2011-09-26 43

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

"abc\Qfoo\tbar$s\Exyz"
is equiaent to
"abc" . quotemeta("foo\tbar$s") . "xyz"

For the pattern of mgex operators qr// , m// and s///), the quoting from\Q is applied after
interpolation is processed, but before escapes are processed. T thopattern to match literally
(except for$ and@. For example, the following matches:

s\t =" ANQ\s\W/

Becauses or @trigger interpolation, you'll need to use something NQusen\E\@\Qhost/ to match
them literally.

Paterns are subject to an additionaldieof interpretation as a regulaxgression. Thiss done as a second
pass, after variables are interpolated, so that regaeiegsions may be incorporated into the pattern from
theariables. Ifthis is not what you want, u$® to interpolate a variable literally.

Apart from the behaor described aba, Perl does not expand multiplevids of interpolation. In
particular contrary to the expectations of shell programmers, back-quots®dmterpolate within double
guotes, nor do single quotes impesdwation of variables when used within double quotes.

Regexp Quote-Like Operators
Here are the quote-kkagperators that apply to pattern matching and related activities.

gr/STRING/msixpodual
This operator quotes (and possibly compiles)STRINGas a regular x@ression. STRINGIis
interpolated the same way BATTERNin m/PATTERN/. If *“” is wsed as the delimiteno
interpolation is done. Returns a Perl value which may be used instead of the corresponding
/ISTRING/msixpodual expression. The returned value is a normalizexsion of the original
pattern. It magically dférs from a string containing the same characteféqr/x/) returns
“Regexp”, &en though dereferencing the result returns undef.

For example,

$rex = gr/my.STRING/is;
print $rex; # prints (?si-xm:my.STRING)
s/$rex/fool;

is equvalent to
s/my.STRING/foolis;
The result may be used as a subpattern in a match:

$re = qr/$pattern/;

$string =" /foo${re}bar/; # can be interpolated in other patterns
$string =" $re; # or u sed standalone
$string =" /$re/; # or t his way

Since Perl may compile the pattern at the momenkefution of theqr() operator using qr()
may hae peed advantages in some situations, notably if the resgif)aé used standalone:

sub match {
my $patterns = shift;
my @compiled = map gr/$_/i, @$patterns;
grep {
my $success = 0;
foreach my $pat (@compiled) {
$success = 1, last if /$pat/;
}

$success;
} @
}

Precompilation of the pattern into an internal representation at the mongn(t afads a need
to recompile the patterrvery time a matchi$pat/ is attempted. (Perl has maather internal
optimizations, but none would be triggered in thevab@mample if we did not usegr() operator.)

44 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Options (specified by the following modifiers) are:

m Treat string as multiple lines.
s Treat string as single line. (Make . match a newline)
i D o case-insensitive pattern matching.
X Use extended regular expressions.
p When matching preserve a copy of the matched string so
that ${"PREMATCH]}, ${"MATCH]}, ${"POSTMATCH} will be defined.
0 Compile pattern only once.
I U se the locale
u Use Unicode rules
a Use ASCII for \d, \s, \w; specifying two a's further restricts
/i matching so that no ASCII character will match a non-ASCII
one
d Use Unicode or native charset, as in 5.12 and earlier

If a precompiled pattern is embedded in a larger pattern thenftéot ef ‘msixpluad’ will be
propagted appropriatelyThe effect the'¢’” modifier has is not propaged, being restricted to
those patterns explicitly using it.

The last four modifiers listed abg® added in Perl 5.14, control the character set semantics.

See perlre for additional information on valid syntax $0RING, and for a detailed look at the
semantics of regulaxpressions. Imparticular dl the modifiers gecpt/o are further gplained
in “Modifiers’ in perlre. /o is described in the next section.

m/PAT TERN/msixpodualgc

/PAT TERN/msixpodualgc
Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if it
fails. If no string is specified via th€" or I” operatorthe $_ string is searched. (The string
specified with=" need not be an &ue —itmay be the result of an expressioeation, hut
remember the™ binds rather tightly Seealso perlre.

Options are as describedqn// abore; in addition, the following match process modifiers are
awailable:

g Match globally, i.e., find all occurrences.
¢ Do notreset search position on a failed match when /g is in effect.

If ““/'" is the delimiter then the initiainis optional. With the myou can use anpair of non-
whitespace ASCII) characters as delimiters. This is particularly useful for matching path names
that contain‘/"’, to avoid LTS (leaning toothpick syndrome). [f?*’ is the delimiter then a
match-only-once rule applies, describedm®PATTERN%elow. If ‘“”" is the delimitey no
interpolation is performed on theATTERN. When using a characterahd in an identifier
whitespace is required after thre

PATTERN may contain ariables, which will be interpolatedsegy time the pattern search is
evduated, except for when the delimiter is a single quote. (Notetha) , and $| are not
interpolated because thiook like end-of-string tests.)Perl will not recompile the pattern unless
an interpolated variable that it contains changésu can force Perl to skip the test andvere
recompile by adding & (which stands for‘once’) after the trailing delimiter Once upon a
time, Perl would recompile regular expressions unnecessanilythis modifier was useful to tell
it not to do so, in the interests of speed. But,rthe only reasons to use are either:

1. The variables are thousands of characters long and you k&b they don't change, and
you need to wring out the last little bit of speed byimg Perl skip testing for that(There
is a maintenance penalty for doing this, as mentiofingconstitutes a promise that you
won'’t change the variables in the pattern. If you change them, Perl &ven’'notice.)

2. you want the pattern to use the initial values of the variablggdiess of whether tlye
change or not. (But there are saner ways of accomplishing this tharaisjng

The empty pattern //
If the PATTERN evduates to the empty string, the lasiccessfullynatched regular expression is
used instead. In this case, only thandc flags on the empty pattern are honored; the other flags

perl v5.14.2 2011-09-26 45

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

are taken from the original pattern. If no match hasipusly succeeded, this will (silently) act
instead as a genuine empty pattern (which wilibgs match).

Note that it5 possible to confuse Perl into thinking (the empty rgex) is really// (the
defined-or operator)Perl is usually pretty good about this, but some pathological cases might
trigger this, such a$a/ll (is that($a) / (//) or$a /l | 7?) andprint $th //

(print $th(// or print($fh // ?). Inall of these gamples, Perl will assume you meant
defined-or If you meant the empty gex, just use parentheses or spaces to disambiguatesor e
prefix the empty regewith anm(so// becomesn//).

Matching in list context
If the /g option is not usedn// in list context returns a list consisting of the syiressions
matched by the parentheses in the pattern, $&,,%2, $3...). (Notethat here$l etc. are also
set, and that this differs from Perk4iehavior) Whenthere are no parentheses in the pattern, the
return value is the lisfl) for success.With or without parentheses, an empty list is returned
upon failure.

Examples:

open(TTY, "+>/dev/tty")
|| die "can't access /devi/tty: $!";

<TTY> ="/"yli && foo(); # do f oo if desired
if (/Version: *([0-9.1*)/) { $version = $1; }
next if m# /usr/spool/uucp#;

poor man's grep
$arg = shift;
while (<>) {
print if /$arg/o; # compile only once (no longer needed!)
}

if ($F1, $F2, $Etc) = ($foo =" IF(\S+)\s+(\S+)\s*(.*)/))

This last example splitsfoo into the first tvo words and the remainder of the line, and assigns
those three fields #®F1, $F2, and $Etc . The conditional is true if anvariables were assigned;
that is, if the pattern matched.

The/g modifier specifies global pattern matchinghat is, matching as maitimes as possible

within the string. Hw it behaves depends on the conte In list context, it returns a list of the
substrings matched by yarcapturing parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In scalar context, eackxeeution ofm//g finds the next match, returning true if it matches, and
false if there is no further match. The position after the last match can be read or set using the
pos() function; see‘pos” in perlfunc. A failed match normally resets the search position to the
beginning of the string, but you carvad that by adding thdc modifier (e.g.m//gc).
Modifying the target string also resets the search position.

\G assertion
You can intermixm//g matches withmAG.../g , where\G is a zero-width assertion that
matches the exact position where thevignesm//g , if any, left off. Without the/g modifier, the
\G assertion still anchors pbs() as it was at the start of the operation (§s&s” in perlfunc),
but the match is of course only attempted once. Usthgvithout/g on a target string that has
not previously had & match applied to it is the same as using\theassertion to match the
beginning of the string.Note also that, currentiyG is only properly supported when anchored at
the very beginning of the pattern.

Examples:

46 2011-09-26 perl v5.14.2

PERLOP(1)

perl v5.14.2

PerProgrammers Reference Guide PERLOP(2)

| ist context
($one,$five, $fifteen) = (Cuptime™ =" /(\d+\.\d+)/g);

scalar context
local $/ =",
while ($paragraph = <>) {

}

while ($paragraph =" Ap{LI}[")]*[.!?]+[")]*\s/g) {
$sentences++;
}

say $sentences;

Heres another way to check for sentences in a paragraph:

my $sentence_rx = gr{

(?: (?<=") | (?<=\s)) # after start—of-string or whitespace
\p{Lu} # capital letter
x? # a bunch of anything
(?<=\S) # t hat ends in non—-whitespace
(?<!'\b [DMS]r) # butisn't a common abbreviation
(?<!'\b Mrs)
(?<!'\b Sra)
?<!'\b St)
[.?1] # followed by a sentence ender
?=$%]|\s) # in f ront of end—of-string or whitespace
Isx;
local $/ =",

while (my $paragraph = <>) {

}

say "NEW PARAGRAPH";
my $count = 0;
while ($paragraph =" /($sentence_rx)/g) {
printf "\tgot sentence %d: <%s>\n", ++$count, $1;
}

Heres how to usem//gc with\G:

$_ =

‘ppooappaq’;

while ($i++ < 2) {

}

print "1: ™,
print $1 while /(0)/gc; print ™, pos=", pos, "\n";
print "2: ",
print $1 if AG(qg)/gc; print ™, pos=", pos, "\n";
print "3: ";
print $1 while /(p)/gc; print ™, pos=", pos, "\n";

print "Final: '$1', pos=",pos,"\n" if AG(.)/;

The last example should print:

=

:'00', pos=4

:'d', pos=5

" pos=7

2
3:'pp’, pos=7
1
2

'], pos=8
3. ", pos=8
Final: 'q', pos=8

Notice that the final match matchgdnstead ofp, which a match without thes anchor veuld
have dne. Also note that the final match did not update . pos is only updated on &
match. If the final match did indeed matohit's a god bet that you're running a very old
(pre-5.6.0) version of Perl.

2011-09-26 47

PERLOP(1)

PerProgrammers Reference Guide PERLOP(2)

A useful idiom forlex -like <anners ig\G.../gc . You can combine seral regexps like
this to process a string part-by-part, doing different actions depending on wiixh neatched.
Each regexp tries to match where the previous owedeif.

$ =<<EOL;
$url = URI::URL->new("http://example.com/"); die if $url eq "xXx";
EOL
LOOP: {
print(" digits"), redo LOOP if A\G\d+\b],.;]?\s*/gc;

print(" lowercase"), redo LOOP if AG\p{LI}+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP if AG\p{Lu}+\b[,.;]?\s*/gc;
print(" Capitalized"), redo LOOP if AG\p{LuP\p{LI}+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if A\G\pL+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP if AG[\p{Alpha}\pN]+\b][,.;]?\s*/gc;
print(" line—-noise"), redo LOOP if \G\W+/gc;
print ". That's alll\n";

}

Here is the output (split into eeral lines):

line—noise lowercase line—noise UPPERCASE line—noise UPPERCASE
line—noise lowercase line—noise lowercase line—noise lowercase
lowercase line—noise lowercase lowercase line—noise lowercase
lowercase line-noise MiXeD line—noise. That's all!

m?RATTERN?msixpodualgc
?RATTERN?msixpodualgc

This is just lile the m/PATTERN/ search, except that it matches only once between calls to the
reset()operator This is a useful optimization when yowamt to see only the first occurrence of
something in each file of a set of files, for instan@mly m?? patterns local to the current
package are reset.

while (<>) {
if (m?°$?) {
blank line between header and body
}
} ¢ ontinue {
reset if eof; # clear m?? status for next file
}

Another example switched the first “latingncoding it finds to “utf8’in a pod file:
s//utf8/ if m? ~ =encoding \h+ \K latinl ?x;

The match-once behavior is controlled by the match delimiter l&imgth ary other delimiter
this is the normain// operator.

For historical reasons, the leadingin m?PATTERN?s optional, but the resultingPATTERN?
syntax is deprecated, will warn on usage and might bevehfoom a future stable release of
Perl (without further notice!).

s/ITTERN/REPLACEMENT/msixpodualgcer

48

Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions madatherwise it returns false (specificaliype empty
string).

If the /r (non-destructie) option is used then it runs the substitution on ayajthe string and
instead of returning the number of substitutions, it returns the whpther or not a substitution
occurred. Theriginal string is neer changed whetr is used. The cgpwill always be a plain
string, &en if the input is an object or a tied variable.

If no string is specified via the™ or " operatoyr the $_ variable is searched and modified.
Unless ther option is used, the string specified must be a scalar variable, an array element, a
hash element, or an assignment to one of those; that is, some sort of scalar Ivalue.

2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

If the delimiter chosen is a single quote, no interpolation is done on eitheATthERN or the
REPLACEMENT. Otherwise, if thePATTERN contains a $ that looks kka \ariable rather than an
end-of-string test, the variable will be interpolated into the pattern at run-tfngeu want the
pattern compiled only once the first time thaiable is interpolated, use the option. If the
pattern galuates to the empty string, the last successfulscted regular expression is used
instead. Seperlre for further explanation on these.

Options are as with m// with the addition of the following replacement specific options:

e Evaluate the right side as an expression.
ee Evaluate the right side as a string then eval the result.
r R eturn substitution and leave the original string untouched.

Any non-whitespace delimiter may replace the slash®dd space after the when using a
character allowed in identifiers. If single quotes are used, no interpretation is done on the
replacement string (thée modifier overrides this, hwever). Unlike Rerl 4, Perl 5 treats
backticks as normal delimiters; the replacement text is wataed as a command. If the
PATTERN is delimited by braokting quotes, th&REPLACEMENT has its own pair of quotes,
which may or may not be bracketing quotes, efgo)(bar) or s<foo>/bar/ . Ale

will cause the replacement portion to be treated as a full-fledgedXpegssion andwaluated

right then and there. It is, hv@ver, syntax checked at compile-time. A secomdnodifier will

cause the replacement portion toeval ed before being run as a Perl expression.

Examples:

s/\bgreen\b/mauve/q; # don't change wintergreen
$path =" s|/usr/bin|/usr/local/bin|;

s/Login: $foo/Login: $bar/; # run—time pattern

($foo = $bar) =" s/this/that/; # copy first, then change
($foo = "$bar") =" s/this/that/; # convert to string, copy, then change
$foo = $bar =" s/this/that/r; # Same as above using /r
$foo = $bar =" s/this/that/r

=" s/that/the otherl/r; # Chained substitutes using /r
@foo = map { s/this/that/r } @bar # Ir is v ery useful in maps
$count = ($paragraph =" s/Mister\b/Mr./g); # get change—count
$_ ='abcl23xyz’
sh\d+/$&*2/e; # yields 'abc246xyz'
s\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz’
s\w/$& x 2/egq; # yields ‘aabbcc 224466xxyyzz'
s/%(.)/$percent{$1}/q; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # exprnow, so /e
s/"=(\w+)/pod($1)/ge; # use function call

$_ ='abcl23xyz’
$a = s/abc/def/r; # $a is ' defl23xyz' and
$_ r emains 'abcl123xyz'.

expand variables in $_, but dynamics only, using
symbolic dereferencing
sN\S(\w+)/${$1}/g;

Add one to the value of any numbers in the string
s/(\d+)/1 + $1/egq;

Titlecase words in the last 30 characters only

perl v5.14.2 2011-09-26 49

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

substr($str, —30) =" sAb(\p{Alpha}+)\b/Au\L$1/g;

This will expand any embedded scalar variable
(including lexicals) in $_ : First $1 is interpolated
to t he variable name, and then evaluated
s/(\$\w+)/$1/eeq;

Delete (most) C comments.
$program ="'s {

N* # Match the opening delimiter.
x? # Match a minimal number of characters.
*/ # Match the closing delimiter.
P Igsx;
sINs*(*?)\s*$/$1/; # trim whitespace in $_, expensively
for ($variable) { # t rim whitespace in $variable, cheap
siM\s+/1;
si\s+$//;
}
sICTY *(C 19/$2 $1/; # r everse 1st two fields

Note the use of $ instead of \ in the lasaraple. Unlile sed we wse the \digit> form in only
the left hand side. Anywhere elsesif<digit>.

Occasionallyyou cant use just ag to get all the changes to occur that you mighhty Here
are two common cases:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?"\d)/$1,$2/g;

expand tabs to 8—column spacing
1 while sAt+/' ' x (length($&)*8 — length($7)%8)/e;

slllle is treated as a substitution followed by the operatoy not the/le flags. Thismay
change in a future version of Perlt produces a warning if warnings are enabletb
disambiguate, use a space or change the order of the flags:

s/foo/bar/ le 5; # " le" infix operator
s/foo/bar/el; # "e" and "I" flags
Quote-Like Operators
g/STRING/
"STRING

A single-quoted, literal stringA backslash represents a backslash unlessifetidoy the delimiter or
another backslash, in which case the delimiter or backslash is interpolated.

$foo = g!l said, "You said, 'She said it.""!;
$bar = g('This is it.");

$baz ="\n'; # a t wo—character string
gq/STRING/
“STRING’

A double-quoted, interpolated string.
$.=qq
(*** The previous line contains the naughty word "$1".\n)
if \b(tcl|java|python)\bf/i; #:-)

$baz = "\n"; # a one—character string

gx/STRING/

50 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

‘STRING'
A string which is (possibly) interpolated and thee@ited as a system command witim/sh or
its equvalent. Shellwildcards, pipes, and redirections will be honorétie collected standard output
of the command is returned; standard error isfensfd. Inscalar context, it comes back as a single
(potentially multi-line) string, or undef if the commaraliéd. Inlist context, returns a list of lines
(however you've defined lines with $/ o6INPUT_RECORD_SEPARATQRr an empty list if the
command failed.

Because backticks do not affect standard euse shell file descriptor syntax (assuming the shell
supports this) if you care to address this.capture a commandSTDERRandSTDOUT together:

$output = ‘cmd 2>&1";

To capture a commandSTDOUT but discard itsSSTDERR:
$output = “‘cmd 2>/dev/null’;

To capture a commandSTDERRDbut discard itsSTDOUT (ordering is important here):
$output = ‘cmd 2>&1 1>/dev/null’;

To exchange a commarsl'STDOUT and STDERR in order to capture th6€TDERR but leave its
STDOUTto come out the ol8§TDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&—;

To read both a commarsl5TDOUT and itsSTDERRseparatelyit's easiest to redirect them separately
to files, and then read from those files when the program is done:

system("program args 1>program.stdout 2>program.stderr");
The STDIN filehandle used by the command is inherited from P8TIBIN. For example:

open(SPLAT, "stuff") || die "can't open stuff: $!";
open(STDIN, "<&SPLAT") || die "can't dupe SPLAT: $!";
print STDOUT “sort’;

will print the sorted contents of the file nanfexduf”.

Using single-quote as a delimiter protects the command froms Rilible-quote interpolation,
passing it on to the shell instead:

$perl_info = gx(ps $%); # t hat's Perl's $$
$shell_info = gx'ps $$'; # t hat's the new shell's $$

How that string getswaluated is entirely subject to the command interpreter on your system. On most
platforms, you will hge o protect shell metacharacters if you want them treated literalys is in
practice difficult to do, as #'unclear hav to escape which characters. See perlsec for a clean and safe
example of a manudbrk() andexec()to emulate backticks safely.

On some platforms (notably DOS+ilones), the shell may not be capable of dealing with multiline
commands, so putting newlines in the string may not get you what goti wou may be able to
evduate multiple commands in a single line by separating them with the command separator character
if your shell supports that (e.g.on mary Unix shells;& on the WindowNT cmd shell).

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before starting the child
process, but this may not be supported on some platforms (see pefpdnt) safe, you may need to
set$| (PAUTOFLUSH in English) or call thautoflush() method oflO::Handle on ary open
handles.

Beware that some command shells may place restrictions on the length of the commandbuine.
must ensure your strings domkceed this limit after annecessary interpolationsSee the platform-
specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell commands called
vary between systems, and may actf not be present at all. As one example,tyipe command

under thePOSIX shell is very different from thgype command undebOS. That doesrn’mean you

should go out of your way tosa@id backticks when there the right way to get something dorfeerl

was made to be a glue language, and one of the things it glues together is combuestdmderstand

perl v5.14.2 2011-09-26 51

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

what you're getting yourself into.
See “I/O Operatorsfor more discussion.

gW/STRING/
Evaluates to a list of the avds extracted out dBTRING, using embedded whitespace as thardv
delimiters. ltcan be understood as being roughly eglait to:

split(" ", g/STRING/);

the differences being that it generates a real list at compile time, and in scalar context it returns the last
element in the list. So this expression:

gw(foo bar baz)

is semantically equélent to the list:

"foo", "bar", "baz"
Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistak is © try to separate the words with comma or to put comments into a multi-line
gw-string. For this reason, theise warnings pragma and the-w switch (that is, thes™W
variable) produces warnings if tlBTRING contains the “, or the “#” character.

tr/SEARCHLIST/REPLACEMENTLIST/cdsr

y/SEARCHLIST/REPLACEMENTLIST/cdsr
Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or dietetexiring
is specified via the™ or!™ operatorthe$_ string is transliterated.

If the /r (non-destructie) option is present, a mecopy of the string is made and its characters
transliterated, and this cgjis returned no matter whether it was modified or not: the original string is
always left unchanged. The wecopy is dways a plain string,\en if the input string is an object or a
tied variable.

Unless ther option is used, the string specified with must be a scalar variable, an array element,
a hash element, or an assignment to one of those; in other words, an Ivalue.

A character range may be specified with a hypherr/46J/0-9/ does the same replacement as
tr/ACEGIBDFHJ/0246813579/ . For seddevotees,y is provided as a synonym fdr . If the
SEARCHLISTIis delimited by bracketing quotes, tREPLACEMENTLIST has its own pair of quotes,
which may or may not be bracketing quotes; fotameple, tr[aeiouy][yuoiea] or
tr(+\=*/)/ABCD/

Note thattr doesnot do regular expression character classes sulth @ \pL . Thetr operator is

not equvalent to thetr (1) utility. If you want to map strings between lower/upper cases,lséén
perlfunc and ‘uc” in perlfunc, and in general consider using theoperator if you need gelar
expressions. Th&U,\u, \L , and\l string-interpolation escapes on the right side of a substitution
operator will perform correct case-mappingat tija-z][A-Z] will not (except sometimes on
legacy 7-bit data).

Note also that the whole range idea is rather unportable between charactearstaren within
character sets thianay cause results you probably didexpect. Asound principle is to use only
ranges that lggn from and end at either alphabets of equal case (a—e, A-E), or digits &ryhing
else is unsafe. If in doubt, spell out the character sets in full.

Options:
¢ Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.
r R eturn the modified string and leave the original string

untouched.

52 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

If the /c modifier is specified, thBEARCHLIST character set is complemented. If tHe modifier is
specified, ay characters specified bB$EARCHLIST not found inREPLACEMENTLIST are deleted.
(Note that this is slightly more flexible than the behavior of stnpeograms, which delete wthing

they find in theSEARCHLIST, period.) If the/s modifier is specified, sequences of characters that
were transliterated to the same character are squashed down to a single instance of the character.

If the /d modifier is used, th(REPLACEMENTLIST is aWways interpreted exactly as specified.
Otherwise, if theREPLACEMENTLIST is shorter than theSEARCHLIST, the final character is
replicated till it is long enough. If thREPLACEMENTLISTis empty the SEARCHLIST is replicated.

This latter is useful for counting characters in a class or for squashing character sequences in a class.

Examples:

$ARGV[1] =" tr/A-Z/a-z/, # canonicalize to lower case ASCII
$cnt = tr/*/*/; # countthe starsin$_
$cnt = $sky =" tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_
trla—zA-2Ils; # bookkeeper —> bokeper
($HOST = $host) =" tr/la-z/A-ZJ;

$HOST = $host =" tr/la—z/A-ZIr; # same thing
$HOST = $host =" trla-z/A-ZIr # chained with s///r

="sl:l —plr;

trla-zA-2/ Ics; # change non-alphas to single space

@stripped = map tr/a-zA-Z/ /csr, @original,

Ir w ith map
tr \200-\377]
[\000-\177]; # wickedly delete 8th bit
If multiple transliterations are \gin for a characteonly the first one is used:

tr/AAA/XYZ/
will transliterate ap A to X.

Because the transliteration table is built at compile time, neither SE®RCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolatidinat means that if you want to use
variables, you must use awval():

eval "tr/$oldlist/$Snewlist/";
die $@ if $@;

eval "tr/$oldlist/$Snewlist/, 1" or die $@;

<<EOF
A line-oriented form of quoting is based on the shiedire-document’'syntax. Fllowing a<< you
specify a string to terminate the quoted material, and all linesviolipthe current line down to the
terminating string are the value of the item.

The terminating string may be either an identifier @d), or some quoted & An unquoted
identifier works lilke double quotes.There may not be a space between<keand the identifier
unless the identifier isxplicitly quoted. (If you put a space it will be treated as a null identifieich

is valid, and matches the first empty lindhe terminating string must appear by itself (unquoted and
with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine the treatment of the text.

perl v5.14.2 2011-09-26 53

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Double Quotes
Double quotes indicate that thettavill be interpolated using exactly the same rules as normal
double quoted strings.

print <<EOF;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

Single Quotes
Single quotes indicate thextdas to be treated literally with no interpolation of its content. This is
similar to single quoted strings except that backslashes fmaspecial meaning, with\ being
treated as tavbackslashes and not one asythwuld in every other quoting construct.

Just as in the shell, a backslashed Wwaré following the<< means the same thing as a single-
quoted string does:

$cost = <<'VISTA"; # hastala...
That'll be $10 please, ma'am.
VISTA

$cost = <<\VISTA; # Same thing!
That'll be $10 please, ma'am.
VISTA

This is the only form of quoting in perl where there is no needotoywabout escaping content,
something that code generators can and dergatd use of.

Backticks
The content of the here doc is treated just as it would be if the string were embedded in backticks.
Thus the content is interpolated as though it were double quoted andé¢hetee via the shell,
with the results of thexecution returned.

print << "EOC’; # execute command and get results
echo hi there
EOC

It is possible to stack multiple here-docs in a row:

print <<"foo", <<"bar"; # you can stack them
| s aid foo.
foo
| s aid bar.
bar

myfunc(<< "THIS", 23, <<'THAT");
Here's a line
or two.
THIS
and here's another.
THAT

Just dort forget that you hae t put a semicolon on the end to finish the statement, as Perl doesn’
know you're not going to try to do this:

print <<ABC
179231
ABC

+ 20;

If you want to remee the line terminator from your here-docs, asemp() .

54 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

chomp($string = <<'END");
This is a string.
END

If you want your here-docs to be indented with the rest of the codd| gead to remee leading
whitespace from each line manually:

($Squote = <<'FINIS") =" s/"\s+//gm;
The Road goes ever on and on,
down from the door where it began.
FINIS

If you use a here-doc within a delimited construct, such ad/eg , the quoted material must come
on the lines following the final delimiteSo instead of

s/this/<<E . 'that'
the other
E

more '/eg;
you have 1o write

s/this/<<E . 'that'
' more 'leg;

the other

E

If the terminating identifier is on the last line of the program, you must be sure therenviina aéer
it; otherwise, Perl will gie the warning Can't find string terminator ‘ ‘END” anywhere before
EOF....

Additionally, quoting rules for the end-of-string identifier are unrelated to $qubting rules.q() ,
qq() , and the like ae not supported in place df and™ , and the only interpolation is for
backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs
When presented with something that mightvehaveal different interpretations, Perl uses the/IM
(that's “Do What | Mean”) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect thealambe of what thgwrite. Butfrom time
to time, Perk rotions differ substantially from what the author honestly meant.

This section hopes to clarify WwoPerl handles quoted constructs. Although the most common reason to
learn this is to unsal labyrinthine regular expressions, because the initial steps of parsing are the same for
all quoting operators, tlyeare all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted construct,
Perl first finds the end of that construct, then interprets its contents. If you understand this rule, you may
skip the rest of this section on the first reading. The other rules are likely to contradict tlse user’
expectations much less frequently than this first one.

Some passes discussed helare performed concurrenthput because their results are the same, we
consider them indidually. For different quoting constructs, Perl performs different numbers of passes,
from one to fourbut these passes arevays performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct, where the information about the delimiters is
used in parsing. During this searchsttbetween the starting and ending delimiters is copied to a safe
location. The text copied gets delimiter-independent.

If the construct is a here-doc, the ending delimiter is a line that has a terminating string as the content.

perl v5.14.2 2011-09-26 55

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Therefore<<EOFis terminated byeOFimmediately followed by\n" and starting from the first
column of the terminating line. When searching for the terminating line of a here-doc, nothing is
skipped. In other words, lines after the here-doc syntax are compared with the terminating string line
by line.

For the constructsxeept here-docs, single characters are used as starting and ending delimiters. If the
starting delimiter is an opening punctuation (that(js[, {, or <), the ending delimiter is the
corresponding closing punctuation (that)is], }, or >). If the starting delimiter is an unpaired
character lik / or a closing punctuation, the ending delimiter is same as the starting delimiter
Therefore d terminates &q// construct, while & terminatesyq[] andqq]] constructs.

When searching for single-character delimiters, escaped delimiteks ame skipped. Fon@ample,
while searching for terminating, combinations ofi\ andV are skipped. If the delimiters are
bracleting, nested pairs are also skipp&ar example, while searching for closifjgpaired with the
opening[, combinations of\ ,\] , and\[are all skipped, and nestgdand] are skipped as well.
However, when backslashes are used as the delimiters dtif andt\\\), nothing is skipped.
During the search for the end, backslashes that escape delimiters aredr@xractly speaking, the
are not copied to the safe location).

For constructs with three-part delimiters/{ , y/// , and tr///), the search is repeated once
more. Ifthe first delimiter is not an opening punctuation, three delimiters must be same slith as
andtr))) , in which case the second delimiter terminates the left part and starts the right part at once.
If the left part is delimited by bracketing punctuation (tha) is[] , {} , or <>), the right part needs
another pair of delimiters suchs§{} andtr[]/ . In these cases, whitespace and comments are
allowed between both parts, though the comment mustwicdib least one whitespace character;
otherwise a charactergected as the start of the comment may gerded as the starting delimiter of

the right part.

During this search no attention is paid to the semantics of the construct. Thus:
"$hash{"$foo/$bhar"}"
or:

m/
bar # NOT a comment, this slash / terminated m//!
X

do not form |lgd quoted epressions. Theguoted part ends on the fifrstand/ , and the rest happens
to be a syntax errorBecause the slash that terminatetd was followed by aSPACE the example
above is ot m//x , but ratherm// with no/x modifier So the embedded is interpreted as a literal
#.

Also no attention is paid t@\ (multichar control char syntax) during this search. Thus the sacond
in qg/\cV is interpreted as a part &f , and the follaving / is not recognized as a delimiter
Instead, us&034 or\x1lc atthe end of quoted constructs.

Interpolation
The next step is interpolation in thexteobtained, which is e delimiterindependent. Therare
multiple cases.

<<'EOF'
No interpolation is performed. Note that the combination is left intact, since escaped
delimiters are notvailable for here-docs.

m" , the pattern o§"'
No interpolation is performed at this stageny backslashed sequences includihgare treated
at the stage to “parsing regular expressions”.

,aqll " ,y" ,the replacement "
The only interpolation is remval of \ from pairs of\\ . Therefore- in tr" andy™ s
treated literally as a hyphen and no character rangsilatde. \1 in the replacement "
does not work a$1.

56 2011-09-26 perl v5.14.2

PERLOP(1)

perl v5.14.2

tr/l

PerProgrammers Reference Guide PERLOP(2)

vl
No variable interpolation occursString modifying combinations for case and quoting such as
\Q, \U, and \E are not recognized. The other escape sequences si2htasand\t and
backslashed characters such\asand\- are cowerted to appropriate literals. The character
is treated specially and therefare is treated as a literal.

., qq/l ,gx!l , <file*glob> , <<"EOF”

\Q,\WU,\u,\L,\I (possibly paired withE) are comwerted to corresponding Perl constructs.
Thus, "$foo\Qbaz$bar" is corverted to $foo . (quotemeta("baz" . $bar))

internally The other escape sequences sud2@® and\t and backslashed characters such as
\\ and\- are replaced with appropriate expansions.

Let it be stressed thathaterer falls between Q and \ E is interpolated in the usualay.
Something lile \QW\E" has no\E inside. insteadit has\Q, \\ , and E, so he result is the

same as for\\\E" . As a eneral rule, backslashes betweéh and \E may lead to
counterintuitve results. So,"\Q\t\E" is corverted to quotemeta("\t") , Which is the
same as\\\t" (sinceTAB is not alphanumeric). Note also that:

$str ="\t

return "\Q$str";
may be closer to the conjectunadentionof the writer of \Q\t\\E"

Interpolated scalars and arrays areveted internally to thgoin and. catenation operations.
Thus,"$foo XXX '‘@arr" becomes:

$foo . " XXX ™. (join $", @arr) . ",
All operations abee ae performed simultaneouslgft to right.

Because the result 8Q STRING \E" has all metacharacters quoted, there is ap to insert
a literal $ or @inside a\Q\E pair. If protected by, $ will be quoted to becam@&\$" ; if
not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs toerakbcision on where the interpolated scalar

ends. Br instance, whethéa $b —> {c}" really means:
a".$b."—>{c}",

or:
"a".$b—>{c}

Most of the time, the longest possible text that does not include spaces between components and
which contains matching braces or bretsk becausthe outcome may be determined lnting

based on heuristic estimators, the result is not strictly predictBbtunately it's usually correct

for ambiguous cases.

the replacement aff//

Processing ofQ,\U,\u ,\L ,\I , and interpolation happens as wih// constructs.

Itis at this step thall is begrudgingly coverted to$1 in the replacement text ef// , in order
to correct the incorrigibleedhaclers who heen’t picked up the saner idiom yef warning is
emitted if theuse warnings pragma or the-w command-line flag (that is, tf#&W variable)
was =t.

REin ?RE?, /RE/ , m/RE/, s/IRE/foo/ ,

Processing of\Q, \U, \u, \L, \l , \E, and interpolation happens (almost) as witt//
constructs.

Processing ofN{...} is also done here, and compiled into an intermediate form for gles re
compiler (This is because, as mentioned belthe reyex compilation may be done axeeution
time, andN{...} is a compile-time construct.)

However any ather combinations of followed by a character are not substituted bnly
skipped, in order to parse them as regular expressions at the followingAstep. is skipped at
this step@of \c@ in RE is possibly treated as an array symbol (fareple@foo), even though
the same text ing// gives interpolation ofic@.

2011-09-26 57

PERLOP(1)

PerProgrammers Reference Guide PERLOP(2)

Moreover, inside (?{BLOCK}) , (?# comment) , and a#-comment in a//x -regular
expression, no processing is performed whataoerThis is the first step at which the presence of
the//x maodifier is relgant.

Interpolation in patterns hasveeal quirks:$| , $(, $) , @+and @-are not interpolated, and
constructsbvar[SOMETHING] are voted (by seral different estimators) to be either an array
element or$var followed by anRE alternatve. This is where the notatio®{arr[$bar]}

comes handyf${arr[0-9]}/ is interpreted as array elemerfi, not as a rgular epression
from the \ariable $arr followed by a digit, which would be the interpretation of
/$arr[0-9]/ . Since voting among different estimators may og¢ctire result is not
predictable.

The lack of processing ok creates specific restrictions on the post-processdd té the
delimiter is/ , one cannot get the combinatidéh into the result of this step. will finish the
regular pressionV/ will be stripped to/ on the previous step, and will be left as is.
Because/ is equvaent toV/ inside a regular expression, this does not matter unless the
delimiter happens to be character special toRaengine, such as istfoo*bar* , m[foo] ,

or ?foo? ; or an dphanumeric chaas h:

m m " a \s*b mmx;

In the RE abore, which is intentionally obfuscated for illustration, the delimitemishe modifier

is mx, and after delimiteremoval the RE is the same as fan/ ™ a \s* b /mx . There’s

more than one reason you're encouraged to restrict your delimiters to non-alphanumeric, non-
whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

parsing regular expressions

Previous steps were performed during the compilation of Perl code, but this one happens at run time,
although it may be optimized to be calculated at compile time if appropwidter preprocessing
described abg@e, and possibly after w@luation if concatenation, joining, casing translation, or
metaquoting are uolved, the resultingtring is passed to thRE engine for compilation.

Whatever happens in th&®E engine might be better discussed in perlg,for the sak of continuity,
we shall do so here.

This is another step where the presence of/fthe modifier is relgant. TheRE engine scans the
string from left to right and ceerts it to a finite automaton.

Backslashed characters are either replaced with corresponding literal strings {&s)wathelse thg
generate special nodes in the finite automaton (as\with Characterspecial to the&RE engine (such
as|) generate corresponding nodes or groups of no(#®s..) comments are ignored. All the
rest is either corerted to literal strings to match, or else is ignored (as is whitespacé-atyle
comments if/x is present).

Pasing of the bracketed character class constfugt, , is rather different than the rule used for the
rest of the patternThe terminator of this construct is found using the same rules as for finding the
terminator of &} —delimited construct, the only exception being thammediately follaving [is
treated as though preceded by a backs|&stmilarly, the terminator o{?{...}) is found using the
same rules as for finding the terminator ¢f a-delimited construct.

It is possible to inspect both the stringegi to RE engine and the resulting finite automaton. See the
argumentslebug /debugcolor in theuse re pragma, as well as Pext-Dr command-line switch
documented in “Command Switchesi perlrun.

Optimization of regular expressions

This step is listed for completeness on§ince it does not change semantics, details of this step are
not documented and are subject to change without nofibés step is performedver the finite
automaton that was generated during the previous pass.

It is at this stage thafplit() silently optimized™/ to mean/m .

I/O Operators
There are sexal I/0O operators you should kwabout.

A string enclosed by backticks (y& acents) first undegoes double-quote interpolation. It is then

58

2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

interpreted as arxternal command, and the output of that command is the value of the backtick steing, lik
in a shell. In scalar context, a single string consisting of all output is retutndist context, a list of
values is returned, one per line of output. (You car$seb use a different line terminatprThecommand

is executed each time the pseudo-literal vsleated. Thestatus value of the command is returne&m

(see perlvar for the interpretation &?). Unlike in csh no ftanslation is done on the return
data— na/lines remain ne@lines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretatiofo pass a literal dollar-sign through to the shell you need to hide it with
a backslash. Thegeneralized form of backticks igx// . (Because backticks wys undergo shell
expansion as well, see perlsec for security concerns.)

In scalar context,valuating a filehandle in angle braak yields the next line from that file (the newline, if
ary, included), oundef at end-of-file or on errorwWhen$/ is set toundef (sometimes known as file-
slurp mode) and the file is empilyreturns” the first time, followed byndef subsequently.

Ordinarily you must assign the returned value t@dable, but there is one situation where an automatic
assignment happenst and only if the input symbol is the only thing inside the conditional whie
statement (een if disguised as #for(;;) loop), the value is automatically assigned to the globahkle

$_, destrying whateer was there prgously. (This may seem li& an ald thing to you, but you'll use the
construct in almostvery Perl script you write.)The$_ variable is not implicitly localized.You'll have ©

put alocal $_; before the loop if you want that to happen.

The following lines are equélent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }

while (<STDIN>) { print; }

for (;<STDIN>;) { print; }

print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);

print while <STDIN>;

This also behaes smilarly, but avoids $_:
while (my $line = <STDIN>) { print $line }

In these loop constructs, the assignatli® (whether assignment is automatic or explicit) is then tested to
see whether it is defined. The defined tesids problems where line has a strirglue that would be
treated as false by Perl, for example ‘aof‘a "0" with no trailing nevline. If you really mean for such
values to terminate the loop, thehould be tested for explicitly:

while (($_=<STDIN>) ne '0) { ... }
while (<STDIN>) {lastunless $_; ... }

In other boolean contes, <filehandle> without an eplicit defined test or comparison elicits a
warning if theuse warnings pragma or thew command-line switch (th& W variable) is in effect.

The filehandlesSTDIN, STDOUT, and STDERR are predefined. (The filehandletdin , stdout , and
stderr will also work except in packages, whereytheould be interpreted as local identifiers rather than
global.) Additionalfilehandles may be created with thyeen()function, amongst othersSee perlopentut
and “open’ in perlfunc for details on this.

If a <FILEHANDLE> is used in a contd that is looking for a list, a list comprising all input lines is
returned, one line per list element.sléasy to grav to a rather large data space this way se with care.

<FILEHANDLE> may also be spellegtadline(*FILEHANDLE) . See “readline’in perlfunc.

The null filehandle <> is special: it can be used to emulate the behawedahdawk. Input from <>
comes either from standard input, or from each file listed on the commandHines how it works: the
first time <> is gauated, the@ARG¥Irray is checld, and if it is empfHy8ARGV][0] is set to ", which
when opened ges you standard input. ThR@ ARG¥rray is then processed as a list of filenames. The loop

while (<>) {

}

is equiaent to the following Perl-lik pseudo code:

code for each line

perl v5.14.2 2011-09-26 59

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

unshift@ARGV, '-") unless @ARGV;
while (JARGV = shift) {

open(ARGV, $ARGV);

while (<ARGV>) {

}

code for each line

}

except that it isrt so asmbersome to sagnd will actually work. It really does shift th@ARG¥rray and
put the current filename into tiBARGVvariable. It also uses filehandlaRGVinternally <> is just a
synorym for <ARGV>, which is magical. (The pseudo code abdoesnt work because it treatsARGV>

as non-magical.)

Since the null filehandle uses theotergument form of “open” in perlfunc it interprets special characters,
so if you hae a sript like this:

while (<>) {
print;
}

and call it withperl dangerous.pl 'rm —rfv *|' , it actually opens a pipexecutes therm
command and reads’s output from that pipe. If you want all items @ARGY6 be interpreted as file
names, you can use the modaRGV::readonly from CPAN.

You can modify@ARGYefore the first <> as long as the array ends up containing the list of filenames you
really want. Linenumbers$.) continue as though the input were one big djlp. Seethe example in
“ eof” in perlfunc for hav to reset line numbers on each file.

If you want to se@ ARGY6 your own list of files, go right ahead. This s@#&RGY0 all plain text files if
no @ARGWas gven:

@ARGYV = grep { —f && —T } glob(*") unless @ARGYV;,

You can &en st them to pipe commands$:or example, this automatically filters compresseguanents
throughgzip:

@ARGV =map {\.(9z|2)$/ ? "gzip -dc < $_|": $_} @ARGV;
If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on the

front like this:
while ($_ = $SARGVI0], I"-/) {
shift;
last if '——$/;
if ("-D(.*)/) { $debug =$1}
if (/"=Vv/) { $ verbose++ }
.. # other switches
}
while (<>) {
.. # code for each line
}

The <> symbol will returrundef for end-of-file only once. If you call it @ain after this, it will assume
you are processing anoth@ARGYst, and if you haen’t set @ ARGWvill read input fromSTDIN.

If what the angle bra@ts contain is a simple scalar variable (e.g., <$foo>), then that variable contains the
name of the filehandle to input from, or its typeglob, or a reference to the Banmeample:

$th = *STDIN;
$line = <$th>;

If what's within the angle brackets is neither a filehandle nor a simple scal@ble containing a
filehandle name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed, and
either a list of filenames or thextdilename in the list is returned, depending on cdnt&his distinction

is determined on syntactic grounds alone. That me#rs is aways areadline()from an indirect handle,

but <$hash{key}> is always aglob(). That's becausebx is a simple scalar variableutshash{key}

is not—it's a hash element.Even <$x > (note the rtra space) is treated agob("$x ") , hot

60 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

readline($x)

One level of double-quote interpretation is done first, but you tsay <$foo> because that'an ndirect
filehandle as explained in the pigus paragraph. (In older versions of Perl, programmers would insert
curly brackets to force interpretation as a filename gi6ffoo}> . These days, & cwnsidered cleaner to
call the internal function directly agob($foo) , which is probably the right &y to hae dne it in the

first place.) For example:

while (<*.c>) {
chmod 0644, $_;
}

is roughly equialent to:

open(FOO, "echo *.c | tr —s "\t\r\f' "\012\\012\\012\\012'|");
while (<FOO0>) {

chomp;

chmod 0644, $_;

}

except that the globbing is actually done internally using the staiilardslob extension. Ofcourse,
the shortest way to do the afeas:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded)gument only when it is starting amdist. All values must be read
before it will start @er. In list context, this ist'important because you automatically get them athay.
However, in scalar context the operator returns the next value each temalied, orundef when the list

has run out.As with filehandle reads, an automatifined is generated when the glob occurs in the test
part of awhile , because lgd glob returns (e.g. a file called) would otherwise terminate the loop.
Again,undef is returned only once. So if you're expecting a single value from a glob, it is much better to
say

($file) = <blurch*>;
than
$file = <blurch*>;
because the latter will alternate between returning a filename and returning false.

If you're trying to do variable interpolation, st'definitely better to use thglob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);
Constant Folding
Like C, Ferl does a certain amount of expressieauation at compile time whewer it determines that all
arguments to an operator are static aneeh@ sde efects. Inparticular string concatenation happens at
compile time between literals that dodo variable substitution Backslash interpolation also happens at
compile time. You can say

'Now is the time for all' . "\n" .
‘good men to come to.'

and this all reduces to one string internallyjkewise, if you say

foreach $file (@filenames) {
if (—s $file >5 + 100 * 2**16) { }
}

the compiler will precompute the number which thepression represents so that the interpreten’tw
have .

No-ops
Perl doesnt’officially have a ro-op operatqrbut the bare constanfsandl are special-cased to not produce
awarning in a void context, so you can for example safely do

1 while foo();

perl v5.14.2 2011-09-26 61

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

Bitwise String Operators
Bitstrings of ag size may be manipulated by the bitwise operators & ~).

If the operands to a binary bitwise op are strings of different Jizes]” ops act as though the shorter
operand had additional zero bits on the right, while &hep acts as though the longer operand were
truncated to the length of the short&he granularity for such extension or truncation is one or more bytes.

ASCIll-based examples

print"'jp\n"~"ah"; # prints "JAPH\n"
print "JA" | " ph\n"; # prints "japh\n"
print "japh\nJunk" & ' _ N # prints "JAPH\n";
print 'p N$' ™" E<H\n"; # prints "Perl\n®;

If you are intending to manipulate bitstrings, be certain thatrg@upplying bitstrings: If an operand is a
number that will imply anumeric bitwise operation.You may explicitly shev which type of operation
you intend by usin§' or 0+, as in he examples bela

$foo = 150 | 105; # yields 255 (0x96 | 0x69 is OxFF)
$foo = '150" | 105; # yields 255

$foo = 150 | '105% # yields 255

$foo = '150' | '105"; # yields string '155' (under ASCII)
$baz = 0+$foo & O+$bar; # both ops explicitly numeric

$biz = "$foo" ~ "$bar"; # both ops explicitly stringy

See “vec’ in perlfunc for information on he to manipulate individual bits in a bit vector.

Integer Arithmetic
By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler to use integer operations (see integer for a detailed explanation) from here to the
end of the enclosinBLOCK. An innerBLOCK may countermand this by saying

no integer;

which lasts until the end of thBLOCK. Note that this doeshimnean &erything is an intger, merely that
Perl will use integer operations for arithmetic, comparison, and bitwise operatorexample, &en under
use integer ,ifyou tale thesqrt(2) , you'll still get 1.4142135623731 or so.

Used on numbers, the bitwise operatoi&’ (; ‘|, *"’, *7’, *'<<”’, and “>>"") always produce intgral
results. (Butsee also “Bitwise String Operatory’ However, use integer still has meaning for them.
By default, their results are interpreted as unsignedense but ifuse integer is in effect, their results
are interpreted as signed igézs. Br example,”0 usually eauates to a large integrable. Havever,
use integer; "0 is —1 on two’s-complement machines.

Floating-point Arithmetic
While use integer provides intgeronly arithmetic, there is no analogous mechanism twigeo
automatic rounding or truncation to a certain number of decimal pl&oesounding to a certain number
of digits, sprintf() or printf() is usually the easiest route. See perlfag4.

Floating-point numbers are only approximations to what a mathematioiald wall real numbersThere
are infinitely more reals than floats, so some corners must bE@wgxample:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact floating-point equality or inequality is not a good idéeres a felatively expensve)
work-around to compare whetherdviloating-point numbers are equal to a particular number of decimal
places. Se&nuth, volumdll, for a more robust treatment of this topic.

62 2011-09-26 perl v5.14.2

PERLOP(1) PerProgrammers Reference Guide PERLOP(2)

sub fp_equal {
my ($X, $Y, $SPOINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

ThePoOsSIXmodule (part of the standard perl distition) implementgeil(), floor(), and other mathematical
and trigonometric functions. The Math::Complmodule (part of the standard perl distribution) defines
mathematical functions thatosk on both the reals and the imaginary numbédath::Compl& not as
efficient asPOSIX but POSIX cant work with compl& numbers.

Rounding in financial applications canvlagerious implications, and the rounding method used should be
specified preciselyln these cases, it probably pays not to trust wiviehs/stem rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers
The standardMath::Bigint , Math::BigRat , and Math::BigFloat modules, along with the
bigint , bigrat , and bitfloat pragmas, provide variable-precision arithmetic andrloaded
operators, although tiige currently pretty sle. At the cost of some space and considerable speead, the
avad the normal pitfalls associated with limited-precision representations.

use 5.010;

use bigint; # easy interface to Math::Bigint
$x =123456789123456789;

say $x * $x;

+15241578780673678515622620750190521
Or with rationals:

use 5.010;

use bigrat;

$a = 3/22;

$b = 4/6;

say "a/bis ", $a/$b;

say "a*bis ", $a*$b;
a/bis 9/44
a*bis 1/11

Several modules let you calculate with (bound only by memory@ridtime) unlimited or fixed precision.
There are also some non-standard modules that provide faster implementations via external C libraries.

Here is a short, but incomplete summary:

Math::Fraction big, unlimited fractions like 9973 / 12967
Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations

Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::Biginteger uses an external C library

Math::Cephes uses external Cephes C library (no big numbers)
Math::Cephes::Fraction fractions via the Cephes library

Math::GMP another one using an external C library

Choose wisely.

perl v5.14.2 2011-09-26 63

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

NAME

perlsub — Perl subroutines
SYNOPSIS

To declare subroutines:

A "forward" declaration.
ditto, but with prototypes
with attributes
with attributes and prototypes

sub NAME;

sub NAME(PROTO);

sub NAME : ATTRS;

sub NAME(PROTO) : ATTRS;

HHHHF

A declaration and a definition.
sub NAME(PROTO) BLOCK ditto, but with prototypes
sub NAME : ATTRS BLOCK with attributes

sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

sub NAME BLOCK

H H

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes

$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);
To call subroutines:

NAME(LIST); # & is o ptional with parentheses.

NAME LIST; # Parentheses optional if predeclared/imported.

&NAME(LIST); # Circumvent prototypes.

&NAME; # Makes current @_ visible to called subroutine.
DESCRIPTION

Like mary languages, Perl provides for usiefined subroutines. These may be located anywhere in the
main program, loaded in from other files via thee require , or use keywords, or generated on the fly
usingeval or anonymous subroutine¥ou can e&en call a function indirectly using a variable containing
its name or &£ODE reference.

The Perl model for function call and returalues is simple: all functions are passed as parameters one
single flat list of scalars, and all functionselitise return to their caller one single flat list of scalakay
arrays or hashes in these call and return lists will collapse, losing their identhigs/ou may alays use
pass-by-reference instead teoi this. Both call and return lists may contain as ynanas ew <alar
elements as yod'like. (Oftena function without an explicit return statement is called a subroutirte, b
theres really no difference from Peslperspectie.)

Any arguments passed in sliaip in the array@ . Therefore, if you called a function with énarguments,

those would be stored # [0] and$_[1] . The array@_is a local arraybut its elements are aliases for

the actual scalar parameters. In particufaan dement$_[0] is updated, the corresponding argument is
updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not
exist when the function was called, that element is created only when (and if) it is modified or a reference
to it is talen. (Someearlier versions of Perl created the element whether or not the element was assigned
to.) Assigningo the whole arraf@®_removes that aliasing, and does not updatg amguments.

A return statement may be used to exit a subroutine, optionally specifying the returned value, which will
be evaluated in the appropriate context (list, scateinvoid) depending on the context of the subroutine call.

If you specify no returnalue, the subroutine returns an empty list in list context, the undefined value in
scalar context, or nothing in void coxite If you return one or more aggetes (arrays and hashes), these
will be flattened together into one large indistinguishable list.

If noreturn is found and if the last statement is apression, its value is returned. If the last statement
is a loop control structure kkaforeach or awhile , the returned value is unspecified. The empty sub
returns the empty list.

Perl does not h&@ ramed formal parameters. In practice all you do is assignny(a list of these.
Variables that areth’declared to be prate are global &riables. Br gory details on creating pete

64 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

variables, see‘Private Variables viamy()' and “Temporary Values vidocal()”. To create protected
ervironments for a set of functions in a separate package (and probably a separate fiRgclsages'in
perimod.

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {
$max = $foo if $max < $foo;
}

return $max;

}
$bestday = max($mon,$tue, $wed,$thu, $fri);

Example:

get aline, combining continuation lines
t hat start with whitespace

sub get_line {
$thisline = $lookahead,; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {
if ($lookahead =" /" \t}/) {
$thisline .= $lookahead,;

}
else {
last LINE;
}
return $thisline;

}
$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {
}

Assigning to a list of pviate variables to name your arguments:

sub maybeset {

my($key, $value) = @_;

$Foo{$key} = $value unless $Foo{$key};
}

Because the assignment copies the values, this also hagethe&furning call-by-reference into call-by-
vaue. Otherwise function is free to do in-place modifications@f and change its caller\alues.

upcase_in($vl, $v2); # t his changes $v1 and $v2
sub upcase_in {

for (@) {tr/la—z/A-2/}
}

You aren't allowed to modify constants in thisay of course. Ifan argument were actually literal and you
tried to change it, yod'take a presumably fatal)»@eption. ©r example, this wohwork:

upcase_in("frederick");

It would be much safer if thepcase in() function were written to return a cppf its parameters
instead of changing them in place:

perl v5.14.2 2011-09-26 65

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

($v3, $v4) = upcase($vl, $v2); # t his doesn't change $v1 and $v2
sub upcase {
return unless defined wantarray; # void context, do nothing
my @parms = @_;

for (@parms) { tr/la-z/A-2Z/ }
return wantarray ? @parms : $parms|0];

}

Notice hav this (unprototyped) function doesicare whether it was passed real scalars or arrays. Perl sees
all arguments as one big, long, flat parameter lig®in This is one area where PerBmple agument-
passing style shinesThe upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things lile this:

upcase(@listl, @list2);
upcase(split /:/, $var);

@newlist
@newlist

Do not, howeer, be ttmpted to do this:
(@a, @b) = upcase(@listl, @list2);

Like the flattened incoming parameter list, the return list is also flattened on r&arall you hee
managed to do here is storedergthing in @aand made@bempty See ‘Pass by Referencefor
alternatves.

A subroutine may be called using axp#cit & prefix. The& is optional in modern Perl, as are parentheses
if the subroutine has been predeclarddhe & is not optional when just naming the subroutine, such as
when it's uised as an argument defined()or undef() Nor is it optional when you want to do an indirect
subroutine call with a subroutine name or reference using&ssubref() or &{$subref}()
constructs, although ti#subref->() notation solves that problem. See perlref for more about all that.

Subroutines may be called recughy. If a subroutine is called using th& form, the argument list is
optional, and if omitted, n@ _array is set up for the subroutine: tiae array at the time of the call is
visible to subroutine instead. This is an efficienechanism that meusers may wish tovaid.

&foo(1,2,3); # pass three arguments

foo(1,2,3); # the same

foo(); # pass a null list

&foo(); # the same

&foo; # foo() get current args, like foo(@_) !

foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the& form male the argument list optional, it also disabley gmototype checking on
arguments you do prade. Thisis partly for historical reasons, and partly for having aveoient way to
cheat if you kner what you're doing. See Prototypes belo

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose name:s
are in all lower caseA subroutine in all capitals is a loosely-held gemion meaning it will be called

indirectly by the run-time system itself, usually due to a triggevedte Subroutineshat do special, pre-

defined things includeAUTOLOAD CLONE DESTROYplus all functions mentioned in perltie and
PerllO::via.

The BEGIN, UNITCHECK CHECKINIT and ENDsubroutines are not so much subroutines as named
special code blocks, of which you carvéarore than one in a package, and which you mancall
explicitly. See “BEGIN, UNITCHECK, CHECK, INIT andEND” i n perimod

Private Variables viamy()

Synopsis:
my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"”; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # similar, with an attribute applied

WARNING: The use of attribute lists omy declarations is still wlving. The current semantics and

66 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(iflunlessl/elsif/else), loop for/foreach/while/until/continue), subroutinegval ,

or do/require/use 'd file. If more than one value is listed, the list must be placed in parenthkes.
listed elements must beg@ Ivalues. Onlyalphanumeric identifiers may be lexically scopedhagical
built-ins like $/ must currently béocal ized withlocal instead.

Unlike dynamic variables created by themcal operatoy lexical variables declared wittmy are totally
hidden from the outside world, includingyaaalled subroutines. This is true ifdtthe same subroutine
called from itself or elsghere — gery call gets its own cgp

This doesrt’ mean that any variable declared in a statically enclosing lexical scope would \isilite.
Only dynamic scopes are cuf.ofFor example, thbumpx() function belev has access to thexieal $x
variable because both tiney and thesub occurred at the same scope, presumably file scope.

my $x = 10;
sub bumpx { $x++ }

An eval() , howeva, can see lexical variables of the scope it is bewauated in, so long as the names
arent hidden by declarations within trewval() itself. Seeperlref.

The parameter list toy() may be assigned to if desired, which allows you to initialize yatiables. (If
no initializer is gven for a particular variable, it is created with the undefingider) Commonlthis is
used to name input parameters to a subroutine. Examples:

$arg = "fred"; # " global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn't matter
$arg **=1/3;
return $arg;

}

The myis simply a modifier on something you might assign$o0. when you do assign to variables in its
argument listmy doesnt change whether those variables are viewed as a scalar or anSarray

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while
my $foo = <STDIN>;
supplies a scalar conte Butthe following declares only one variable:
my $foo, $bar = 1; # WRONG
That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,
my $x = $x;

can be used to initialize a néx with the value of the oléx, and the expression
my $x = 123 and $x == 123

is false unless the olsk happened to hva te valuel23.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

perl v5.14.2 2011-09-26 67

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

while (my $line = <>) {
$line = Ic $line;

} ¢ ontinue {
print $line;

}

the scope offline extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similariy the conditional

if ((my $answer = <STDIN>) =" /"yes$/i) {
user_agrees();

} e Isif (Janswer =" /"no$/i) {
user_disagrees();

} else{
chomp $answer;
die "$answer is neither 'yes' nor 'no™;

}

the scope offanswer extends from its declaration through the rest of that conditional, includipg an
elsif andelse clauses, but not beyond it. See “Simple Statemeimtgerlsyn for information on the
scope of variables in statements with modifiers.

Theforeach loop defaults to scoping its inkl@ariable dynamically in the mannerlotal . Howeva,
if the index variable is prefixed with theeword my, or if there is already a lexical by that name in scope,
then a ne lexical is created instead. Thus in the loop

formy $i (1, 2, 3) {
some_function();
}

the scope offi extends to the end of the loop, but not beyond it, rendering the valbie iofaccessible
within some_function()

Some users may wish to encourage the use of lexically scepiadbles. Asan aid to catching implicit
uses to package variables, which aveagé global, if you say

use strict 'vars";

then ay variable mentioned from there to the end of the enclosing block must either referxtoaa le
variable, be predeclared vaur oruse vars , or dse must be fully qualified with the package name.
compilation error results otherwise. An inner block may countermand thiswwikrict 'vars'

A myhas both a compile-time and a run-timteef. Atcompile time, the compiler tak notice of it. The
principal usefulness of this is to quigse strict 'vars' , but it is also essential for generation of
closures as detailed in perlrefictual initialization is delayed until run time, though, so it getceted at
the appropriate time, such as each time through a loop, for example.

Variables declared witlmy are not part of anpackage and are thereforevaefully qualified with the
package name. In particulgou’re not allowed to try to maka @ckage variable (or other global) lexical:

my $pack::var; # ERROR! lllegal syntax

In fact, a dynamic ariable (also known as package or global variables) are still accessible using the fully
qualified:: notation @en while a lexical of the same name is also visible:

package main;

local $x = 10;

my $x = 20;
print "$x and $::x\n";

That will print out20 and10.

You may declaremy variables at the outermost scope of a file to hide smich identifiers from the arld
outside that file. This is similar in spirit to £&atic variables when tlyeare used at the file el. To do

this with a subroutine requires the use of a closure (anyarmss function that accesses enclosing
lexicals). If you want to create a prite subroutine that cannot be called from outside that block, it can
declare a lexical variable containing an anonymous sub reference:

68 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

my $secret_version = '1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference isveereturned by aypfunction within the module, no outside module can see the
subroutine, because its name is not ip packages ymbol table. Remember that & not REALLY called
$some_pack::secret_version or anything; it5 just $secret_version , unqualified and
unqualifiable.

This does not work with object methodswiawer; all object methods la © be n the symbol table of
some package to be found. See “Function Templateperiref for something of a work-around to this.

Persistent Private Variables
There are tw ways to build persistent pate variables in Perl 5.10. First, you can simply usestiate
feature. Oryou can use closures, if you want to stay compatible with releases older than 5.10.

Persistent variables via state()

Beginning with perl 5.9.4, you can declare variables withstiage keyword in place ofmy. For that to
work, though, you must ka enabled that feature beforehand, either by usindahire pragma, or by
using—E on one-liners. (see feature)

For example, the following code maintains avate counterincremented each time tiggmme_another()
function is called:

use feature 'state’;
sub gimme_another { state $x; return ++3$x }

Also, since$x is lexical, it cant be reached or modified by wrPerl code outside.

When combined with variable declaration, simple scalar assignmstatéo variables (as irstate $x
= 42) is executed only the first time. When such statements astuaed subsequent times, the
assignment is ignored. The behavior of this sort of assignment to non-scalar variables is undefined.

Persistent variables with closures

Just because a lexical variable is lexically (also called statically) scoped to its enclosing\@bclgr do
FILE, this doesrt mean that within a function it works Bka C satic. It normally works more ligk a C
auto, but with implicit garbage collection.

Unlike local variables in C or# Perl's lexical variables dor’necessarily get recycled just because their
scope hasxted. If something more permanent is stifae of the lexical, it will stick aroundSo long as
something else references a lexical, that lexicah’tvbe freed — whichis as it should beYou wouldn't
want memory being free until you were done using it, @ptkaround once you were donAutomatic
garbage collection takes care of this for you.

This means that you can pass back oe saay references to lexical variables, whereas to return a pointer
to a C auto is a gva aror. It also gives us a vay to simulate & function statics.Here's a nechanism for
giving a function pwate variables with both lexical scoping and a static lifetifigiou do want to create
something lile Cs datic variables, just enclose the whole function in an extra block, and put the static
variable outside the function but in the block.

{
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}
}

$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate fileetmire or use, then this is probably just fine.
If it's dl in the main program, you'll need to arrange for theto be &ecuted earlyeither by putting the
whole block abwe your main program, or more bky, placing merely a(BEGIN code block around it to
malke are it gets recuted before your program starts to run:

perl v5.14.2 2011-09-26 69

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

70

BEGIN {
my $secret_val = 0;
sub gimme_another {
return ++$secret_val;
}

}

See “BEGIN, UNITCHECK, CHECK, INIT andEND” i n perimod about the special triggered code blocks,
BEGIN, UNITCHECKCHECKINIT andEND

If declared at the outermost scope (the file scope), thx@ale work somewhat lik Cs file statics. They
are aailable to all functions in that same file declared hetbhem, but are inaccessible from outside that
file. Thisstrategy is sometimes used in modules to createt@nariables that the whole module can see.

Temporary Values vialocal()

WARNING: In general, you should be usingyinstead ofocal , because it faster and safeiExceptions

to this include the global punctuation variables, global filehandles and formats, and direct manipulation of
the Perl symbol table itselfocal is mostly used when the currerglive of a variable must be visible to
called subroutines.

Synopsis:

| ocalization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it
local $hash{key} = "val"; # sets a local value for this hash entry
delete local $hash{key}; # delete this entry for the current block
local ($cond ? $v1 : $v2); # several types of Ivalues support
| ocalization
| ocalization of symbols
local *FH; # | ocalize $FH, @FH, %FH, &FH
local *merlyn = *randal; # now $merlyn is really $randal, plus
@nerlyn is really @randal, etc
local *merlyn = 'randal’; # SAME THING: promote 'randal’ to *randal
local *merlyn =\$randal, #] ust alias $merlyn, not @merlyn etc

A local modifies its listed variables to béotal” to the enclosing blockeval , or do FILE ——-and to
any subroutine called from within that blocA local just gives temporary values to global (meaning
package) ariables. Iltdoesnotcreate a localariable. Thids known as dynamic scopind.exical scoping
is done withmy, which works more lik Cs auto declarations.

Some types of Ivalues can be localized as well : hash and array elements and slices, conditicidels (pro
that their result is alays localizable), and symbolic references. As for simple variables, this creates ne
dynamically scoped values.

If more than one variable or expression igegito local , they must be placed in parentheseBhis
operator works by saving the current values of those variables irgitsiant list on a hidden stack and
restoring them uponxéing the block, subroutine, owva. This means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired, which
allows you to initialize your localariables. (Ifno initializer is gven for a particular variable, it is created

with an undefined value.)

Becausdocal is a run-time operatpit gets executed each time through a looonsequentlyit's nore
efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an Ivaluegression. Whelyou assign to docal ized variable, the
local doesnt change whether its list is viewed as a scalar or an.aS8ay

2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while
local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you'll be giving amealue to it, but its magic @n't go avay. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code kktis to work :

Read the whole contents of FILE in $slurp
{ | ocal $/ = undef; $slurp = <FILE>; }

Note, havever, that this restricts localization of somalwes ; for example, the following statement dies, as
of perl 5.9.0, with an errdviodification of a ead-only value attemptebecause th&1 variable is magical
and read-only :

local $1 = 2;

One eception is the default scalar variable: starting with perl ®adl($) will always strip all magic
from$_, to make it possible to safely reusk in a subroutine.

WARNING: Localization of tied arrays and hashes does not currently work as described. This witibe fix
in a future release of Perl; in the meantimajidcode that relies on wmparticular behaiour of localising

tied arrays or hashes (localising individual elements is still okagg “Localising Tied Arrays and Hashes

Is Broken' in perl58delta for more details.

Localization of globs
The construct
local *name;

creates a whole mesymbol table entry for the glohame in the current package. That means that all
variables in its glob slot (Snam@name%name &name, and thaame filehandle) are dynamically reset.

This implies, among other things, thatyanagic eventually carried by those variables is locally los.
other words, sayintpcal */ will not have any &ect on the internal value of the input record separator.

Localization of elements of composite types

It's dso worth taking a moment to explain what happens whenlgaal ize a member of a composite
type (i.e. an array or hash element). In this case, the elemeatlis izedby nameThis means that when
the scope of thiocal() ends, the sad value will be restored to the hash element whesewas named
in thelocal() , or the array element whose indeas named in théocal() . If that element as
deleted while théocal() was in dfect (e.g. by alelete() from a hash or ahift() of an array), it
will spring back into existence, possiblxtending an array and filling in the skipped elements with
undef . For instance, if you say
%hash = ('This' =>'is', 'a' => 'test');
@ary = (0.5);
{
local($ary[5]) = 6;
local($hash{'a’}) = 'drill’;
while (my $e = pop(@ary)) {
print "$e . . .\n";
last unless $e > 3;
}
if (@ary) {
$hash{'only a'} = 'test’;
delete $hash{'a’};
}
}
print join(" ', map { "$_ $hash{$_}" } sort keys %hash),".\n";

perl v5.14.2 2011-09-26 71

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

print "The array has ",scalar(@ary)," elements: ",
join(, ', map { defined $_? $_:'undef' } @ary),"\n";
Perl will print
6 ...
4 . ..
3

This is a test only a test.
The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior ofocal() on non-existent members of composite types is subject to change in future.
Localized deletion of elements of composite types

You can use thelelete local $array[$idx] anddelete local $hash{key} constructs to
delete a composite type entry for the current block and restore it when it engsefline the array/hash
value before the localization, which means thay tire respectiely equivalent to

do {
my $val = $array[$idx];
local S$array[$idx];
delete $array[$idx];
$val

}

and

do {
my $val = $hash{key};
local $hash{key},
delete $hash{key};
$val

}

except that for those tHecal is scoped to thdo block. Slices are also accepted.

my %hash = (
a=>1[7,8 9] |,
b => 1,

)

{

my $a = delete local $hash{a};
#$ais[7 8 9]
Y%hashis (b=>1)

{
my @nums = delete local @$a[0, 2]

@umsis (7, 9)
$a is [u ndef, 8]

$a[0] = 999; # will be erased when the scope ends

}
$a is b ackto[7,8,9]

%hash is back to its original state

Lvalue subroutines
WARNING: Lvalue subroutines are still experimental and the implementation may change in future
versions of Perl.

It is possible to return a modifiable value from a subroufifeedo this, you hae o declare the subroutine
to return an Ivalue.

72 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

my $val;
sub canmod : Ivalue {
r eturn $val; this doesn't work, don't say "return”

$val;
}
sub nomod {
$val;
}
canmod() = 5; # assigns to $val
nomod() = 5, # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is determined as if the
subroutine call is replaced by a scakar example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:
(data(2,3)) = get_data(3,4);

and in:
(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines aeXPERIMENTAL
They appear to be camnient, but there are we&ral reasons to be circumspect.

You can't use the returndyword, you must pass out the value before falling out of subroutine scope.
(see comment in example algh Thisis usually not a problem, but it disallows an explicit return out
of a deeply nested loop, which is sometimes a nice way out.

They violate encapsulationA normal mutator can check the supplied argument before setting the
attribute it is protecting, an Ivalue subroutingereyets that chance. Consider;

my $some_array_ref = []; # protected by mutators ??
sub set_arr { # normal mutator
my $val = shift;

die("expected array, you supplied ", ref $val)
unless ref $val eq 'ARRAY";
$some_array_ref = $val;

}

sub set_arr_Iv : Ivalue { # | value mutator
$some_array_ref;

}

set_arr_lv cannot stop this !
set arr Iv()={a=>1};

Passing Symbol Table Entries (typeglobs)
WARNING: The mechanism described in this section was originally the oaly tw simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, theraference
mechanism is generally easier to work with. Seevielo

Sometimes you dothivant to pass the value of an array to a subroutimedther the name of it, so that the
subroutine can modify the global gopf it rather than wrking with a local cop In perl you can refer to
all objects of a particular name by prefixing the name with a %@o: . This is often known as a
“typeglob’, because the star on the front can be thought of as a wildcard match for all theriefisn
characters on variables and subroutines and such.

When &auated, the typglob produces a scalar value that represents all the objects of that name, including
ary filehandle, format, or subroutine. When assigned to, it causes the name mentioned to refevéo whate
* value was assigned to it. Example:

perl v5.14.2 2011-09-26 73

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {
$elem *= 2;
}

}

doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify sgataeats without using this mechanism
by referring explicitly to$_[0] etc. You can modify all the elements of an array by passing all the
elements as scalarsytbyou hae © use the* mechanism (or the eqwent reference mechanism) to
push , pop, or change the size of an arral will certainly be faster to pass the typeglob (or reference).

Even if you dont want to modify an arrayhis mechanism is useful for passing multiple arrays in a single
LIST, because normally theST mechanism will merge all the array values so that you eatract out the
individual arrays.For more on typeglobs, see “Typeglobs and Filehandiegerldata.

When to Still Uselocal()
Despite the existence afy, there are still three places where tbeal operator still shines. In fact, in
these three places, yowstuselocal instead oimy.

1. You need to gie a dobal variable a temporary value, especiglly

The global variables, lik@ARGYr the punctuation variables, mustlbeal ized withlocal()
This block reads iletc/motd and splits it up into chunks separated by lines of equal signs, which are
placed in@Fields .

{
local @ARGYV = ("/etc/motd");
local $/ = undef;
local $_ =<>;
@Fields = split /"\s*=+\s*$/,
}

It particular it's important tolocal ize $_ in ary routine that assigns to il_ook out for implicit
assignments iwhile conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own mustlosal() = on a complete tyggob. This can be
used to create mesymbol table entries:

sub ioqueue {
local (*READER, *WRITER); # notmy!
pipe (READER, WRITER) or die "pipe: $!";
return *READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create what is

effectively a local function, or at least, a local alias.

{

local *grow = \&shrink; # only until this block exists

grow(); # really calls shrink()

move(); # if move() grow()s, it shrink()s too
}
grow(); # get the real grow() again

See “Function Templatésh perlref for more about manipulating functions by name in this way.
3. You want to temporarily change just one element of an array or hash.

You canlocal ize just one element of an aggae. Usuallythis is done on dynamics:

74 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

local $SIG{INT} = 'IGNORE";
funct(); # uninterruptible

}

i nterruptibility automatically restored here

But it also works on lexically declared aggaes. Priorto 5.005, this operation could on occasion
misbehae.

Pass by Reference
If you want to pass more than one array or hash into a funretionreturn them from it—and have them
maintain their intgrity, then you're going to he o use an explicit pass-by-reference. Before you do that,
you need to understand references as detailed in peflni$. section may not makmuch sense to you
otherwise.

Here are a f@ simple examples. Firstlet's pass in seeral arrays to a function and Vit pop all of then,
returning a ne list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {
push @retlist, pop @$aref;
}

return @retlist;

}

Here's how you might write a function that returns a list @k occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
my ($k, $href, %seen); # locals
foreach $href (@_) {
while ($k = each %S$href) {
$seen{Sk}++;
}

}
return grep { $seen{$_} == @_ } keys %seen;

}
So far, we're using just the normal list return mechanism. What happens if you want to pass or return a

hash? WIl, if you're using only one of them, or you domind them concatenating, then the normal
calling covention is ok, although a little expensi

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or

(%a, %b) = func(%c, %d);
That syntax simply wn't work. It sets just@aor %aand clears thé@bor %h Pus the function didr’get
passed into tevseparate arrays or hashes: it got one long lig€dinas dways.

If you can arrange forveryone to deal with this through references d@éaner code, although not so nice
to look at. Here's a function that takes twaray references asguments, returning the twarray elements
in order of hav mary elements thg havein them:

perl v5.14.2 2011-09-26 75

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

($aref, $bref) = func(\@c, \@d);
print "@%$aref has more than @$bref\n";
sub func {
my ($cref, $dref) = @_;
if (@$cref > @$dref) {
return ($cref, $dref);
} else{
return ($dref, $cref);
}

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {
local (*c, *d) = @_;
if (@c > @d) {
return \@c, \@d);
} else{
return \@d, \@c);
}

}

Here we're using the typeglobs to do symbol table aliadihg.a tid subtle, though, and als@mt work if
you're usingmy variables, because only globalyée in disguise asocal s) are in the symbol table.

If you're passing around filehandles, you could usually just use the baxgotypéke *STDOUT, but
typeglobs references work, toBor example:

splutter(*STDOUT);
sub splutter {
my $fh = shift;
print $th "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {
my $fh = shift;
return scalar <$fh>;

}

If you're planning on generating weilehandles, you could do this. Notice to pass back just the bare *FH,
not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;
}
Prototypes
Perl supports a very limited kind of compile-timgumnent checking using function prototyping. If you
declare

sub mypush (+@)

thenmypush() takes arguments exactly #push() does. Theunction declaration must be visible at
compile time. The prototype affects only interpretation of new-style calls to the function, whestyte

is defined as not using ti@echaracter In other words, if you call it lik a huilt-in function, then it behaes
like a huilt-in function. If you call it like an dd-fashioned subroutine, then it bebsilike an dd-fashioned
subroutine. Itaturally &lls out from this rule that prototypesviearo influence on subroutine references
like \&foo or on indirect subroutine calls lik{$subref} or $subref->()

Method calls are not influenced by prototypes ejtbecause the function to be called is indeterminate at

76 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutinesathalike kuilt-in functions,
here are prototypes for some other functions that parse almost exactheltorresponding built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new

sub myvec ($$$) myvec $var, $offset, 1

sub myindex ($$;9$) myindex &getstring, "substr"

sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) — $off, $off
sub myreverse (@) myreverse $a, $b, $c

sub myjoin ($@) myjoin ":", $a, $b, $c

sub mypop (+) mypop @array

sub mysplice (+$$@) mysplice @array, 0, 2, @pushme

sub mykeys (+) mykeys %{$hashref}

sub myopen (*;$) myopen HANDLE, $name

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c

sub myrand (;$) myrand 42

sub mytime () mytime

Any backslashed prototype character represents an actual argument that must start with that character
(optionally preceded byny, our or local), with the exception o$, which will accept a hash or array
element gen without a dollar sign, such asy_function()—>[0] . The value passed as part@f will

be a reference to the actual argumewmtrgin the subroutine call, obtained by applyingo that argument.

You can use thé[] backslash group notation to specify more than one allowguihent type. &r
example:

sub myref \[$@%&*])
will allow calling myref()as

myref $var

myref @array

myref %hash

myref &sub

myref *glob
and the first argument afyref()will be a reference to a scalan aray, a hash, a code, or a glob.
Unbackslashed prototype charactergehgoecial meaningsAny unbackslashedor %eats all remaining
arguments, and forces list corte An argument represented I$/forces scalar conte An & requires an

anorymous subroutine, which, if passed as the first argument, does not requingbtheyword or a
subsequent comma.

A * allows the subroutine to accept a lveoed, constant, scalar expression, typeglob, or a reference to a
typeglob in that slot. The value will bevalable to the subroutine either as a simple scalafin the latter

two cases) as a reference to the plpb. If you wish to avays comvert such arguments to a tygleb
reference, us8ymbol::qualify_to_ref(as follows:

use Symbol 'qualify_to_ref’;

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);

}

The + prototype is a special alternagio $ that will act like \[@%] when gien a literal array or hash
variable, but will otherwise force scalar context on thguarent. Thigs useful for functions which should
accept either a literal array or an array reference as the argument:

perl v5.14.2 2011-09-26 77

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

78

sub mypush (+@) {
my $aref = shift;
die "Not an array or arrayref" unless ref $aref eq 'ARRAY";
push @$aref, @_;

}

When using the- prototype, your function must check that the argument is of an acceptable type.

A semicolon () separates mandatorygaments from optional guments. Itis redundant befor@or %
which gobble upeerything else.

As the last character of a prototype, or just before a semicolon, you carnugiace of$: if this agument
is not provided$ _ will be used instead.

Note hav the last three examples in the tableabae treated specially by the parsenygrep() is
parsed as a true list operataryrand() is parsed as a true unary operator with unary precedence the same
asrand() , andmytime() is truly without arguments, just likeme() . That s, if you say

mytime +2;
you'll getmytime() + 2, notmytime(2) , which is hav it would be parsed without a prototype.

The interesting thing abow is that you can generate wmesyntax with it, provided is in the initial
position:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };

if (3@) {
local $_=$@;
&$catch;

}

}
sub catch (&) {$_[0] }

try {

die "phooey";
} catch{

/phooey/ and print "unphooey\n";
2

That prints"unphooey” . (Yes, there are still unresolved issuesihg to do with visibility of @ . I'm
ignoring that question for the momern(But note that if we mak@_lexically scoped, those angmous
subroutines can act Bkdosures... (Gee, is this sounding a little Lispish? véXlenind.))))

And heres$ a eimplementation of the Pegtep operator:

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {
push(@result, $_) if &$code;
}

@result;
}

Some folks would prefer full alphanumeric prototypédphanumerics hae keen intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechaniss main goal is to let module writers provide better diagnostics for module usamy. feels the
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor mad it harder to read. The line noise is visually encapsulated into a small pifl éaay to

swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional wathegg- *
character in prototyp€... Unfortunately earlier versions of Perl allowed the prototype to be used as long as
its prefix was a valid prototype. The warning may be upgradeddtabefror in a future version of Perl

2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

once the majority of offending code is fixed.

It's probably best to prototype wefunctions, not retrofit prototyping into older on€ghat's because you
must be especially careful about silent impositions of differing éssws scalar contts. For example, if
you decide that a function should ¢glast one parametdike this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func(split /:/);

Then youve just supplied an automatscalar in front of their argument, which can be more than a bit
surprising. Theold @foo which used to hold one thing doeisgét passed inlnsteadfunc() now gets
passed in 4; that is, the number of elements@foo. And thesplit gets called in scalar context so it
starts scribbling on you®@ parameter list. Ouch!

This is all very pwerful, of course, and should be used only in moderation tce ringkworld a better
place.

Constant Functions
Functions with a prototype ¢ are potential candidates for inlining. If the result after optimization and
constant folding is either a constant or a lexically-scoped scalar which has no other references, then it will
be used in place of function calls made with@utCalls made using are nger inlined. (Seeonstant.pm
for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159} # Not exact, but close.

sub PI () {4 *atan21,1} # As good as it gets,
and it's inlined, too!

sub ST_DEV () {0}

sub ST _INO () {1}

sub FLAG_FOO () {1<<8}
sub FLAG_BAR () {1<<9}
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR}

sub OPT_BAZ () { n ot (0x1B58 & FLAG_MASK) }
sub N () { int(OPT_BAZ) /3 }

sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }

Be awvare that these will not be inlined; as yheontain inner scopes, the constant folding ddesduce
them to a single constant:

sub foo_set () { if (FLAG_MASK & FLAG_FOO){1}}

sub baz_val () {
if (OPT_BAZ) {

return 23;
}
else {

return 42;
}

}

If you redefine a subroutine that was eligible for inlining, you'll get a mandatargimg. (You can use
this warning to tell whether or not a particular subroutine is considered constdm.)warning is
considered sere enough not to be optional because previously compiegations of the function will
still be using the old value of the function. If you need to be able to redefine the subroutine, you need to

perl v5.14.2 2011-09-26 79

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

ensure that it ism’inlined, either by dropping th€ prototype (which changes calling semantics, so
beware) or by thwarting the inlining mechanism in some other, wash as

sub not_inlined () {
23if §];
}

Overriding Built-in Functions
Many built-in functions may be werridden, though this should be tried only occasionally and for good
reason. Ypically this might be done by a package attempting to emulate missing built-in functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module at compile—tiondinary
predeclaration ish'good enough.However, theuse subs pragma lets you, in effect, predeclare subs via
the import syntax, and these names may tlverride built-in ones:

use subs ‘chdir', ‘chroot’, ‘chmod', ‘chown’;
chdir $somewhere;
sub chdir{ ... }

To unambiguously refer to the built-in form, precede thétiin name with the special package qualifier
CORE::. For example, sayin@ORE::open() always refers to thewlt-in open() , even if the current
package has imported some other subroutine c&lbpan() from elsevhere. Een though it looks lig a
regular function call, it isn’'t: you cahtake a eference to it, such as the incorréd&CORE::open might
appear to produce.

Library modules should not in general export built-in namesdjken or chdir as part of their defult
@EXPORTist, because these may sheak into someonesefs@espace and change the semantics
unexpectedly Instead, if the module adds that name@&XPORT_QHKhen it's possible for a user to
import the name explicitjybut not implicitly. That is, thg could say

use Module 'open’;

and it would import thepen overide. Butif they said
use Module;

they would get the default imports withowerides.

The foregoing mechanism forvariding built-in is restricted, quite deliberatelfo the package that
requests the importThere is a second method that is sometimes applicable when you wiglrrtdeoa
built-in everywhere, without rgard to namespace boundari€Ehis is achiged by importing a sub into the
special namespac€EORE::GLOBAL:: . Here is an xample that quite brazenly replaces thleb
operator with something that understands regular expressions.

package REGIob;
require Exporter;

@ISA = "Exporter’;
@EXPORT_OK ='glob;

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =" s/"GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg->export($where, $sym, @_);

}

sub glob {
my $pat = shift;
my @got;

if (opendir my $d, ") {
@got = grep /$pat/, readdir $d;
closedir $d;

}
return @got;

80 2011-09-26 perl v5.14.2

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

}
1
And heres$ how it could be (ab)used:
#use REGIlob 'GLOBAL_glob’; # override glob() in ALL nhamespaces
package Foo;
use REGIob 'glob’; # override glob() in Foo:: only
print for <"[a-z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a conid, even dangerouseample. Byoveriding glob globally, you would
be forcing the n& (and subersive) behavior for the glob operator forevery namespace, without the
complete cognizance or cooperation of the modules thattbose namespaceblaturally; this should be
done with extreme cauties-if it must be done at all.

The REGIlob example abwe des not implement all the support needed to cleavdyride perls glob
operator The huilt-in glob has different behaviors depending on whether it appears in a scalar or list
contet, but ourREGIob doesnt. Indeed,mary perl built-in have such context sensite kehaviors, and
these must be adequately supported by a properly writtemide. For a fully functional example of
overriding glob , sudy the implementation dfile::DosGlob in the standard library.

When you eerride a built-in, your replacement should be consistent (if possible) withuiieérbnative
syntax. You can achiee tis by using a suitable prototyp&o get the prototype of anverridable huilt-in,
use theprototype function with an argument ofCORE::builtin_name" (see “prototype’ in
perlfunc).

Note havever that some bilt-ins cant havetheir syntax expressed by a prototype (suclsyatem or
chomp). If you override them you wort’be ale to fully mimic their original syntax.

The huilt-ins do, require andglob can also be w@rridden, but due to special magic, their original
syntax is preserved, and you dohdveto define a prototype for their replacementgou cant override
thedo BLOCK syntax, though).

require has special additional dark magic: if yowadke your require replacement asequire
Foo::Bar , it will actually receve the argumentFoo/Bar.pm” in @. See “require’in perlfunc.

And, as you'll hae roticed from the previous example, if youerride glob , the <*> glob operator is
overidden as well.

In a similar fashion, werriding the readline function also werrides the equilent 1/O operator
<FILEHANDLE>. Also, overriding readpipe also werrides the operators andgx// .

Finally, some built-ins (e.gexists orgrep) can't be overridden.

Autoloading
If you call a subroutine that is undefined, yoautd ordinarily get an immediate, fatal error complaining
that the subroutine doesrexist. (Likewise for subroutines being used as methods, when the method
doesnt exist in ary base class of the clasgackage.) Hwever, if an AUTOLOABuUbroutine is defined in
the package or packages used to locate the original subroutine, th&tJTr@LOABubroutine is called
with the arguments that wouldveabkeen passed to the original subroutifidae fully qualified name of the
original subroutine magically appears in the gloBAUTOLOADvariable of the same package as the
AUTOLOADoutine. Thename is not passed as an ordinary argument because]lejust because, that’
why. (As an exception, a method call to a ndstentimport or unimport method is just skipped
instead. Also,if the AUTOLOAD subroutine is arxSuB, $AUTOLOADs not populated; instead, you
should callSvPVX SvCURon theCVfor AUTOLOAID retrieve the method name.)

Many AUTOLOADoutines load in a definition for the requested subroutine wsad(), then eecute that
subroutine using a special form géto() that erases the stack frame of thdTOLOADoutine without a
trace. (Seethe source to the standard module documented in AutolLoéolerexample.) Butan
AUTOLOADoutine can also just emulate the routine angendefine it. For example, lets pretend that a
function that wasn'defined should just iroke system with those aguments. Allyou'd do is:

perl v5.14.2 2011-09-26 81

PERLSUB(1) PerProgrammers Reference Guide PERLSUB(1)

sub AUTOLOAD {
my $program = $SAUTOLOAD;
$program =" s/.*:://;
system($program, @_);
}
date();
who(‘am’, '1");
Is(-I);
In fact, if you predeclare functions you want to call that,way dont even need parentheses:

use subs gw(date who Is);

date;

who "am", "i";

Is "I
A more complete example of this is the standard Shell module, which can treat undefined subroutine calls
as calls to external programs.

Mechanisms arevailable to help modules writers split their modules into autoloadable files. See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules
in SelfLoaderand the document on adding C functions to Perl code in perlxs.

Subroutine Attributes

A subroutine declaration or definition mayvieaa Ist of attributes associated with it. If such an attigb
list is present, it is broken up at space or colon boundaries and treated as thseglttabutes had
been seen. See attributes for details about what attributes are currently suppalileel.the limitation
with the obsolescentse attrs , thesub : ATTRLIST syntax works to associate the attributes with a
pre-declaration, and not just with a subroutine definition.

The attributes must bealid as simple identifier names (withoutyapunctuation other than the '
character). Themay hae a @rameter list appended, which is only checked for whether its parentheses

() nest properly.
Examples of valid syntax ¥en though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) . e xpensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : 5x5{...}

Examples of imalid syntax:
sub fnord : switch(10,foo(); # ()—string not balanced

sub snoid : Ugly('("; # ()-string not balanced

sub xyzzy : 5x5; # " 5x5" not a valid identifier

sub plugh : Y2::north; # " Y2::north" not a simple identifier
sub snurt : foo + bar; # " +" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them with the
subroutine. Inparticular the second example of valid syntax @baurrently looks lile this in terms of
how it's parsed and woked:

use attributes _ _PACKAGE__, \&plugh, q[Ugly("\('"], 'Bad’;
For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO

82

See “Function Emplates’in perlref for more about references and closurgse perlxs if youl like to
learn about calling C subroutines from PeBee perlembed if yod’like to learn about calling Perl
subroutines from C. See perlmod to learn abawtdbng up your functions in separate fileSee
perlmodlib to learn what library modules come standard on your sySemperltoot to learn faoto make
object method calls.

2011-09-26 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

NAME
perlfunc — Perl builtin functions

DESCRIPTION
The functions in this section can seras érms in an epression. Thgfall into two major categories: list
operators and named unary operators. These differ in their precedence relationship witviagfollo
comma. (Seg¢he precedence table in perlof.jst operators tad more than one argument, while unary
operators can ner take nore than one gument. Thusa comma terminates the garment of a unary
operatoy but merely separates thegaments of a list operatoA unary operator generally provides scalar
contet to its argument, while a list operator may provide either scalar or list contexts fauitsesnts. If
it does both, scalar guments come first and list argument foll@nd there can onlyver be ;e such list
argument. Br instancesplice()has three scalar arguments followed by a list, whegehsstbyname(has
four scalar arguments.

In the syntax descriptions that folNplist operators that expect a list (and provide list cdrfte elements

of the list) are shown withiST as an ggument. Sucta list may consist of gncombination of scalar
arguments or list alues; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single-dimensional disev Commasshould
separate literal elements of thsT.

Any function in the list bel may be used either with or without parentheses aroundgitsremts. (The
syntax descriptions omit the parentheses.) If you use parentheses, the sitrgaeasionally surprising
rule is this: Itlookslike a function, therefore iis a function, and precedence dodsnatter Otherwise its

a list operator or unary operat@nd precedence does mattét/hitespace between the function and left
parenthesis doedrtount, so sometimes you need to be careful:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the-w switch it can warn you about thig:or example, the third line alve produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at — line 1.

A few functions tak no aguments at all, and therefore work as neither unary nor list operatbese
include such functions dsne andendpwent . For exampletime+86_ 400 always meangime() +
86_400.

For functions that can be used in either a scalar or list context, nonalfalitiire is generally indicated in
scalar context by returning the undefined value, and in list context by returning the empty list.

Remember the following important rule: Theren@s rule that relates the behavior of an expression in list
contt to its behavior in scalar context, or vicersa. Itmight do tw totally different things. Each
operator and function decides which sort afue would be most appropriate to return in scalar gante
Some operators return the length of the list that wowe leen returned in list conte Someoperators

return the first value in the list. Some operators return the last value in the list. Some operators return a
count of successful operations. In generaly thewhat you want, unless you want consistenc

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar contet. You cant get a list like (1,2,3) into being in scalar context, because the compilewkno

the context at compile time. Itomld generate the scalar comma operator there, not the list construction
version of the comma. That means it wagena list to start with.

In general, functions in Perl that seras wappers for system callsgyscalls’) of the same name (l&k
chown(2), fork(2), closedir(2), etc.) return true when thesucceed andindef otherwise, as is usually
mentioned in the descriptions belo This is different from the C interfaces, which retuth on failure.
Exceptions to this rule includeait , waitpid , and syscall . System calls also set the spec#l
variable on &ilure. Otherfunctions do not, except accidentally.

Extension modules can also hook into the Perl parser to definkimds of leyword-headed xpression.
These may look li& functions, but may also look completelyfdient. Thesyntax following the &yword
is defined entirely by thexeension. Ifyou are an implementosee ‘PL_keyword_plugin’ in perlapi for
the mechanism. If you are using such a module, see the nodobeimentation for details of the syntax

perl v5.14.2 2014-02-04 83

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

that it defines.

Pel Functions by Category
Here are Pew functions (including things that look #kfunctions, lile ssme leywords and named
operators) arranged by categoS8ome functions appear in more than one place.

Functions for SCALARSs or strings
chomp, chop, chr , crypt , hex, index , Ic , Icfirst ,length ,oct ,ord, pack,q// ,qqll ,
reverse ,rindex ,sprintf ,substr ,tr/// ,uc,ucfirst /I

Regular expressions and pattern matching
m// , pos, quotemeta ,s/// ,split ,study ,qr//

Numeric functions
abs, atan2 , cos, exp, hex,int ,log ,oct ,rand ,sin ,sqrt ,srand

Functions for rea@ARRAYs
each, keys , pop, push, shift ,splice ,unshift ,values

Functions for list data
grep ,join , map, qw// ,reverse ,sort ,unpack

Functions for rea%oHASHes
delete ,each,exists ,keys,values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock , format ,
getc , print , printf |, read, readdir , rewinddir , say, seek, seekdir , select |,
syscall ,sysread ,sysseek ,syswrite ,tell ,telldir ,truncate ,warn, write

Functions for fixed-length data or records
pack ,read , syscall ,sysread ,syswrite ,unpack ,vec

Functions for filehandles, files, or directories
=X, chdir , chmod, chown, chroot , fcntl , glob , ioctl , link , Istat , mkdir , open,
opendir ,readlink ,rename, rmdir ,stat ,symlink ,sysopen ,umask, unlink , utime

Keywords related to the control floof your Perl program
caller , continue |, die , do, dump, eval , exit , goto , last , next , redo , return , sub,
wantarray

Keywords related to the switch feature
break , continue , default, given , when

These are\ailable only if you enable théswitch" feature. Seéeature and “Switch statemerits’
in perlsyn. Alternatelyinclude ause v5.10 or later to the current scope.

Keywords related to scoping
caller ,import ,local ,my,our,package ,state ,use

state is available only if the"state" feature is enabled. See featuddternately include ause
v5.10 or later to the current scope.

Miscellaneous functions

defined , dump, eval , formline , local , my, our, reset , scalar , state , undef ,
wantarray

Functions for processes and process groups
alarm , exec, fork , getpgrp , getppid , getpriority , kil pipe , gx/ , setpgrp |,
setpriority , sleep , system , times , wait , waitpid

Keywords related to Perl modules
do, import , no, package , require , use

Keywords related to classes and object-orientation
bless , dbmclose , dbmopen, package , ref ,tie ,tied ,untie ,use

Low-level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt |, listen , recv ,
send, setsockopt , shutdown , socket , socketpair

84 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

System V interprocess communication functions
msgctl , msgget , msgrev , msgsnd, semctl , semget , semop, shmctl , shmget , shmread ,
shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam, getpwuid , setgrent , setpwent

Fetching network info

endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent
getnetbyaddr , getnetbyname , getnetent , getprotobyname , getprotobynumber
getprotoent , getservbyname , getservbyport , getservent , sethostent

setnetent , setprotoent , Ssetservent

Time-related functions
gmtime , localtime , time , times

Functions ne in perl5
abs, bless , break , chomp, chr , continue , default ,exists ,formline , given ,glob ,
import , Ic , Icfirst , lock , map, my, no, our , prototype , qr// ,qw// ,qgx/l ,readline ,
readpipe ,ref ,sub* sysopen ,tie ,tied ,uc,ucfirst ,untie ,use,when

* sub was a keyword in Perl 4, but in Perl 5 it is an operatehich can be used in expressions.

Functions obsoleted in perl5
dbmclose , dbmopen

Portability
Perl was born in Unix and can therefore access all common Unix systemlcaltsn-Unix enironments,
the functionality of some Unix system calls may not balable or details of thevailable functionality
may differ slightly The Perl functions affected by this are:

=X, binmode , chmod, chown, chroot , crypt , dbmclose , dbmopen, dump, endgrent |,
endhostent , endnetent , endprotoent , endpwent , endservent , exec, fcntl , flock
fork , getgrent , getgrgid , gethostbyname , gethostent , getlogin , getnetbyaddr
getnetbyname , getnetent , getppid , getpgrp , getpriority , getprotobynumber
getprotoent , getpwent , getpwnam, getpwuid , getservbyport , getservent
getsockopt , glob , ioctl , kil , link , Istat , msgctl , msgget, msgrcv , msgsnd, open,
pipe , readlink , rename, select , semctl , semget, semop, setgrent , sethostent ,
setnetent , setpgrp , setpriority , setprotoent , setpwent , setservent , setsockopt
shmctl , shmget, shmread , shmwrite , socket , socketpair , stat , symlink , syscall
sysopen , system , times , truncate ,umask, unlink , utime , wait , waitpid

For more information about the portability of these functions, see perlport and etilable platform-
specific documentation.

Alphabetical Listing of Perl Functions

—X FILEHANDLE

-X EXPR

—X DIRHANDLE

-X Afile test, where X is one of the letters listed held@his unary operator takes one argument, either a
filename, a filehandle, or a dirhandle, and tests the associated file to see if something is true about it.
If the argument is omitted, tesks , except for-t , which testsSTDIN. Unless otherwise documented,
it returnsl for true and' for false, or the undefined value if the file doésrist. Despitethe funry
names, precedence is the same gotrer named unary operatorhe operator may be piof:

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-0 File is owned by effective uid.

-R File isreadable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.

perl v5.14.2 2014-02-04 85

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

—f File is a plain file.
-d File is adirectory.
-l File is a symbolic link.

-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File isasocket.

-b File s a block special file.

—c File is a character special file.

-t Filehandle is opened to a tty.

-u File has setuid bit set.
—-g File has setgid bit set.
-k File has sticky bit set.

-T File isan ASCII text file (heuristic guess).
-B File s a"binary" file (opposite of —T).

—-M Script start time minus file modification time, in days.
—-A Same for access time.
—-C Same for inode change time (Unix, may differ for other platforms)

Example:
while (<>) {
chomp;
next unless —f $_; # i gnore specials
#...
}

Note that-s/a/b/ does not do a meted substitution. Saying —exp($foo) still works as
expected, howeer: only single letters following a minus are interpreted as file tests.

These operators argeenpt from the “looks lile a unction rule’ described abee. That is, an opening
parenthesis after the operator does ndécafhav much of the following code constitutes the
argument. Put the opening parentheses before the operator to separate it from code that follows (this
applies only to operators with higher precedence than unary operators, of course):

—s($file) + 1024 # probably wrong; same as —s($file + 1024)
(s $file) + 1024 # correct

The interpretation of the file permission operaters —R, -w, -W —x, and =X is by default based
solely on the mode of the file and the uids and gids of the Uikere may be other reasons you tan’
actually read, write, orxecute the file: for gample network filesystem access controls, ACLs (access
control lists), read-only filesystems, and unrecognizedigable formats. Note that the use of these
six specific operators to verify if some operation is possible is usually a ejistagause it may be
open to race conditions.

Also note that, for the superuser on the local filesystemsirtheR, —w, and —Wtests alvays return 1,
and-x and-X return 1 if ay execute bit is set in the mode. Scripts run by the superuser may thus
need to do atat() to determine the actual mode of the file, or temporarily set theictee ud to
something else.

If you are using ACLs, there is a pragma calfitztest that may produce more accurate results
than the barestat() mode bits. When undeuse filetest 'access' the ab@e-mentioned
filetests test whether the permission can(not) be granted usimgdbseg2) family of system calls.
Also note that the-x and —X may under this pragma return trueee if there are no »ecute
permission bits set (nor wnextra execute permission BLs). This strangeness is due to the
underlying system calls’ definitions. Note also that, due to the implementatisse dfletest

'‘access' , the special filehandle an't cache the results of the file tests when this pragma is in

86 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

effect. Readhe documentation for tHdetest pragma for more information.

The -T and -B switches work as follws. Thefirst block or so of the file isxamined for odd
characters such as strange control codes or characters with the high Bitteet.mary strange
characters (>30%) are foundsi&—B file; otherwise its a-T file. Also, ary file containing a zero
byte in the first block is considered a binary file~T or —B is used on a filehandle, the currébt
buffer is examined rather than the first blo&oth -T and-B return true on an empty file, or a file at
EOF when testing a filehandle. Because youeh® read a file to do theT test, on most occasions
you want to use af against the file first, as imext unless —f $file && -T $file

If any of the file tests (or either tretat orlistat operator) is gien the special filehandle consisting
of a solitary underline, then the stat structure of theipus file test (or stat operator) is used, saving a
system call.(This doesrt’' work with -t , and you need to remember thstiat() and-Il leave values in

the stat structure for the symbolic link, not the real file.) (Also, if the stfierbwas filled by an
Istat call,-T and—B will reset it with the results aftat). Example:

print "Can do\n"if -r$a || -w _ || -x _;

stat($filename);

print "Readable\n" if —r _;
print "Writable\n" if -w _;
print "Executable\n" if —x _;
print "Setuid\n” if —u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;

print "Text\n" if =T _;

print "Binary\n" if -B _;

As of Perl 5.9.1, as a form of purely syntacticaugou can stack file test operators, in a way tat

-w —X $file is equvalent to—x $file && -w _ && —f _ . (This is only ing fangy: if you
use the return value off $file as an agjument to another filetest operatno ecial magic will
happen.)

absVALUE

abs Returns the absolute value of itpuanent. IfVALUE is omitted, use$_.

acceptNEWSOCKETGENERICSOCKET
Accepts an incoming socket connect, justa@sepi2) does. Returns the packed address if it
succeeded, false otherwise. See the example in “Sockets: Client/Server Commuhiogtintipc.

On systems that support a close-areeflag on files, the flag will be set for thewlg opened file
descriptoras determined by the value of $"Bee “$°F” in perlvar.

alarmSECONDS

alarm
Arranges to hae aSIGALRM delivered to this process after the specified number of wallclock seconds
has elapsed.f SECONDSIis not specified, the value stored $n is used. (On some machines,
unfortunately the elapsed time may be up to one second less or more than you specified because of
how seconds are counted, and process scheduling may delay treeydedithe signal een further.)

Only one timer may be counting at ondeach call disables the previous timard an argument dj
may be supplied to cancel the previous timer without startingvaone. Thereturned value is the
amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module @r&iN, and starting
from Perl 5.8 part of the standard distribution)vides ualarm(). You may also use Peslfour-
argument version o$elect()leaving the first three guments undefined, or you might be able to use
thesyscall interface to accessetitimen(2) if your system supports it. See perlfag8 for details.

It is usually a mistak to intermix alarm and sleep calls, becausesleep may be internally
implemented on your system wiglharm .

If you want to usealarm to time out a system call you need to usewal /die pair. You cant rely
on the alarm causing the system call to fail iithset toEINTR because Perl sets up signal handlers
to restart system calls on some systelidsingeval /die always works, modulo the gaats gien in

perl v5.14.2 2014-02-04 87

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

88

“ Signals’ in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;

alarm 0;
g
if (@) {
die unless $@ eq "alarm\n"; # propagate unexpected errors
t imed out
}
else {
didn't
}
For more information see perlipc.
atan2 Y, X
Returns the arctangent of Y/X in the range —Frito
For the tangent operation, you may use tath::Trig::tan function, or use theafmiliar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

The return value foatan2(0,0) is implementation-defined; consult yoatan2(3) manpage for
more information.

bind SOCKET,NAME
Binds a netwrk address to a socket, just bmd(2) does. Returns true if it succeededl|sé
otherwise.NAME should be a paed address of the appropriate type for the sbcBedhe examples
in “Sockets: Client/Server Communicatiomi perlipc.

binmodeFILEHANDLE, LAYER

binmodeFILEHANDLE
Arranges forFILEHANDLE to be read or written irfbinary” or ‘‘text” mode on systems where the
run-time libraries distinguish between binary anxt tes. If FILEHANDLE is an expression, the
value is taken as the name of the filehand®eturns true on success, otherwise it retundef and
sets$! (errno).

On some systems (in gene@S—-and Wndows-based systembjnmode()is necessary when yaog’
not working with a text file.For the sak of portability it is a good idea wakys to use it when
appropriate, and wer to use it when it isrt’ appropriate. Alsopeople can set their 1/0 to be by
default UTF8-encoded Unicode, not bytes.

In other words: rgardless of platform, useinmode(Jon binary data, li& images, for example.

If LAYER is present it is a single string, but may contain multiple dirextiThe directies dter the
behaviour of the filehandle. Whe&AYER is present, using binmode on a text file makes sense.

If LAYER is omitted or specified asaw the filehandle is made suitable for passing binary data. This
includes turning df possible CRLF translation and marking it as bytes (as opposed to Unicode
characters). Notthat, despite what may be implied“iProgramming Rrl” (the Camel, 3rd edition)

or elsavhere,:raw is not simply the iwverse of:crlf . Other layers that would affect the binary
nature of the stream amadso disabled. See PerllO, perlrun, and the discussion abourEREIO
environment variable.

The:bytes ,:crlf ,:utf8 , and ary other directves of the form:... , are called I/Olayers The
open pragma can be used to establish default I/0 layers. See open.

TheLAYERparameter of the binmode() function is described BSSCIPLINE i n “Programming Frl,
3rd Edition”. However, since the publishing of this book, by many known‘@amel lil”, the
consensus of the naming of this functionality has moved fidistipline” to “layer”. All
documentation of this version of Perl tefne refers to “layers” rather than to‘tisciplines’. Now
bad to the reqularly scheduled documentation...

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

To mark FILEHANDLE asUTF-8, use:utf8 or:encoding(UTF-8) . :utf8 just marks the data
as UTF-8 without further checking, whileencoding(UTF-8) checks the data for actually being
valid UTF-8. More details can be found in PerllO::encoding.

In general,binmode()should be called afteppen() but before ay I/O is done on the filehandle.
Calling binmode()normally flushes anpending luffered output data (and perhaps pending input data)
on the handle. Anxeeption to this is theencoding layer that changes the default character
encoding of the handle; séegen’. The :encoding layer sometimes needs to be called in mid-
stream, and it doedrflush the streamThe :encoding also implicitly pushes on top of itself the
:utf8 layer because internally Perl operates on UTF8—encoded Unicode characters.

The operating system, device wdris, C libraries, and Perl run-time system all conspire to let the
programmer treat a single character) as he line terminatqgrirrespectie o external representation.
On maly operating systems, the natitext file representation matches the internal representation, b
on some platforms the external representatidn as made up of more than one character.

All variants of Unix, MacOS (old and n&), and Stream_LF files onMS use a single character to end
each line in the »@ernal representation of textv@m though that single character GARRIAGE
RETURN on old, pre-Darwin fleors of MacOS, and isLINE FEED on Unix and mostvMS files). In
other systems Il 0S/2 DOS, and the various fleors of MS-Windows, your program sees\a as a
simple\cJ , but whats gored in tet files are the te characteracM\cJ . That means that if you
don't usebinmode()on these system&M\cJ sequences on disk will be amnted to\n on input,
and ag \n in your program will be corerted back tdcM\cJ on output. This is what you want for
text files, but it can be disastrous for binary files.

Another consequence of usibghmode()(on some systems) is that special end-of-file markers will be
seen as part of the data stredfor systems from the Microsofemily this means that, if your binary
data containcZ , the 1/0 subsystem will gard it as the end of the file, unless you bsenode()

binmode()is important not only foreadline() and print() operations, bt also when usingead(),
seek() sysread() syswrite()andtell() (see perlport for more detailspee theb/ and$\ variables in
perlvar for hev to manually set your input and output line-termination sequences.

blessREF,CLASSNAME

blessREF
This function tells the thingy referenced RgF that it is nev an dject in theCLASSNAME package.
If CLASSNAME is omitted, the current package is used. Becaudess is often the last thing in a
constructor it returns the reference for ommience. AWays use the te-agument version if a
derived dass might inherit the function doing the blessing. See perltoot and perlobj for more about the
blessing (and blessings) of objects.

Consider alays blessing objects in CLASSNAMEs that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragmata. Builtin typedi bppercase names.

To prevent confusion, you may wish toveid such package names as weMake sure that
CLASSNAME is a true value.

See “Perl Modulesin perimod.

break
Break out of ayiven() block.

This keyword is enabled by théswitch" feature: see feature for more informatioflternately,
include ause v5.10 or later to the current scope.

callerEXPR

caller
Returns the context of the current subroutine call. In scalar context, returns the patleage name
if thereis a aller (that is, if we're in a subroutine eval or require) and the undefinedalue
otherwise. Irlist context, returns

0 1 2
($package, $filename, $line) = caller;

With EXPR it returns some extra information that the debugger uses to print a stackTinecalue
of EXPRindicates har mary call frames to go back before the current one.

perl v5.14.2 2014-02-04 89

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

0 1 2 3 4

($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 10

$wantarray, $evaltext, $is_require, $hints, $hitmask, $hinthash)

= caller($i);

Here$subroutine may be(eval) if the frame is not a subroutine call, buteral . In such a
case additional elemengevaltext and $is_require are set:$is_require is true if the
frame is created byrmequire oruse statement$evaltext contains the text of theval EXPR
statement. Inparticular for an eval BLOCK statement, $subroutine is (eval) , but

$evaltext is undefined. (Note also that easbe statement createsraquire frame inside an
eval EXPR frame.) $subroutine may also bgunknown) if this particular subroutine happens
to have been deleted from the symbol tabBhasargs is true if a nev instance of@_was st up for
the frame.$hints and$bitmask contain pragmatic hints that the caller was compiled withe
$hints and$bitmask values are subject to change betweersions of Perl, and are not meant for
external use.

$hinthash is a reference to a hash containing thtue 0of%"H when the caller was compiled, or
undef if % Hwas empty. Do not modify the values of this hash, asytlaee the actual values stored
in the optree.

Furthermore, when called from within tb& package, caller returns more detailed information: it sets
the list variable@DB::args to be the arguments with which the subroutine weskid.

Be avare that the optimizer might i@ gotimized call frameswaay beforecaller had a chance to
get the information. That means theatler(N) might not return information about the call frame
you expect it to, foN > 1. In particular, @DB::args might hare information from the prgous
timecaller was alled.

Be avare that setting@DB::args is best efort, intended for debugging or generating backtraces, and
should not be relied upon. In particylas @_contains aliases to the calkegrguments, Perl does not
take a opy of @, so @DB::args will contain modifications the subroutine makes@p or its
contents, not the original values at call tir@DB::args , like @, does not hold explicit references
to its elements, so under certain cases its elements maydeome freed and reallocated for other
variables or temporary values. Finallysde efect of the current implementation is that the effects of
shift @ cannormallybe undone (but ngiop @ __ or other splicingand not if a reference t@ _

has been tan, and subject to the aaat about reallocated elements), @DB::args is actually a
hybrid of the current state and initial state@f. Buyer bevare.

chdir EXPR

chdir FILEHANDLE

chdir DIRHANDLE

chdir
Changes the arking directory toEXPR, if possible. IfEXPR is omitted, changes to the directory
specified by$SENV{HOME} if set; if not, changes to the directory specified 4#5NV{LOGDIR}.
(UndervMs, the \ariable$ENV{SYS$LOGIN} is also checked, and used if it is set.) If neither is set,
chdir does nothing. It returns true on success, false otherwise. See the examptbeunder

On systems that suppddhdir(2), you may pass a filehandle or directory handle as theremt. On
systems that dohsupportfchdir (2), passing handles raises an exception.

chmodLIST
Changes the permissions of a list of fil&he first element of the list must be the numeric mode,
which should probably be an octal numbkaed which definitely shouldot be a string of octal digits:
0644 is okay but "0644" is not. Returns the number of files successfully changed. SeéaaiSo
if all you have is a $ring.

90 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

$cnt = chmod 0755, "foo", "bar";

chmod 0755, @executables;

$mode = "0644"; chmod $mode, "foo"; # ! 1l sets mode to
——wW———r-T

$mode ="0644"; chmod oct($mode), "foo"; # this is better

$mode = 0644, chmod $mode, "foo"; # t his is best

On systems that suppdadhmod2), you may pass filehandles among the files. On systems that don’
supportfchmod2), passing filehandles raises awaption. Filehandlemust be passed as globs or
glob references to be recognized; banels are considered filenames.

open(my $fh, "<", "foo");
my $perm = (stat $th)[2] & 07777;
chmod($perm | 0600, $fh);

You can also import the symbol _I* constants from thEcntl module:

use Fentl gw(:mode);
chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTHI|S_IXOTH, @executables;
| dentical to the chmod 0755 of the example above.

chompVARIABLE

chomp(LIST)

chomp
This safer version ofchop” removes any trailing string that corresponds to the current valu&/of
(also known as$INPUT_RECORD_SEPARATOR the English module). Itreturns the total
number of characters rerml from all its aguments. 18 dten used to reme the newline from the
end of an input record when you're worried that the final record may be missing/litsenéWhenin
paragraph mode$(="), it removes dl trailing newlines from the string. When in slurp mode
($/ = undef) or fixed-length record mode$(is a reference to an irger or the like; see pedv)
chomp()won’t remove anything. If VARIABLE is omitted, it chomp$_. Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/));
..

}

If VARIABLE is a hash, it chomps the haskalues, but not itseys.
You can actually chomp anything thatn alue, including an assignment:

chomp($cwd = "pwd);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characteeslisneaturned.

Note that parentheses are necessary when you're chompijtigngnthat is not a simpleaviable.

This is becausehomp $cwd = "pwd’; is interpreted agchomp $cwd) = "pwd’; , rather
than aschomp($cwd = pwd’) which you might gpect. Similarly chomp $a, $b s
interpreted ashomp($a), $b rather than ashomp($a, $b)

ChopVARIABLE

chop(LIST)

chop

Chops of the last character of a string and returns the character chofipednuch more dicient
thans/.$//s because it neither scans nor copies the stfh§yARIABLE is omitted, chop$. If
VARIABLE is a hash, it chops the haskalues, but not itsdys.

You can actually chop anything thatan /alue, including an assignment.
If you chop a list, each element is chopped. Only the value of thehiagtis returned.

Note that chop returns the last characterTo return all but the last charactetuse
substr($string, 0, —1)

See also “chomp”.

perl v5.14.2 2014-02-04 91

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

92

chownLIST
Changes the owner (and group) of a list of fil€ke first two dements of the list must be themeric
uid and gid, in that orderA value of -1 in either position is interpreted by most systems te ltbat
value unchanged. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo’, 'bar’;
chown $uid, $gid, @filenames;

On systems that suppddhown(2), you may pass filehandles among the files. On systems that don’
supportfchown(2), passing filehandles raises ataption. Filehandlemust be passed as globs or
glob references to be recognized; bamels are considered filenames.

Heres an @ample that looks up nonnumeric uids in the passwd file:

print "User: ";

chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($Suser)
or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not aléa to change the ownership of the file unless you're the superuser
although you should be able to change the group yoo&ryour secondary groups. On insecure
systems, these restrictions may be relaxed, but this is not a portable assu@ptRDSIX systems,

you can detect this condition this way:

use POSIX gqw(sysconf PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_ PC_CHOWN_RESTRICTED);

chrNUMBER
chr Returns the character represented by H#VBER in the character set-or example,chr(65) s
"A" in eitherASCIl or Unicode, and chr(0x263a) is a Unicode synibce.

Negative values gve the Unicode replacement character (Oxfffd)), except under the bytes pragma,
where the lav eight bits of the value (truncated to an integer) are used.

If NUMBER is omitted, use$.
For the reverse, use “ord”.

Note that characters from 128 to 255 (inal@giare by default internally not encoded @sF-8 for
backward compatibility reasons.

See perlunicode for more about Unicode.

chrootFILENAME

chroot
This function works lik the system call by the same name: it esathe named directory theweoot
directory for all further pathnames that begin with by your process and all its childre(it doesnt
change your current working directprwhich is unaflected.) ©r security reasons, this call is
restricted to the superusdf FILENAME is omitted, does ehroot to$.

closeFILEHANDLE

close
Closes the file or pipe associated with the filehandle, flushee théfers, and closes the system file
descriptor Returns true if those operations succeed and if no emmsrreported by gnPerllO layer
Closes the currently selected filehandle if the argument is omitted.

You don't haveto closeFILEHANDLE if you are immediately going to do anottogren on it, because
open closes it for you.(Seeopen.) However, an explicit close on an input file resets the line
counter §.), while the implicit close done lgpen does not.

If the filehandle came from a piped opeigse returns false if one of the other syscallgoimed

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

fails or if its program gits with non-zero status. If the only problem was that the program exited non-
zero,$! will be set to0. Closing a pipe also waits for the procegsceiting on the pipe tox@ —in

case you wish to look at the output of the pipe afietds— andmplicitly puts the exit status value of
that command int@? and${"CHILD_ERROR_NATIVE} .

If there are multiple threads runningpse on a filehandle from a piped open returns true without
waiting for the child process to terminate, if the filehandle is still open in another thread.

Closing the read end of a pipe before the process writing to it at the other end is done writing results in
the writer receiving &IGPIPE If the other end cahhandle that, be sure to read all the data before
closing the pipe.

Example:
open(OUTPUT, '|sort >foo") # pipe to sort
or die "Can't start sort: $!";
#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
" Exit status $? from sort";
open(INPUT, 'foo") # get sort's results
or die "Can't open 'foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually the real
filehandle name or an autovivified handle.

closedirDIRHANDLE
Closes a directory opened bgendir and returns the success of that system call.

conneciSOCKET,NAME
Attempts to connect to a remote setkjust like connec(2). Returnstrue if it succeeded,afse
otherwise.NAME should be a paed address of the appropriate type for the sbcBedhe examples
in “Sockets: Client/Server Communicatiomi perlipc.

continueBLOCK

continue
continue is actually a flav control statement rather than a function. If there isoatinue
BLOCK attached to 8LOCK (typically in awhile or foreach), it is alvays executed just before
the conditional is about to b&atuated again, just Il the third part of dor loop in C. Thus it can
be used to increment a loop variablegrewhen the loop has been continued viaribgt statement
(which is similar to the Continue statement).

last , next ,orredo may appear within aontinue block;last andredo behae @ if they had
been gecuted within the main block. So witlext , but since it will execute acontinue block, it
may be more entertaining.

while (EXPR) {
redo always comes here
do_something;
} ¢ ontinue {
next always comes here
do_something_else;
t hen back the top to re-check EXPR
}

last always comes here

Omitting thecontinue section is equialent to using an empty one, logically enoughnegt goes
directly back to check the condition at the top of the loop.

If the "switch" feature is enabledontinue is also a function that falls through the currehen
or default block instead of iterating a dynamically enclosifogeach or exiting a leically
enclosinggiven . See feature and “Switch statemehis’perlsyn for more information.

COSEXPR
cos Returns the cosine BXPR (expressed in radians). BXPRis omitted, takes the cosine ®f .

perl v5.14.2 2014-02-04 93

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

94

For the inverse cosine operation, you may use Math::Trig::acos() function, or use this
relation:

sub acos { atan2(sqrt(1 - $ [0]*$ _[0]), $_[0])}

Crypt PLAINTEXT,SALT
Creates a digest string exactlydikhe crypt(3) function in the C library (assuming that you actually
have a vesion there that has not been extirpated as a potential munition).

crypt() is a one-way hash functiorhe PLAINTEXT andSALT are turned into a short string, called a
digest, which is returnedThe samePLAINTEXT and SALT will always return the same stringutbh
there is no (knen) way to get the originaPLAINTEXT from the hash. Small changes in the
PLAINTEXT or SALT will result in large changes in the digest.

There is no decrypt function. This function isall that useful for cryptograph(for that, look for
Crypt modules on your nearl¥PAN mirror) and the nameéctypt” is a bit of a misnomer Instead it

is primarily used to check if twvpieces of text are the same without having to transmit or storexthe te
itself. An example is checking if a correct passw is given. Thedigest of the password is stored,
not the password itself. The user types in a password thata)d with the same salt as the stored
digest. Ifthe two digests match, the password is correct.

When verifying an existing digest string you should use the digest as the satyik$plain,

$digest) eq $digest). TheSALT used to create the digest is visible as part of the digéss.
ensurescrypt() will hash the ne string with the same salt as the digest. This allows your code to
work with the standard crypt and with more exotic implementations. In otbhetsywassume nothing
about the returned string itself nor abouvhmary bytes of SALT may matter.

Traditionally the result is a string of 13 bytesotfirst bytes of the salt, followed by 11 bytes from the
set[./0-9A-Za-z] , and only the first eight bytes GLAINTEXT mattered. But alternag hashing
schemes (lik MD5), higher leel security schemes (lk C2), and implementations on non-Unix
platforms may produce different strings.

When choosing a mesalt create a random twcharacter string whose characters come from the set
[./0-9A-Za-7] (like join ", ('.", '/', 0..9, 'A'..'Z", 'a"..'z")[rand

64, rand 64]). Thisset of characters is just a recommendation; the characters allowed in the salt

depend solely on your systesttypt library, and Perl cart’restrict what saltsrypt() accepts.
Heres an gample that makes sure that wheeruns this program knows their password:

$pwd = (getpwuid($<))[1];

system "stty —echo";

print "Password: ";

chomp($word = <STDIN>);

print "\n";

system "stty echo";

if (crypt($word, $pwd) ne $pwd) {

die "Sorry..\n";
} else{
print "ok\n";

}

Of course, typing in your own password to whaeasks you for it is unwise.

The crypt function is unsuitable for hashing large quantities of data, not least of all becausetyou can’

get the information back. Look at the Digest module for more robust algorithms.

If using crypt() on a Unicode string (whichotentiallyhas characters with codepoints ad@55), Perl
tries to mak snse of the situation by trying to downgrade (ayoafp the string back to an eight-bit
byte string before callingrypt() (on that cop). If that works, good. If notrypt() dies withWide
character in crypt

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

dbmcloseHASH
[This function has been largely superseded bytiiee function.]

Breaks the binding betweerbaM file and a hash.

dbmoperHASH,DBNAME,MASK
[This function has been largely superseded byi¢he function.]

This binds adbm(3), ndbm(3), sdbm(3), gdbm(3), or Berleley DB file to a hash.HASH is the name
of the hash.(Unlike normal open, the first argument isot a fiehandle, een though it looks lile
one). DBNAME is the name of the database (without tfieor .pagextension if ay). If the database
does not exist, it is created with protection specifiedbgK (as modified by themask). If your
system supports only the oldeBM functions, you may mak anly one dbmopen call in your
program. Inolder versions of Perl, if your system had neitb&V nor ndbm, callingdbmopen
produced a fatal error; it mofalls back tcsdbm(3).

If you dont havewrite access to theBM file, you can only read haslanables, not set them. If you
want to test whether you can write, either use file tests or try setting a dummy hash entry inside an
eval to trap the error.

Note that functions such &eys andvalues may return huge lists when used orgé&bBM files.
You may prefer to use theach function to iterate wer largeDBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {

print $key, ' ="', unpack('L',$val), "\n";
}

dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons océartbesvdbm
approaches, as well as DB_File for a particularly rich implementation.

You can control whictDBM library you use by loading that library before you chiinopen()

use DB_File;
dbmopen(%NS_Hist, "SENV{HOME}/.netscape/history.db")
or die "Can't open netscape history file: $!";

defaultBLOCK
Within aforeach or agiven , adefault BLOCK acts like awhen that's dways true. Only
awailable after Perl 5.10, and only if teeitch feature has been requested. See “when”.

definedEXPR

defined
Returns a Boolean value telling whetl@PR has a alue other than the undefinedlveundef . If
EXPRis not present_ is checked.

Many operations returmndef to indicate &ilure, end of file, system erraminitialized variable, and
other exceptional conditions. This function allows you to distinguistef from other alues. (A

simple Boolean test will not distinguish amamgdef , zero, the empty string, arl@" , which are all

equally filse.) Notethat sinceundef is a valid scalarits presence doesmecessarilyindicate an

exceptional conditionpop returnsundef when its argument is an empty arraywhen the element
to return happens to hmdef .

You may also usalefined(&func) to check whether subroutirg&func has &er been defined.
The return value is unaffected byydiorward declarations akfunc . A subroutine that is not defined
may still be callable: its package maywean AUTOLOADnethod that mads it spring into xéstence
the first time that it is called; see perlsub.

Use ofdefined on aggrgaes (hashes and arrays) is deprecatedsed to report whether memory
for that aggrgate had ger been allocated. This behavior may disappear in future versions of Perl.
You should instead use a simple test for size:

perl v5.14.2 2014-02-04 95

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

if (@an_array) { print "has array elements\n" }
if (Yoa_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whetkgretigkin
the hash. Use “existsf or the latter purpose.

Examples:

print if defined $switch{D};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"
unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Mary folks tend to verusedefined and are then surprised to digeothat the numbed and
" (the zero-length string) are, in fact, definedlses. Br example, if you say

"ab" =" Ja(.*)b/;

The pattern match succeeds &idis defined, although it matcheddothing”. It didn't really fail to

match agthing. Ratherit matched something that happened to be zero charactersTbigyis all
very abore-board and honest. When a function returns an undefined vatuanitimission that it
couldnt give you an honest answego you should uséefined only when questioning the irggty

of what you're trying to do. At other times, a simple comparisdhd@o™ is what you want.

See also'indef”, “exists”, ‘ ‘ref”.

deleteEXPR
Given an «pression that specifies an element or slice of a hdelete deletes the specified
elements from that hash so tlesiists() on that element no longer returns true. Setting a hash element
to the undefined value does not remmdis key, but deleting it does; see “exists”.

In list context, returns the value oalues deleted, or the last such element in scalar xtonide
return lists length alvays matches that of the argument list: deleting nastent elements returns the
undefined value in their corresponding positions.

delete()may also be used on arrays and array slices, but its behavior is less straggttfokithough
exsts() will return false for deleted entries, deleting array elementsrrahanges indices ofxésting
values; useshift() or splice()for that. However, if all deleted elements fall at the end of an arthg
array’s 9ze shrinks to the position of the highest element that still tests tregigts(), or to O if none
do.

WARNING: Calling delete on array values is deprecated and likely to bevednroa future \ersion of
Perl.

Deleting from%ENVMmModifies the erironment. Deletingrom a hash tied to BBM file deletes the
entry from theDBM file. Deletingfrom atied hash or array may not necessarily return anything; it
depends on the implementation of tied package'sDELETE method, which may do whater it
pleases.

The delete local EXPR construct localizes the deletion to the current block at run tidil
the block exits, elements locally deleted temporarily no longest.e See” Localized deletion of
elements of composite typéisi perlsub.

%hash = (foo => 11, bar => 22, baz => 33);

$scalar = delete $hash{foo}; # $scalaris 11
$scalar = delete @hash{qw(foo bar)}, # $scalar is 22
@array = delete @hash{gw(foo bar baz)}; # @array is (undef,undef,33)

The following (inefficiently) deletes all the values%HASHNd@ARRAY:

foreach $key (keys %HASH) {
delete $HASH{$key};
}

foreach $index (0 .. $#ARRAY) {

96 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

delete SARRAY[$index];
}

And so do these:
delete @HASH{keys %HASH};

delete @ARRAY]O .. $#ARRAY];

But both are slower than assigning the empty list or undefitihlASHr @ARRAYWwhich is the
customary way to empty out an agggie:

%HASH = (); # completely empty %HASH
undef %HASH; # f orget %HASH ever existed
@ARRAY = (); # completely empty @ARRAY

undef @ARRAY; # f orget @ARRAY ever existed

The EXPR can be arbitrarily complicated provided its final operation is an element or slice of an
aggregate:

delete $ref->[$x][$y]{$key};
delete @{$ref->[$x][$y]{$keyl, $key2, @morekeys};

delete $ref->[$x][$y][$index];
delete @{$ref->[$x][Sy]}$Sindex1, $index2, @moreindices];

dieLIST
die raises an exception. Inside awal the error message is ded into $@and theeval is
terminated with the undefinedalue. If the exception is outside of all enclosiegal s, then the
uncaught exception printdST to STDERRand exits with a non-zero value. If you need xd the
process with a specific exit code, see “exit”.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news'";
chdir ‘/usr/spool/news' or die "Can't cd to spool: $1\n"

If the last element ofIST does not end in a newline, the current script line humber and input line
number (if any) are also printed, and a newline is suppldmte that the “input line numbeér(also
known as ‘chunk”) is subject to whateer notion of ‘line’’ happens to be currently in effect, and is
also &ailable as the special varialfie . See “$/” in perlvar and “$ i n perlvar.

Hint: sometimes appendirig stopped" to your message will cause it to nealietter sense when
the string'at foo line 123" is appended. Suppose you are running script “canasta”.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respecily

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

If the output is empty anfi@already contains a value (typically from a previoud)ethat value is
reused after appenditiy...propagated" . This is useful for propagating exceptions:

eval {.. };
die unless $@ =" /Expected exception/;

If the output is empty an@@ contains an object reference that haBROPAGATEHnethod, that
method will be called with additional file and line number parameters. The return value replaces the
vaue in$@ i.e., as iff@ = eval { $@—>PROPAGATE(_ _FILE_, _ _LINE_) } were

called.

If $@is empty then the strintpied" is used.

If an uncaughtyeception results in interpreter exit, the exit code is determined from the val@es of

perl v5.14.2 2014-02-04 97

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

and$? with this pseudocode:

exit $! if $!; # errno
exit $? >> 8 if $? >> §; # child exit status
exit 255; # | astresort

The intent is to squeeze as much possible information about the likely cause into the limited space of
the system exit code. Maver, s $! is the value of Gerrno , which can be set by grsystem call,

this means that the value of thaeteode used bgie can be non-predictable, so should not be relied
upon, other than to be non-zero.

You can also caldie with a reference argument, and if this is trapped withiewat , $@contains
that reference. This permits more elaborateeption handling using objects that maintain arbitrary
state about thexeeption. Sucla ssheme is sometimes preferable to matching particular stalugs

of $@with regular &pressions. Becausg@is a global variable angval may be used within object
implementations, be careful that analyzing the error object daegace the reference in the global
variable. It's easiest to mak a bcal coly of the reference before wmmanipulations. Hers' an
example:

use Scalar::Util "blessed";

eval { ... ; die Some::Module::Exception—>new(FOO => "bar") };
if (my $ev_err = $@) {
if (blessed($ev_err) && $ev_err—>isa("Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because Perl stringifies uncaught exception messages before,displthyprobably want to werload
stringification operations on exception objects. Sesl@ad for details about that.

You can arrange for a callback to be run just before diee does its deed, by setting the
$SIG{_DIE_} hook. Theassociated handler is called with the errott tnd can change the
error message, if it sees fit, by callidig agin. See' %SIG” in perlvar for details on settingpSIG
entries, and‘éval BLOCK” f or some ramples. Althoughhis feature was to be run only right before
your program was to exit, this is not currently so: $8%G{ DIE_} hook is currently called
even insideeval()ed blocks/strings! If one wants the hook to do nothing in such situations, put

die @_if$°S;
as the first line of the handler (sé®"S” in perlvar). Becausdhis promotes strange action at a
distance, this counterintuit behavior may be fixed in a future release.

See als@xt(), warn(), and the Carp module.

doBLOCK
Not really a function.Returns the value of the last command in the sequence of commands indicated
by BLOCK. When modified by thavhile oruntil loop modifier executes theBLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do BLOCK doesnot count as a loop, so the loop control statemeess , last , or redo cannot be
used to lege a restart the block. See perlsyn for altervattrategies.

do SUBROUTINELIST)
This form of subroutine call is deprecate8lUBROUTINE can be a baveord, a scalar ariable or a
subroutine beginning wit&.

doEXPR
Uses the value dXPRas a filename andecutes the contents of the file as a Perl script.

do 'stat.pl’;

is just like

98 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

eval “cat stat.pl’;

except that its more efficient and concisegkps track of the current filename for error messages,
searches th@INCdirectories, and updatésINC if the file is found. See ‘@INC” in perlvar and
“%INC” in perlvar for these ariables. Italso differs in that codevduated withdo FILENAME
cannot see lexicals in the enclosing scapal STRING does. Its the same, heever, in that it
does reparse the filgery time you call it, so you probably damtvant to do this inside a loop.

If do can read the file but cannot compile it, it retunglef and sets an error messagé$@ If do
cannot read the file, it returns undef and $ttdo the error Always check$@first, as compilation
could fail in a way that also se$$. If the file is successfully compiledp returns the value of the
last expressionvaluated.

Inclusion of library modules is better done with thee andrequire operators, which also do
automatic error checking and raise an exception if tharg'oblem.

You might like to tsedo to read in a program configuration file. Manual error checking can be done
this way:

r ead in config files: system first, then user
for $file ("/share/prog/defaults.rc”,
"$ENV{HOME}/.someprogrc")

{
unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;
}
}
dumpLABEL

dump

This function causes an immediate core dump. See alseulmmmand-line switch in perlrun,
which does the same thing. Primarily this is so that you can ussthenp program (not supplied)
to turn your core dump into arxeeutable binary after having initialized all youanables at the
beginning of the program.When the ne binary is eecuted it will begin by recuting agoto
LABEL (with all the restrictions thagoto suffers). Thinkof it as a goto with an intervening core
dump and reincarnation. IfABEL is omitted, restarts the program from the top.

WARNING: Any files opened at the time of the dump wiidit be open aymore when the program is
reincarnated, with possible resulting confusion by Perl.

This function is nw lamgely obsolete, mostly becausesitlery hard to covert a core file into an
executable. Thas why you should nw invoke it as CORE::dump() , if you dont want to be wvarned
against a possible typo.

eachHASH
eachARRAY
eachEXPR

perl v5.14.2

When called in list conie, returns a 2—element list consisting of they knd value for the ne
element of a hash, or the indand value for the next element of an arsy hat you can iteratever
it. Whencalled in scalar context, returns only theyknot the value) in a hash, or the irda an
array.

Hash entries are returned in an apparently random. ofther actual random order is subject to change
in future versions of Perl, but it is guaranteed to be in the same order as eitkeysther values
function would produce on the same (unmodified) hash. Since Perl 5.8.2 the ordering ctardre dif
even between diferent runs of Perl for security reasons (s@dgbrithmic Complexity Attacks'in
perlsec).

After each has returned all entries from the hash or atfeynext call teach returns the empty list

in list context andundef in scalar conte. Thenext call following that one restarts iteratiokach

hash or array has its own internal iteramcessed byach, keys , and values . The iterator is
implicitly reset whereach has reached the end as just described; it can be explicitly reset by calling

2014-02-04 99

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

keys orvalues on the hash or arrayf you add or delete a hasfdements while iteratingwer it,
entries may be skipped or duplicatedso don't do that. Exceptionlt is aways safe to delete the item
most recently returned Bach() , so he following code works properly:

while (($key, $value) = each %hash) {

print $key, "\n";

delete $hash{$key}; # This is safe
}

This prints out your environment &khe printenv(1) program, but in a different order:

while (($key,$value) = each %ENV) {
print "$key=%$value\n";

}

Starting with Perl 5.14each can tale a €alarEXPR, which must hold reference to an unblessed hash
or array The argument will be dereferenced automaticallis aspect oéach is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

while (($key,$value) = each $hashref) { ... }
See alskeys , values , andsort .

eof FILEHANDLE

eof ()

eof Returns 1 if the next read dnLEHANDLE will return end of fileor if FILEHANDLE is not open.
FILEHANDLE may be an expression whosalue gves the real filehandle. (Note that this function
actually reads a character and tlhiigetc s it, so isnt useful in an interacte @ntext.) Do not read
from a terminal file (or cakkof(FILEHANDLE) on it) after end-of-file is reached. File types such as
terminals may lose the end-of-file condition if you do.

An eof without an agument uses the last file reatllsing eof() with empty parentheses is
different. Itrefers to the pseudo file formed from the files listed on the command line and accessed via
the<> operator Since <> isn't explicitly opened, as a normal filehandle is,enf() before<> has

been used will caus@ARGYb be examined to determine if input igidable. Similarly an eof()

after <> has returned end-of-file will assume you are processing an@WdRGVist, and if you

haven't set @ARGWvill read input fromSTDIN; see “I/O Operators'in perlop.

In awhile (<>) loop, eof or eof(ARGV) can be used to detect the end of each file, whereas
eof() will detect the end of the very last file onligxamples:

r eset line numbering on each input file

while (<>) {
next if /\s*#/; # skip comments
print "$.\t$_";
} ¢ ontinue {
close ARGV if eof; # Not eof()!
}
i nsert dashes just before last line of last file
while (<>) {
if (eof()) { # check for end of last file
print " \n";
} .
print;
last if eof(); # needed if we're reading from a terminal
}

Practical hint: you almost xmer need to useof in Perl, because the input operators typically return
undef when thg run out of data or encounter an error.

evd EXPR
evd BLOCK

100 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

evd
In the first form, the return value &XPRis parsed andxecuted as if it were a little Perl program.
The value of the expression (which is itself determined within scalarxtpigefirst parsed, and if
there were no errorsxecuted in the Igical context of the current Perl program, so that eariable
settings or subroutine and format definitions remain aftets: Notethat the alue is parsedvery
time theeval executes. IfEXPR is omitted, galuates$_. This form is typically used to delay
parsing and subsequermeeution of the text oEXPRuntil run time.

In the second form, the code within tBeOCK is parsed only once-at the same time the code
surrounding theeval itself was parsed-and executed within the context of the current Perl
program. Thisform is typically used to trap exceptions moréceédntly than the first (see bel,
while also providing the benefit of checking the code wiBii@CK at compile time.

The final semicolon, if an may be omitted from the value BXPR or within theBLOCK.

In both forms, the alue returned is the value of the last expressialuated inside the mini-program;

a return statement may be also used, just as with subroutines. The expression providing the return
value is &auated in void, scalaror list context, depending on the context of thal itself. See
“wantarray’ for more on he the ezaluation context can be determined.

If there is a syntax error or runtime egror adie statement is>acuted,eval returnsundef in
scalar context or an empty listor, for syntax errors, a list containing a single undefirsde/— in
list context, andb@is set to the error message. The discrepamdhe return values in list context is
considered a bug by some, and will probably bedfin a future release. If there was no el$@is
guaranteed to be the empty strinBeware that usingeval neither silences Perl from printing
warnings toSTDERR nor does it stifthe text of warning messages i@ To do dther of those,
you hare © use the$SIG{_WARN__} facility, or turn of warnings inside th&LOCK or EXPR
usingno warnings 'all' . See “warn”, perlvay warnings and perllexwarn.

Note that, becauseval traps otherwise-fatal errors, it is useful for determining whether a particular
feature (such asocket or symlink) is implemented. Itis also Perb exception-trapping
mechanism, where the die operator is used to raise exceptions.

If you want to trap errors when loading 8 module, some problems with the binary interface (such
as Perl version k) may be &tal even with eval unlessSENV{PERL_DL_NONLAZY}is set. See
perlrun.

If the code to be>ecuted doest’vary, you may use theval-BLOCK form to trap run-time errors
without incurring the penalty of recompiling each time. The eiifoany, is 4dill returned in$@
Examples:

make divide—by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

same thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;

a compile-time error
eval { $answer = }; # WRONG

a r un—time error
eval '$answer ='; # sets $@

Using theeval{} form as an exception trap in libraries doesehaome issues. Due to the current
arguably broken state of DIE__ hooks, you may wish not to triggeryan DIE__ hooks that
user code may ke installed. Yu can use thdocal $SIG{_ _DIE_} construct for this
purpose, as this example shows:

a private exception trap for divide-by-zero
eval { local $SIG{"_ _DIE_ '} $answer = $a / $b; };
warn $@ if $@;

This is especially significant,\gn that _DIE__ hooks can caltlie again, which has the effect of
changing their error messages:

perl v5.14.2 2014-02-04 101

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

__DIE__ hooks may modify error messages

{
local $SIG{"_ _DIE_1Y =
sub { (my $x = $_[0]) =" s/foo/bar/g; die $x };
eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"
}
Because this promotes action at a distance, this counteviatbiéhavior may be fixed in a future
release.

With aneval , you should be especially careful to remember \ghaing looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2
eval '$x’; # CASE 3
eval { $x }; # CASE 4
eval "\$$x++"; # CASE 5
$x++; # CASE®6

Cases 1 and 2 abe behave identically: thg run the code contained in thariable$x. (Although

case 2 has misleading double quotes making the reashelewwhat else might be happening (nothing

is).) Cases and 4 likewise behge in the same way: tlyerun the codebx' , which does nothingui

return the alue of$x. (Case 4 is preferred for purely visual reasons, but it also has the advantage of
compiling at compile-time instead of at run-time.) Case 5 is a place where normaliyoytillike to

use double quotes, except that in this particular situation, you can just use symbolic references instead,
as in case 6.

Before Perl 5.14, the assignmen®i@occurred before restoration of localised variables, which means
that for your code to run on oldeensions, a temporary is required if you want to mask some but not

all errors:
alter $@ on nefarious repugnancy only
{
my $e;
{
local $@; # protect existing $@
eval { test_repugnancy() };
$@ =" /nefarious/ and die $@; # Perl 5.14 and higher only
$@ =" /nefarious/ and $e = $@;
}
die $e if defined $e
}

eval BLOCK doesnotcount as a loop, so the loop control statemeets , last , or redo cannot
be used to leee a restart the block.

An eval " executed within theDB package doeshsee the usual surrounding lexical scopet b
rather the scope of the first non-DB piece of code that called it. You wtmmally need to wrry
about this unless you are writing a Perl debugger.

exec LIST

exec PROGRAM LIST
The exec function eecutes a system commaadd never eturns usesystem instead ofexec if
you want it to return. It fails and returnalde only if the command does nadst andit is executed
directly instead of via your systesrommand shell (see below).

Since its acommon mistak to tseexec instead ofsystem , Perl warns you if there is a folldng
statement that ishdie , warn, or exit (if —wis set—but you alvays do that, right?).If you really
want to follov an exec with some other statement, you can use one of these stylesidotlae
warning:

102 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

exec ('foo") or print STDERR "couldn't exec foo: $!";
{ e xec (‘foo") }; print STDERR "couldn't exec foo: $!";

If there is more than one argumentLi$T, or if LIST is an array with more than onalue, calls
execvp(3) with the arguments inIST. If there is only one scalar argument or an array with one
element in it, the gument is checked for shell metacharacters, and if there grethanentire
argument is passed to the systengbmmand shell for parsing (this ibin/sh —c on Unix
platforms, but aries on other platforms). If there are no shell metacharacters in the argument, it is
split into words and passed directlyewecvp , which is more dicient. Examples:

exec '/bin/echo’, "Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you dont really want to gecute the first argument, but want to lie to the program youxaceiéng
about its @n name, you can specify the program you actually want to run as an “indirect 'object’
(without a comma) in front of thaST. (This alvays forces interpretation of théST as a multialued

list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh’;
exec $shell '-sh’; # pretend it's a login shell

or, more directly,
exec {'/bin/csh'} '-sh’; # pretend it's a login shell

When the arguments geteeuted via the system shell, results are subject to its quirks and capabilities.
See“ STRING" in perlop for details.

Using an indirect object witkxec or system is also more secure. This usage (which alsoke/
fine with system() forces interpretation of the arguments as a mallied list, een if the list had just
one agument. Thatvay you're safe from the shell expanding wildcards or splitting up words with
whitespace in them.

@args = ("echo surprise");

exec @args; # subject to shell escapes
if @ args ==
exec { $args[0] } @args; # safe even with one-arg list

The first \ersion, the one without the indirect object, randgbboprogram, passing isurprise”
an agument. Thesecond version didn't; it tried to run a program narhedho surprisée’, didn’t find
it, and se®? to a non-zero value indicating failure.

Beginning with v5.6.0, Perl attempts to flush all files opened for output beforedbebert this may
not be supported on some platforms (see perlpofY. be safe, you may need to sef
(PAUTOFLUSH in English) or call theutoflush() method oflO::Handle on ary open
handles toeoid lost output.

Note thatexec will not call yourENDblocks, nor will it irvoke DESTROYnethods on your objects.

existsSEXPR
Given an &pression that specifies an element of a hash, returns true if the specified element in the
hash haswer been initialized, een if the corresponding value is undefined.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key}

exists may also be called on array elements, but its behavior is much less obvious and is strongly tied
to the use of'delete’ on arrays. Be aware that calling exists on array values is deprecated apty lik
to be remwed in a future version of Perl.

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only 8 d&fined and defined only if it exists, but thearse

perl v5.14.2 2014-02-04 103

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

doesnt necessarily hold true.

Given an pression that specifies the name of a subroutine, returns true if the specified subroutine has
eve been declared,ven if it is undefined. Mentioning subroutine name forxésts or defined does

not count as declaring itNote that a subroutine that does not exist may still be callable: its package
may hae an AUTOLOADNethod that makes it spring into existence the first time that it is called; see
perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that theEXPR can be arbitrarily complicated as long as the final operation is a hash oreyray k
lookup or subroutine name:

if (exists $ref->{A}->{B}->{$key}) {}
if (exists $hash{A}{B}{$key}) {}
if (exists $ref->{A}->{B}->[$ix]) {1}
if (exists $hash{A{B}[$ix]) {1}
if (exists &{$ref->{AH{BHS$key}}) {1}

Although the mostly deeply nested array or hash will not spring ixikteace just because its
existence was tested, ymtenening ones will. Thus$ref->{"A"} and$ref->{"A"}->{"B"}

will spring into existence due to the existence test for&key element abee. This happens
anywhere the arm operator is used, includingen here:

undef $ref;
if (exists $ref->{"Some key"}) {1}
print $ref; # prints HASH(0x80d3d5c)

This surprising autavification in what does not at first or even sescond — glanceppear to be an
Ivalue context may be fixed in a future release.

Use of a subroutine call, rather than a subroutine name, as an argum&is(is an error.

exists ⊂ # OK
exists &sub(); # Error

exit EXPR
exit EvaluatesEXPRand exits immediately with thatlue. Example:

$ans = <STDIN>;
exit 0 if $ans =" /"[Xx]/;

See alsaie . If EXPRis omitted, exits with0 status. Theonly uniersally recognized values for
EXPR are 0 for success and for error; other glues are subject to interpretation depending on the
ervironment in which the Perl program is runnirfgpr example, exiting 69§X_UNAVA ILABLE) from

a sendmailincoming-mail filter will cause the mailer to return the item umneedid, but thas rot true
evaywhere.

Don't useexit to abort a subroutine if thesety chance that someone might want to trap wiexte
error happened. Ustie instead, which can be trapped byesal .

The ext() function does not alays exit immediately It calls ary definedENDroutines first, but these
ENDroutines may not themselves abort tkit. eLikewise aly object destructors that need to be called
are called before the reatie ENDroutines and destructors can change ttiestatus by modifying
$?. If this is a problem, you can calOSIX:_exit($status) to avoid END and destructor
processing. Segerlmod for details.

exp EXPR
exp Returnse (the natural logarithm base) to the poweE®PR If EXPRis omitted, giesexp($)

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements thécntl (2) function. You'll probably hae o say

104 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use Fcntl;

first to get the correct constant definitionStgument processing and value returned work just lik
ioctl below. For example:

use Fentl;
fentl($filehandle, F_GETFL, $packed_return_buffer)
or die "can't fcntl F_GETFL: $!";

You don't haveto check fordefined on the return fromicntl . Like ioctl , it maps a0 return
from the system call intt0 but true" in Perl. This string is true in boolean context d@nh
numeric contgt. Itis also @empt from the normatw warnings on improper numeric cosrsions.

Note thatfcntl raises an exception if used on a machine that doesplementfcntl(2). Seethe
Fcntl module or youfentl (2) manpage to learn what functions avalable on your system.

Heres an gample of setting a filehandle namBEMOTEO be non-blocking at the systenvéde
You'll have o negotiate$| on your own, though.

use Fentl gw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcnt(REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $!\n";

$flags = fentl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $\n";

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. If there is no real
file descriptor at th@©S level, as can happen with filehandles connected to memory objeatpeia
with a reference for the third argument, -1 is returned.

This is mainly useful for constructing bitmaps feelect and lav-level POSIX tty-handling
operations. IFILEHANDLE is an expression, thehe is taken as an indirect filehandle, generally its
name.

You can use this to find out whetherdwandles refer to the same underlying descriptor:

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";
}

flock FILEHANDLE,OPERATION
Calls flock(2), or an emulation of it, oFILEHANDLE. Returns true for success, false ailure.
Produces a fatal error if used on a machine that doasplementflock(2), fcntl(2) locking, or
lockf(3). flock is Perls portable file-locking interface, although it locks entire files pmigt
records.

Two potentially non-obvious but traditionfibck semantics are that it waits indefinitely until the
lock is granted, and that its locks anerely advisory. Such discretionary locks are more flexiblef b
offer fewer guarantees. This means that programs that do not aldtoalse may modify files
locked withflock . See perlport, your pos’ecific documentation, and your system-specific local
manpages for detailslt’'s best to assume traditional behavior if you're writing portable programs.
(But if you're not, you should as vedys feel perfectly free to write for your own system’
idiosyncrasies (sometimes callédatures’). Slavish adherence to portability concerns shouldat

in the way of your getting your job done.)

OPERATIONIs one ofLOCK_SH, LOCK_EX, or LOCK_UN, possibly combined withOCK_NB. These
constants are traditionallyalued 1, 2, 8 and 4, but you can use the symbolic names if you import them
from the Fcntl module, either inddually, or as a goup using theflock tag. LOCK_SHrequests a
shared locklL.OCK_EX requests anxelusive lock, andLOCK_UN releases a previously requested lock.

If LOCK_NB is bitwise-or'ed withLOCK_SH or LOCK_EX, thenflock returns immediately rather
than blocking waiting for the lock; check the return status to see if you got it.

To avoid the possibility of miscoordination, Perl wmoflushes FILEHANDLE before locking or
unlocking it.

perl v5.14.2 2014-02-04 105

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Note that the emulationubt with lockf(3) doesnt provide shared locks, and it requires that
FILEHANDLE be open with write intentThese are the semantics thatkf(3) implements. Most if
not all systems implemembckf(3) in terms offcntl(2) locking, though, so the differing semantics
shouldnt bite too mawy people.

Note that thdcntl (2) emulation oflock(3) requires thaEILEHANDLE be open with read intent to use
LOCK_SHand requires that it be open with write intent to WBEK_EX.

Note also that some versionsflafck cannot lock thingser the network; you would need to use
the more system-speciffcntl for that. If you like you can force Perl to ignore your system’

flock(2) function, and so provide itswa fcntl(2)-based emulation, by passing the switch
-Ud_flock to theConfigureprogram when you configure and build avrfeerl.

Heres a mailbox appender foBSD systems.
use Fentl gw(:flock SEEK_END); # import LOCK_* and SEEK_END constants
sub lock {

my ($th) = @_;
flock($fh, LOCK_EX) or die "Cannot lock mailbox — $1\n";

and, in case someone appended while we were waiting...
seek($fh, 0, SEEK_END) or die "Cannot seek — $1\n";

}
sub unlock {

my ($th) = @_;

flock($fh, LOCK_UN) or die "Cannot unlock mailbox — $1\n";
}

open(my $mbox, ">>", "“/usr/spool/mail/$SENV{'USER'}")
or die "Can't open mailbox: $!";

lock($mbox);
print $mbox $msg,"\n\n";
unlock($mbox);

On systems that support a rélatk(2), locks are inherited acro&wk() calls, whereas those that must
resort to the more capriciodentl(2) function lose their locks, making it seriously harder to write
servers.

See also DB_File for othdiock()examples.

fork
Does afork(2) system call to create amgrocess running the same program at the same plbint.
returns the child pid to the parent procéss) the child process, amdef if the fork is unsuccessful.
File descriptors (and sometimes locks on those descriptors) are sharedyeiildre else is copied.
On most systems supportirfigrk(), great care has gone into making it extremely efficient (for
example, using copon-write technology on data pages), making it the dominant paradigm for
multitasking oer the last fev decades.

Beginning with v5.6.0, Perl attempts to flush all files opened for output before forking the child
process, but this may not be supported on some platforms (see pefpdt) safe, you may need to
set$| (PAUTOFLUSH in English) or call thautoflush() method oflO::Handle on ary open
handles toeoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombi€3n some systems,
you can ®oid this by settingbSIG{CHLD} to "IGNORE". See also perlipc for more examples of
forking and reaping moribund children.

Note that if your forked child inherits system file descriptors #KDIN andSTDOUT that are actually
connected by a pipe or satkeven if you exit, then the remote server (such as, &&GI script or a
backgrounded job launched from a remote shedi)'tithink you're done.You should reopen those to
/dev/nullif it' s any issue.

106 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

format
Declare a picture format for use by thate function. For example:

format Something =
Test: @<<<<<<<< @||||| @>>>>>
$str, $%, '$" . int($num)

$str = "widget";

$num = $cost/$quantity;
$” ='Something’;

write;

See perlform for mgndetails and examples.

formline PICTURELIST
This is an internal function used lyrmat s, though you may call it, too. It formats (see perlform) a
list of values according to the contents RICTURE placing the output into the format output
accumulator$™A (or PACCUMULATOIR English). Eventually when awrite is done, the contents
of $ A are written to some filehandl&ou could also read”A and then se$”A back to™ . Note
that a format typically does orfermline per line of form, bt the formline function itself
doesnt care hoav mary newlines are embedded in tieCTURE This means that the and™ tokens
treat the entirePICTURE as a single line.You may therefore need to use multiple formlines to
implement a single record format, justditheformat compiler.

Be careful if you put double quotes around the picture, becau@elsaracter may be taken to mean
the beginning of an array namtarmline always returns true. See perlform for other examples.

If you are trying to use this instead wfite to capture the output, you may find it easier to open a
filehandle to a scalaopen $fh, ">", \$output) and write to that instead.

getcFILEHANDLE

getc
Returns the next character from the input file attach€dLEHANDLE, or the undefined value at end
of file or if there was an error (in the latter c&eis set). If FILEHANDLE is omitted, reads from
STDIN. This is not particularly étient. However, it cannot be used by itself to fetch single
characters without waiting for the user to hit entear that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";
}

else {
system "stty",
}

$key = getc(STDIN);

—icanon’, 'eol’, "\001";

if ($BSD_STYLE) {
system "stty —cbreak </dev/tty >/dev/tty 2>&1";
}

else {
system 'stty’, 'icanon’, 'eol’, "@"; # ASCII NUL
}
print "\n";
Determination of whetheBSD_STYLEshould be set is left as areecise to the reader.

The POSIX::getattr function can do this more portably on systems purporth@siX
compliance. Sealso theTerm::ReadKey module from your nearestPAN site; details orCPAN
can be found underCPAN" i n perimodlib.

getlogin
This implements the C library function of the same name, which on most systems returns the current
login from/etc/utmpif any. If it returns the empty string, ugetpwuid

perl v5.14.2 2014-02-04 107

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

108

$login = getlogin || getpwuid($<) || "Kilroy";

Do not considegetlogin for authentication: it is not as securegaspwuid

getpeernam&0OCKET
Returns the packed sockaddr address of the other endb@KET connection.

use Socket;
$hersockaddr = getpeername(SOCK);
($port, Siaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrpPID

Returns the current process group for the specified Use aPID of 0 to get the current process
group for the current proces®ill raise an exception if used on a machine that doé@splement
getpgrp(2). If PID is omitted, returns the process group of the current prodéste that thePOSIX
version ofgetpgrp does not acceptRD argument, so onl?ID==0 is truly portable.

getppid
Returns the process id of the parent process.

Note for Linux users: on Linux, the C functiogetpid() andgetppid() return different alues
from different threads. In order to be portable, this bieinas not reflected by the Perivia function
getppid() , that returns a consistent value across threads. If yant vo call the underlying
getppid() , you may use thePAN moduleLinux::Pid

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or. J8segetpriority(2)) Will
raise a fatal exception if used on a machine that doiesplementgetpriority (2).

getpwnamNAME
getgrnamNAME
gethostbynamsAME
getnetbynam&lAME
getprotobynam@&AME
getpwuiduID
getgrgidGID
getservbynamslAME,PROTO
gethostbyaddADDR,ADDRTYPE
getnetbyaddADDR,ADDRTYPE
getprotobynumbeXUMBER
getservbyporPORT,PROTO
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostenSTAYOPEN
setnetenSTAYOPEN
setprotoenSTAYOPEN
setservenSTAYOPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent
These routines are the same as their counterparts in the system C librésy context, the return
values from the various get routines are as follows:

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell, $expire) = getpw*

($name,$passwd,$gid, $members) = getgr*

($name,$aliases,$addrtype,$length,@addrs) = gethost*

($name,$aliases,$addrtype,$net) = getnet*

($name, $aliases,$proto) = getproto*

($name, $aliases,$port,$proto) = getserv*

(If the entry doest’exist you get an empty list.)

The exact meaning of thiggcos field varies It it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the Beetae, havever, that in

mary system users are able to change this information and therefore it cannot be trusted and therefore
the$gcos is tainted (see perlsecThe$passwd and$shell , users encrypted password and login

shell, are also tainted, for the same reason.

In scalar context, you get the name, unless the functaananookup by name, in which case you get
the other thing, whater itis. (Ifthe entry doeshexist you get the undefinecgle.) Br example:

$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();

$gid = getgrnam($name);
$name = getgrgid($num);
$name = getgrent();

#etc.

In getpw*() the fields$quota , comment, and $expire are special in that tlgeare unsupported
on mary systems. Ifthe $quota is unsupported, it is an empty scaldfit is supported, it usually
encodes the disk quota. If tBeomment field is unsupported, it is an empty scalbrit is supported

it usually encodes some administvatitomment about the usetn some systems th§quota field
may be$change or $age, fields that hee b do with password aging. In some systems the
$comment field may be$class . The $expire field, if present, encodes thgpération period of
the account or the passwd. For the aailability and the exact meaning of these fields in your system,
please consulgetpwnam(3) and your systera’pwd.hfile. You can also find out from within Perl
what your$quota and$comment fields mean and whether youvieathe $expire field by using
the Config module and thealuesd pwquota , d_pwage, d_pwchange , d_pwcomment, and
d_pwexpire . Shadav passvord files are supported only if youendor has implemented them in
the intuitve fashion that calling the regular C library routines gets the shagosions if you'e
running under prilege or if there exists thghadow(3) functions as found in System V (this includes
Solaris and Linux).Those systems that implement a proprietary shg@ssvord facility are unlilely

to be supported.

The$members vaue returned bgetgr*() is a space-separated list of the login names of the members
of the group.

For the gethost*() functions, if theh_errno variable is supported in C, it will be returned to you via

$? if the function call &ils. The@addrs vaue returned by a successful call is a list of ealdresses
returned by the corresponding library call. In the Internet domain, each address is four bytes long; you
can unpack it by saying something like:

($a,$b,$c,$d) = unpack('W4',$addr[0]);
The Socket library makes this slightly easier:

use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);

or g oing the other way
$straddr = inet_ntoa($iaddr);

In the opposite wayo resole a fostname to th&® address you can write this:

perl v5.14.2 2014-02-04 109

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use Socket;
$packed_ip = gethostbyname("www.perl.org");
if (defined $packed_ip) {
$ip_address = inet_ntoa($packed_ip);
}

Make sure gehostbyname§ is called in SCALAR contet and that its return value is checked for
definedness.

If you get tired of remembering which element of the return list contains which retiue 9y-name

interfaces are pnoded in standard modulegile::stat , Net::hostent , Net::netent
Net::protoent , Net::servent , Time::gmtime Time::localtime , and
User::.grent . These gerride the normal built-ins, supplyingeksions that return objects with the

appropriate names for each fielgor example:

use File::stat;
use User::pwent;
$is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks as though thee the same method calls (uid), yheren't, because a
File::stat object is different from &ser::pwent object.

getsocknam&OCKET
Returns the padd sockaddr address of this end of #@CKET connection, in case you daoiknow
the address because yowéaveaal different IPs that the connection mighteaome in on.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, Smyaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",
scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopSOCKET,LEVEL,OPTNAME
Queries the option namexPTNAME associated witlBOCKETat a gven LEVEL. Options may rist at
multiple protocol lgels depending on the socket typajtlat least the uppermost socketele
SOL_SOCKET (defined in theSocket module) will exist. ® query options at anotherved the
protocol number of the appropriate protocol controlling the option should be suppliezkafple, to
indicate that an option is to be interpreted byTh® protocol, LEVEL should be set to the protocol
number ofTCP, which you can get usingetprotobyname

The function returns a packed string representing the requested socket optrateforon error with
the reason for the error placed $. Just what is in the packed string dependsL&vEL and
OPTNAME; consultgetsodkopt (2) for details. A common case is that the option is angetein which
case the result is a packed integérich you can decode usingpack with thei (orl) format.

Heres an gample to test whether Nagsedgorithm is enabled on a socket:

use Socket qw(:all);

defined(my $tcp = getprotobyname(“tcp"))
or die "Could not determine the protocol number for tcp";
my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
or die "getsockopt TCP_NODELAY: $!";
my $nodelay = unpack("l", $packed);
print "Nagle's algorithm is turned ", $nodelay ? "off\n" : "on\n";

given EXPR BLOCK

given BLOCK
given is analogous to thewitch keyword in other languagegiven andwhen are used in Perl to
implementswitch /case like gatements. Onlavailable after Perl 5.10For example:

110 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use v5.10;
given ($fruit) {
when (/apples?/) {
print "l like apples."
}

when (/oranges?/) {
print "I don't like oranges."

}
default {
print "I don't like anything"
}
}
See “Switch statementsh perlsyn for detailed information.
globEXPR

glob
In list context, returns a (possibly empty) list of filename expansions on the va@xemtuch as the
standard Unix shellbin/csh would do. In scalar context, glob iterates through such filename
expansions, returning undef when the listxdausted. This is the internal function implementing the
<*.c> operatoy but you can use it directlyf EXPRis omitted,$ is used. The<*.c> operator is
discussed in more detail in “I/O Operatoig’ perlop.

Note thatglob splits its arguments on whitespace and treats each segment as separateAmttern.
such,glob("*.c *.h") matches all files with a or .h extension. Theexpressionglob(".*
*") matches all files in the current working directory.

If non-empty braces are the only wildcard characters used gidhe, no filenames are matchedjtb
potentially mawg strings are returnedFor example, this produces nine strings, one for each pairing of
fruits and colors:

@many = glob "{apple,tomato,cherry}={green,yellow,red}";

Beginning with v5.6.0, this operator is implemented using the starkdi@:dGlob extension. See
File::Glob for details, includingsd_glob which does not treat whitespace as a pattern separator.

gmtimeEXPR
gmtime
Works just like localtime but the returned values are localized for the standard Greenwich time zone.

Note: When called in list conte $isdst , the last @lue returned by gmtime, isvedys 0. There is
no Daylight Saving Time iGMT.

See “gmtime’ in perlport for portability concerns.

gotoLABEL

gOtoEXPR

goto &NAME
Thegoto—-LABEL form finds the statement labeled WithBEL and resumesxecution there. It can’
be used to get out of a block or subroutineegito sort . It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines, bstwually better to use some other
construct such dsst ordie . The author of Perl has v felt the need to use this form géto
(in Perl, that is; C is another matter). (The difference is that C does not offer named loops combined
with loop control. Perl does, and this replaces most structured ugeofin other languages.)

The goto—EXPR form expects a label name, whose scope will be redalynamically This allovs
for computedgoto s per FORTRAN, hut isn't necessarily recommended if you're optimizing for
maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

As shown in this xample,goto—EXPR is exempt from the “looks lile a function’ rule. A pair of
parentheses following it does not (necessarily) delimit iguraent. goto("NE")."XT" is
equiaent togoto NEXT .

Use ofgoto—LABEL or goto—EXPR to jump into a construct is deprecated and will issuarsning.

perl v5.14.2 2014-02-04 111

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

112

Even then, it may not be used to go inty aanstruct that requires initialization, such as a subroutine
or aforeach loop. Italso cart be wsed to go into a construct that is optimizeca

The goto—&NAME form is quite different from the other formsgdto . In fact, it isnt agoto in the
normal sense at all, and dodshave the stigma associated with other gotos. Insteadxiis ¢he
current subroutine (losing nrchanges set bjocal()) and immediately calls in its place the named
subroutine using the current value @f. This is used byAUTOLOADBubroutines that wish to load
another subroutine and then pretend that the other subroutine had been called in the firscplatce (e
that aly modifications to@ _in the current subroutine are propagated to the other subroufifter)
thegoto , not even caller will be able to tell that this routine was called first.

NAME neednt be the name of a subroutine; it can be a scadaiable containing a code reference or a
block that ealuates to a code reference.

grepBLOCK LIST

grepEXPRLIST
This is similar in spirit to, bt not the same agrep(1) and its relaties. Inparticular it is not limited
to using regular expressions.

Evaluates theBLOCK or EXPR for each element ofIST (locally setting$ to each element) and
returns the list value consisting of those elements for which the expregdligated to true. In scalar
context, returns the number of times the expression was true.

@foo = grep(!//#/, @bar); # weed out comments
or equvaently,
@foo = grep {{/'#/} @bar; # weed out comments

Note that$_ is an alias to the list value, so it can be used to modify the elementsLa$thewhile

this is useful and supported, it can cause bizarre results if the elemen&T afre not ariables.
Similarly, grep returns aliases into the original list, much as a for $olagex variable aliases the list
elements. Thais, modifying an element of a list returned by grep (for examplefaneach , map

or anothergrep) actually modifies the element in the original list. This is usually something to be
avaded when writing clear code.

If $_is lexical in the scope where theep appears (because it has been declaredmytty_) then,
in addition to being locally aliased to the list elemefitskeeps being lexical inside the block; i.e., it
cant be £en from the outsideyaiding ary potential side-effects.

See also “mapfor a list composed of the results of B18OCK or EXPR

hexEXPR
hex InterpretEXPR as a hr string and returns the correspondinglue. (D convert strings that might
start with eitheB, 0x, or Ob, see “oct”.) If EXPRis omitted, use$_.

print hex 'OxAf'; # prints '175'
print hex 'aF"; # same

Hex strings may only represent imgers. Stringshat would cause integevaflow trigger a varning.
Leading whitespace is not stripped, ualibct(). To present something ashelook into ‘printf’’,
“sprintf”, and “unpack”.

importLIST
There is no biltin import function. Itis just an ordinary method (subroutine) defined (or inherited)
by modules that wish to export names to another modile use function calls theimport
method for the package used. See also “use”, perlmod, and Exporter.

indexSTRSUBSTR,POSITION

indexSTRSUBSTR
The inde function searches for one string within anottat without the wildcard-lik behavior of a
full regular-epression pattern matcht returns the position of the first occurrencesoiBSTRin STR
at or afterPOSITION If POSITION is omitted, starts searching from the beginning of the string.
POSITIONbefore the bginning of the string or after its end is treated as if it were the beginning or the
end, respectely. POSITION and the return alue are based & (or whateer you've ®t the [
variable to— but dont do that). Ifthe substring is not founéhdex returns one less than the base,
ordinarily —1.

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

int EXPR

int Returns the integer portion &XPR If EXPRis omitted, use$. You should not use this function
for rounding: one because it truncatesaals0, and two because machine representations of floating-
point numbers can sometimes produce counterimuiti results. er eample,
int(—6.725/0.025) produces —268 rather than the correct —269; gHattause it really more
like -268.99999999999994315658 insteadUsually the sprintft , printf |, or the
POSIX::floor andPOSIX::ceil functions will sere you better than wilint().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements théoctl (2) function. You'll probably first hae o say

require "sys/ioctl.ph"; # probably in $Config{archlib}/sys/ioctl.ph

to get the correct function definitiondf sys/ioctl.phdoesnt exist or doesrt’ have the correct
definitions you'll hae o roll your own, based on your C header files sucksys/ioctl.h> (There is
a Rerl script callech2ph that comes with the Perl kit that may help you in this, bstrbhtrivial.)
SCALAR will be read and/or written depending on #@NCTION; a C minter to the string value of
SCALAR will be passed as the third argument of the adal call. (If SCALAR has no string
value but does ha a rumeric value, that value will be passed rather than a pointer to the sthirg v
To guarantee this to be true, ad@ #o the scalar before using ithhe pack andunpack functions
may be needed to manipulate the values of structures usectlby .

The return value abctl (andfcntl) is as bllows:

if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

$retval = ioctl(...) || -1;
printf "System returned %d\n", $retval;

The special string'0 but true" is exempt from —w complaints about improper numeric
corversions.

join EXPRLIST
Joins the separate stringsLo$T into a single string with fields separated by thtug ofEXPR, and
returns that ne string. Example:

$rec = join(":', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
Beware that unlikesplit , join doesnt take a mttern as its first gument. Comparésplit”.

keys HASH

keys ARRAY

keys EXPR
Returns a list consisting of all theys of the named hash, or the indices of an aflayscalar conte,
returns the number oflgs or indices.)

The leys of a lash are returned in an apparently random ordiee actual random order is subject to
change in future versions of Perltht is guaranteed to be the same order as eitheralhes or
each function produces (gén that the hash has not been modifie8ince Perl 5.8.1 the ordering can
be different gen between diferent runs of Perl for security reasons (s&dgbrithmic Compleity
Attacks’ in perlsec).

As a side effect, callingeys() resets the internal interator of théA\SH or ARRAY (see ‘each’). In
particular calling keys()in void context resets the iterator with no othegrbead.

Here is yet another way to print your environment;

perl v5.14.2 2014-02-04 113

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

@keys = keys %ENV;
@values = values %ENV;
while (@keys) {
print pop(@keys), '=', pop(@values), "\n";
}

or how about sorted by éy:

foreach $key (sort(keys %ENV)) {
print $key, '=', SENV{$key}, "\n";
}

The returned alues are copies of the originayk in the hash, so modifying them will not affect the
original hash. Compare “values”.

To sort a hash by value, yduheed to use sort function. Heres a cescending numeric sort of a
hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

Used as an blue,keys allows you to increase the number of hasickets allocated for the ggn
hash. Thiscan gain you a measure ofieiency if you knaw the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to &¥dfrggu say

keys %hash = 200;

then%hash will have & least 200 bckets allocated for it——256 of them, in fact, since it rounds up to
the next power of to. Thesebuckets will be retainedven if you do%hash = () , useundef
%hash if you want to free the storage whiéhash is still in scope.You can't shrink the number of
buckets allocated for the hash usikgys in this way (but you neednivorry about doing this by
accident, as trying has no effedt@ys @array in an Ivalue context is a syntax error.

Starting with Perl 5.14keys can tale a €alarEXPR, which must contain a reference to an unblessed
hash or array The argument will be dereferenced automaticalifiis aspect okeys is considered
highly experimental. Thexact behaviour may change in a future version of Perl.

for (keys $hashref) { ... }
for (keys $obj—>get_arrayref) { ... }

See als@ach, values , andsort .

kill SIGNAL, LIST
Sends a signal to a list of processes. Returns the number of processes successfully signaled (which is
not necessarily the same as the number actually killed).

$cnt = kill 1, $childl, $child2;
kill 9, @goners;

If SIGNAL is zero, no signal is sent to the process,kill checks whether #'possibleto send a
signal to it (that means, to be brief, that the process is owned by the sajym@ useae the super

user). Thisis useful to check that a child process is stilalieven if only as a zombie) and hasn’
changed it&JID. See perlport for notes on the portability of this construct.

Unlike in the shell, ifSIGNAL is negaive, it kills process groups instead of processes. That means you
usually want to use posig rot nggative sgnals. You may also use a signal name in quotes.

The behavior of kill when ROCESSumber is zero or mgetive cepends on the operating system.
For example, on POSIX-conforming systems, zero will signal the current process group and —1 will
signal all processes.

See “Signals’in perlipc for more details.

lastLABEL

last Thelast command is lik thebreak statementin C (as used in loops); it immediately exits the loop
in question. If theLABEL is omitted, the command refers to the innermost enclosing [dbge.
continue block, if ary, is not executed:

114 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

LINE: while (<STDIN>) {
last LINE if /"$/; # exit when done with header
#...

}

last cannot be used to exit a block that returns a value suetah$§} ,sub{} ,ordo{} ,and
should not be used to exigeep() or map()operation.

Note that a block by itself is semantically identical to a loop tkeduges once.Thuslast can be
used to effect an early exit out of such a block.

See also “continuéfor an illustration of hovast , next , andredo work.

Ic EXPR
Ic Returns a lowercased version®¥PR This is the internal function implementing tkie escape in
double-quoted strings.

If EXPRis omitted, use$_.
What gets returned depends owesal factors:

If use bytes s in effect:
OnEBCDIC platforms
The results are what the C language systentalaliver() returns.

OnASCIl platforms
The results follonASCIl semantics. Onlgharacter\-Z change, t@-z respectiely.

Otherwise, IfEXPRhas theUTF8flag set
If the current package has a subroutine nammdwer , it will be used to change the case (See
“UserDefined Case Mappings (for serious hackers drily)erlunicode.) Otherwis&nicode
semantics are used for the case change.

Otherwise, ifuse locale is in effect
Respects curremiC_CTYPElocale. Segerllocale.

Otherwise, ifuse feature 'unicode_strings' is in effect:
Unicode semantics are used for the case chaAgs. subroutine namedroLower will be
ignored.

Otherwise:

OnEBCDIC platforms
The results are what the C language systemtalalver() returns.

OnASCIl platforms
ASCIl semantics are used for the case charige lowercase of gncharacter outside the
ASCII range is the character itself.

Icfirst EXPR

Icfirst
Returns the value oEXPR with the first character eercased. Thisis the internal function
implementing thél escape in double-quoted strings.

If EXPRis omitted, use$_.
This function behees the same way under various pragmata, such as in a locale,’ akHs:

lengthEXPR

length
Returns the length icharactersof the value cEXPR If EXPRis omitted, returns the length $f . If
EXPRis undefined, returnsndef .

This function cannot be used on an entire array or hash to findwuhégy elements these ka. For
that, usescalar @array andscalar keys %hash , respectiely.

Like dl Perl character operationkngth() normally deals in logical characters, notypical bytes.
For how mary bytes a string encoded asUTF-8 would talke o, use
length(Encode::encode_utf8(EXPR)) (you'll have o use Encode first). SeeEncode
and perlunicode.

perl v5.14.2 2014-02-04 115

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

link OLDFILE,NEWFILE
Creates a nefilename linked to the old filename. Returns true for success, false otherwise.

listen SOCKET,QUEUESIZE
Does the same thing that tligten(2) system call does. Returns true if it succeedade fotherwise.
See the example in “Sockets: Client/Server Communicaiioperlipc.

local EXPR
You really probably want to be usingy instead, becaudecal isn't what most people think of as
“local”. See" Private Variables viany()' i n perlsub for details.

A local modifies the listed variables to be local to the enclosing block, filgalorle more than one
value is listed, the list must be placed in parentheses. “Bemporary Values vitocal()” i n perisub
for details, including issues with tied arrays and hashes.

The delete local EXPR construct can also be used to localize the deletion of array/hash
elements to the current block. See “Localized deletion of elements of compositéitypesisub.

localtimeEXPR

localtime
Corverts a time as returned by the time function to a 9—element list with the time analyzed for the
local time zone.Typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time);

All list elements are numeric and come straight out of the C ‘struct®s®c , $min, and $hour are
the seconds, minutes, and hours of the specified time.

$mday is the day of the month ar®@imon the month in the rang@..11 , with O indicating January
and 11 indicating DecembeThis makes it easy to get a month name from a list:

my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
$mon=9, $mday=18 gives "Oct 18"

$year is the number of years since 1900t just the last tw digits of the year That is,$year is
123 in year 2023. The proper way to get a 4—digit year is simply:

$year +=1900;
Otherwise you create hon—-Y2K-compliant programand you wouldnt want to do that, would you?
To get the last tw digits of the year (e.g., “0lin 2001) do:

$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicatiagnésday.$yday is the
day of the yeaiin the rangeé..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving Time, false otherwise.

If EXPRis omitted,localtime() uses the current time (as returnedibe(3)).
In scalar contextpcaltime() returns thectime(3) value:
$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value isot locale-dependentub is a Perl builtin. 8r GMT instead of local time use the
“gmtime’ builtin. See also th&ime::Local = module (for cowerting seconds, minutes, hours, and
such back to the inger value returned byme(), and the,OSIX module’sstrftime(3) andmktime(3)
functions.

To get somewhat similarut locale-dependent date strings, set up your locale environragables
appropriately (please see perllocale) and try for example:

116 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use POSIX qw(strftime);

$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or f or GMT formatted appropriately for your locale:
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that thé¥oaand%h the short forms of the day of the week and the month of the iypagrnot
necessarily be three characters wide.

See “localtime” in perlport for portability concerns.

The Time::gmtime and Time::localtime modulesypde a comenient, by-name access mechanism to
thegmtime()andlocaltime()functions, respeatély.

For a comprehensie date and time representation look at the DateTime modul#PAaN.

lock THING
This function places an advisory lock on a sharadable or referenced object containedTHING
until the lock goes out of scope.

lock() is a “weak leyword” : this means that if youe defined a function by this name (beforeyan
calls to it), that function will be called instead. If you are not unerthreads::shared this
does nothing. See threads::shared.

log EXPR

log Returns the natural logarithm (bageof EXPR. If EXPRis omitted, returns the log & . To get the
log of another base, use basic algebra: The base-N log of a nhumber is equal to the natural log of that
number divided by the natural log of Wor example:

sub log10 {

my $n = shift;

return log($n)/log(10);
}

See also “exp’for the irverse operation.

IstatEXPR

Istat
Does the same thing as teeat function (including setting the special filehandle) but stats a
symbolic link instead of the file the symbolic link points tbsymbolic links are unimplemented on
your system, a normastat is done. For much more detailed information, please see the
documentation fostat

If EXPRis omitted, stat$.
m// The match operatoiSee “Regexp Quote-Lik Operators’in perlop.

mapBLOCK LIST
MapEXPRLIST
Evaluates theBLOCK or EXPR for each element ofIST (locally setting$_ to each element) and
returns the list value composed of the results of each saimaton. Inscalar contg, returns the
total number of elements so generatédfaluates BLOCK or EXPRin list context, so each element of
LIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @numbers);

translates a list of numbers to the corresponding characters.
my @squares =map {$_*$_} @numbers;

translates a list of numbers to their squared values.
my @squares=map{$_>5?($_*$): ()} @numbers;

shavs that number of returned elements can differ from the number of input elenemsitTan
element, return an empty list (). This could also be a&etliby writing

my @squares=map{$_*$_}grep{$_>5} @numbers;

which makes the intention more clear.

perl v5.14.2 2014-02-04 117

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Map alvays returns a list, which can be assigned to a hash such that the elements hgboahe k
pairs. See perldata for more details.

%hash = map { get_a_key_for($_) => $_} @array;
is just a fung way to write

%hash = ();

foreach (@array) {
$hash{get _a_key for($)}=$;

}

Note that$_ is an alias to the list value, so it can be used to modify the elementsLa$thewhile
this is useful and supported, it can cause bizarre results if the elemen&T afre not ariables.
Using a rgularforeach loop for this purpose would be clearer in most cases. Se€egisp”‘for
an array composed of those items of the original list for whicBLeCK or EXPR evduates to true.

If $ is lexical in the scope where theap appears (because it has been declaredmitl$), then,
in addition to being locally aliased to the list elemeftskeeps being lexical inside the block; that is,
it can't be ®en from the outsideyaiding ary potential side-effects.

{ starts both hash references and blocksap { ... could be either the start of mBpOCK LIST
or mapEXPR, LIST. Because Perl doegnbok ahead for the closirjgit has to tak aguess at which
it's dealing with based on what it finds just after gheéJsually it gets it right, but if it doeshit won't
realize something is wrong until it gets to thend encounters the missing (or ypected) comma.
The syntax error will be reported close to }hebut you'll need to change something near {hsuch
as using a unary to give Rerl some help:

%hash=map{ "\L$ "=>1 } @array # perl guesses EXPR. wrong
%hash =map {+"\L$ "=>1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_" => 1) } @array # t his also works
%hash=map{ Ic($)=>1 } @array # as does this.

%hash = map +(lc($_) => 1), @array # t his is EXPR and works!
%hash=map (1 c($), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor tse
@hashes = map +{ Ic($_) => 1}, @array # EXPR, so needs comma at end

to get a list of anonymous hashes each with only one entry apiece.

mkdir FILENAME,MASK

mkdir FILENAME

mkdir
Creates the directory specified BLENAME, with permissions specified lWASK (as modified by
umask). If it succeeds it returns true; otherwise it returns false an@'s€txrno). MASK defaults to
0777 if omitted, an@&ILENAME defaults td$_ if omitted.

In general, it is better to create directories with a perma$sASK and let the user modify that with
their umask than it is to supply a restriggé MASK and gie the user no way to be more permissi
The &ceptions to this rule are when the file or directory should be kepitepr{imail files, for
instance). Theerlfunc(l) entry onumask discusses the choice MRASK in more detail.

Note that according to theOSIX 1003.1-1996 theFILENAME may hae any mmber of trailing
slashes. Someperating and filesystems do not get this right, so Perl automaticallyesrdb
trailing slashes to keeyeyone happ.

To recursvely create a directory structure, look at thkpath function of the File::Path module.

msgctliD,CMD,ARG
Calls the System WC functionmsgctl(2). You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitions.CMD is IPC_STAT, thenARG must be a variable that
will hold the returnednsqid_ds structure. Returnbke ioctl : the undefined value for errdi0

118 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

but true" for zero, or the actual return value otherwise. See &gsV IPC" i n perlipc and the
documentation folPC::SysV andIPC::Semaphore

msggetkEY,FLAGS

Calls the System WPC function msgyet (2). Returnghe message queue id, andef on error See
also “SysVIPC" i n perlipc and the documentation fil#C::SysV andIPC::Msg .

msgrcviD,VAR,SIZE, TYPE,FLAGS

Calls the System \PC function msgrcv to rece¢ a nessage from message queDeinto variable
VAR with a maximum message sizeSIZE. Note that when a message is reegj the message type
as a natie long integer will be the first thing WAR, followed by the actual messagé&his packing
may be opened withnpack("l! a*") . Taints the ariable. Returnsrue if successful, false on
error See also ‘SysV IPC’ in perlipc and the documentation fotPC::SysV and
IPC::SysV::Msg

msgsndD,MSG,FLAGS

Calls the System WPC function msgsnd to send the mess&fG to the message quel®. MSG

must begin with the nat long integyer message type, be followed by the length of the actual message,
and then finally the message itsefhis kind of packing can be ache with pack("l'! a*",

$type, $message) . Returns true if successful, false on err@e also thdPC::SysV and
IPC::SysV::Msg documentation.

my EXPR
my TYPE EXPR

my EXPR: ATTRS

my TYPE EXPR: ATTRS

A mydeclares the listed variables to be local (lexically) to the enclosing block, fdgabr. If more
than one value is listed, the list must be placed in parentheses.

The exact semantics and interfaceT¥PE andATTRS are still eolving. TYPE is currently bound to

the use of thdields pragma, and attributes are handled using atiebutes pragma, or
starting from Perl 5.8.0 also via tidtribute::Handlers module. Seé Private Variables via
my(}' i n perlsub for details, and fields, attributes, and Attribute::Handlers.

nextLABEL

next

Thenext command is lik thecontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if ["#/; # discard comments
#...

}

Note that if there were eontinue block on the abee, it would get &ecuted &en on dscarded
lines. IfLABEL is omitted, the command refers to the innermost enclosing loop.

next cannot be used to exit a block which returnsale such asval {} ,sub{} ,ordo{} ,
and should not be used to exigrep() or map()operation.

Note that a block by itself is semantically identical to a loop thetutes once.Thusnext will exit
such a block early.

See also “continuéfor an illustration of hovast , next , andredo work.

no MODULE VERSION LIST
no MODULE VERSION

Nno MODULE LIST

no MODULE

noVERSION

See thause function, of whichno is the opposite.

OCtEXPR

oct

perl v5.14.2

InterpretsEXPR as an octal string and returns the correspondahgev (If EXPR happens to start of
with 0x, interprets it as a Restring. If EXPR starts of with Ob, it is interpreted as a binary string.
Leading whitespace is ignored in all three cases.) The following will handle decimal,, loctaty
and he in standard Perl notation:

2014-02-04 119

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

120

$val = oct($val) if $val =~ /°0/;

If EXPRis omitted, use$_. To go he other way (produce a number in octal), spentf() or
printf():

$dec_perms = (stat("filename™))[2] & 07777,
$oct_perm_str = sprintf "%0", $perms;

The oct() function is commonly used when a string suct644 needs to be comrted into a file
mode, for gample. AlthoughPerl automatically corerts strings into numbers as needed, this
automatic cowersion assumes base 10.

Leading white space is ignored withouaming, as too are wrirailing non-digits, such as a decimal
point (oct only handles non-ngtive integers, not rggtive integers or floating point).

openFILEHANDLE,EXPR
openFILEHANDLE,MODE,EXPR
openFILEHANDLE,MODE,EXPR,LIST
openFILEHANDLE,MODE,REFERENCE
openFILEHANDLE
Opens the file whose filename isgi by EXPR, and associates it witRILEHANDLE.

Simple examples to open a file for reading:

open(my $fh, "<", "input.txt")
or die "cannot open < input.txt: $!";

and for writing:

open(my $fh, ">", "output.txt")
or die "cannot open > output.txt: $!";

(The following is a comprehena reference tmpen() for a gentler introduction you may consider
perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element)wdfilebandle is
autovvified, meaning that theaviable is assigned a reference to a newly allocatedyarmrs
filehandle. Otherwiséf FILEHANDLE is an expression, itsalue is the real filehandle. (This is
considered a symbolic referenceuse strict "refs" shouldnotbe in effect.)

If EXPR is omitted, the global (package) scalar variable of the same name & ERANDLE
contains the filename. (Note that lexicariables —thoseleclared withmy or state ——will not
work for this purpose; so if you're usimgy or state , specify EXPRin your call to open.)

If three (or more) arguments are specified, the open mode (including optional encoding) in the second

argument are distinct from the filename in the thifIMODE is < or nothing, the file is opened for
input. If MODE is >, the file is opened for output, with existing files first being truncated
(“clobbered’) and nonaisting files newly createdlf MODE is >>, the file is opened for appending,
again being created if necessary.

You can put a+ in front of the> or < to indicate that you want both read and write access to the file;
thus+< is almost alvays preferred for read/write updatesthe +> mode would clobber the file first.
You cant usually use either read-write mode for updatingfikes, since thg have variable-length
records. Se¢he —i switch in perlrun for a better approachhe file is created with permissions of
0666 modified by the processisnask value.

These various prefixes correspond tofopen(3) modes of , r+ , w, w+, a, anda+.

In the one- and taragument forms of the call, the mode and filename should be concatenated (in that

order), preferably separated by white spadeu can — ut shouldnt— omit the mode in these forms
when that mode is. Itis dways safe to use the bragument form obpen if the filename aggument
is a known literal.

For three or more argumentsNfODE is |- , the filename is interpreted as a command to which output
is to be piped, and MIODE is —| , the filename is interpreted as a command that pipes output to us.
the two-aigument (and one-argument) form, one should replace dgswith the command.See
“Using open()for IPC” i n perlipc for more examples of thigYou are not allowed topen to a

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

perl v5.14.2

command that pipes both iand out, hut see IPC::Open2, IPC::Open3, an@idirectional
Communication with Another Proce'sisi perlipc for alternaties.)

In the form of pipe opens taking three or more arguments$Sif is specified (extra arguments after
the command name) th&fST becomes arguments to the commanabked if the platform supports
it. The meaning ofopen with more than three guments for non-pipe modes is not yet defined, b
experimental “layers’'may give exraLIST arguments meaning.

In the two-aigument (and one-argument) form, openifigor — opensSTDIN and opening>— opens
STDOUT.

You may (and usually should) use the threguanent form of open to specify 1/O layers (sometimes
referred to asdisciplines’) to apply to the handle that affectyadhe input and output are processed
(see open and PerllO for more details). For example:

open(my $fh, "<:encoding(UTF-8)", "filename")
|| die "can't open UTF-8 encoded filename: $!";

opens the UTF8-encoded file containing Unicode characters; see perluniintro. Note that if layers are
specified in the three-gument form, then default layers stored in ${"OPEN} (see perlvar; usually set
by theopenpragma or the switchCioD) are ignored.

Open returns nonzero on success, the undefiake wtherwise. If th@pen involved a pipe, the
return value happens to be the pid of the subprocess.

If you're running Perl on a system that distinguishes between text files and binary files, then you
should check outbinmode’ for tips for dealing with this. Theely dstinction between systems that
needbinmode and those that doni's their text file formats. Systems élUnix, MacOS, and Plan 9,

that end lines with a single character and encode that character ihnnC aslo not needinmode .

The rest need it.

When opening a file, &' €ldom a good idea to continue if the request failedymamn is frequently
used withdie . Even if die won't do what you want (sgyn aCGl script, where you want to format a
suitable error message (but there are modules that can help with that problesm$) ciieck the
return value from opening a file.

As a special case the three-argument form with a read/write mode and the dhimkrtr being
undef :

open(my $tmp, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also usingorks for symmetrybut you really
should consider writing something to the temporary file fidu will need toseek()to do the
reading.

Since v5.8.0, Perl haaiit using PerllO by defult. Unlessyou've changed this (such as building Perl
with Configure —Uuseperlio), you can open filehandles directly to Perl scalars via:

open($fh, ">", \$variable) || ..
To (re)openSTDOUTor STDERRas an in-memory file, close it first:

close STDOUT;
open(STDOUT, ">", \$variable)
or die "Can't open STDOUT: $!";

General examples:

$ARTICLE = 100;
open(ARTICLE) or die "Can't find article SARTICLE: $\n";
while (<ARTICLE>) {...

open(LOG, ">>/usr/spool/news/twitlog"); # (log is reserved)
if t he open fails, output is discarded

open(my $dbase, "+<", "dbase.mine") # open for update
or die "Can't open 'dbase.mine' for update: $!";

2014-02-04 121

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

122

open(my $dbase, "+<dbase.mine") # ditto
or die "Can't open 'dbase.mine' for update: $!";

open(ARTICLE, "-|", "caesar <$article") # decrypt article
or die "Can't start caesar: $!";

open(ARTICLE, "caesar <$article |") # ditto
or die "Can't start caesar: $!";

open(EXTRACT, "|sort >Tmp$$") # 3 is o ur process id
or die "Can't start sort: $!";

i n—memory files
open(MEMORY, ">", \$var)
or die "Can't open memory file: $!";
print MEMORY "foo\n"; # output will appear in $var

process argument list of files along with any includes

foreach $file (@ARGV) {
process($file, "fh00");
}

sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, "<", $filename)) {
print STDERR "Can't open $filename: $\n";

return;
}
local $_;
while (<$input>) { # note use of indirection
if (/#include "(.*)"/) {
process($1, $input);
next;
}
#... # whatever
}

}

See perliol for detailed info on PerllO.

You may also, in the Bourne shell tradition, specifyeatPR beginning with>&, in which case the rest
of the string is interpreted as the name of a filehandle (or file desciiptameric) to be duped (as
dup(2)) and opened.You may use& after >, >>, <, +>, +>> and +<. The mode you specify
should match the mode of the original filehandluping a filehandle does not &kito account an
existing contents ofl0 buffers.) If you use the threegament form, then you can pass either a
number the name of a filehandle, or the normal “reference to a glob”.

Here is a script that ges, redirects, and restor83 DOUTandSTDERRusing various methods:

#!/usr/bin/perl

open(my $oldout, ">&STDOUT") or die "Can't dup STDOUT: $!";
open(OLDERR, ">&", *STDERR) or die "Can't dup STDERR: $!";
open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
open(STDERR, ">&STDOUT") or die "Can't dup STDOUT: $!";
select STDERR; $| = 1; # make unbuffered

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

select STDOUT; $| = 1; # make unbuffered
print STDOUT "stdout 1\n"; # t his works for
print STDERR "stderr 1\n"; # subprocesses too

open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
open(STDERR, ">&0LDERR") or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify'<&=X"' , whereX is a file descriptor number or a filehandle, then Perl will do an
equiaent of Csfdopen of that file descriptor (and not calup(2)); this is more parsimonious of
file descriptors.For example:

open for input, reusing the fileno of $fd
open(FILEHANDLE, "<&=$fd")

or
open(FILEHANDLE, "<&=", $fd)

or
open for append, using the fileno of OLDFH
open(FH, ">>&=", OLDFH)

or

open(FH, ">>&=0OLDFH")

Being parsimonious on filehandles is also useful (besides being parsimoniousarfgylee when
something is dependent on file descriptorse lir example locking usingock(). If you do just
open(A, ">>&B") | the filehandle A will not hae the same file descriptor as B, and therefore
flock(A) will not flock(B) nor vice ersa. Butwith open(A, ">>&=B") , the filehandles will share
the same underlying system file descriptor.

Note that under Perls older than 5.8.0, Perl uses the standard C ditidogen()to implement the
functionality On mary Unix systemsfdopen()fails when file descriptors exceed a certaalue,
typically 255. For Perls 5.8.0 and latePerllO is (most often) the default.

You can see whether your Perl was built with PerllO by runmped -V and looking for the
useperlio= line. Ifuseperlio isdefine ,you hae RerllO; otherwise you don't.

If you open a pipe on the commandthat is, specify eithdr or —| with the one- or tw-argument
forms ofopen), an implicitfork is done, s@pen returns twice: in the parent process it returns the
pid of the child process, and in the child process it returns (a defindd¥e defined($pid) or

/I to determine whether the open was successful.

For example, use either
$child_pid = open(FROM_KID, "|-") /I die "can't fork: $!";

or
$child_pid =open(O_KID, “|-"") /I die “can’t fork: $!";

followed by

perl v5.14.2 2014-02-04 123

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

124

if ($child_pid) {
am the parent:
either write TO_KID or else read FROM_KID

wait $child_pid;
} else{
am the child; use STDIN/STDOUT normally

exit;
}
The filehandle belas rormally for the parent, i I/O to that filehandle is piped from/to the
STDOUT/STDIN of the child process. In the child process, the filehandl¢ apened — I/Ohappens
from/to the nev STDOUT/STDIN Typically this is used li& the normal piped open when you want to
exeacise more controlyer just hav the pipe command getgeeuted, such as when running setuid and
you dont want to hae o scan shell commands for metacharacters.

The following blocks are more or less eglént:
open(FOO, "|tr Ta-z]' '[A-Z]"™);

open(FOO, "|-", "tr Ta-z]' TA-Z]";
open(FOO, "|-") || exec 'tr', '[a-2]', 'TA-Z]';
open(FOO, "|-", "tr", '[a-z]', TA-Z]");
open(FOO, "cat —n '$file'|");

open(FOO, "-|", "cat —n '$file™);
open(FOO, "-|") || exec "cat", "—-n", $file;
open(FOO, "-|", "cat", "-n", $file);

The last tvo examples in each block siwahe pipe as'list form”, which is not yet supported on all
platforms. Agood rule of thumb is that if your platform has a feak() (in other words, if your
platform is Unix, including Linux and MacOS X), you can use the list foviou would want to use

the list form of the pipe so you can pass literal arguments to the command without risk of the shell
interpreting ap shell metacharacters in thentHowever, this also bars you from opening pipes to
commands that intentionally contain shell metacharacters, such as:

open(FOO, "|cat —n | expand -4 | Ipr")
/I die "Can't open pipeline to Ipr: $!";
See “Safe Pipe Openéh perlipc for more examples of this.
Beginning with v5.6.0, Perl will attempt to flush all files opened for output beforeeration that
may do a fork, but this may not be supported on some platforms (see pefljpobd.safe, you may

need to se$| (PAUTOFLUSH in English) or call thautoflush() method oflO::Handle on
ary open handles.

On systems that support a close-areeflag on files, the flag will be set for thewlg opened file
descriptor as determined by the valu&df . See “$"F” in perlvar.

Closing an piped filehandle causes the parent process to wait for the child to finish, then returns the
status value i$? and${"CHILD_ERROR_NATIVE} .

The filename passed to the one— and-&agument forms obpen()will have leading and trailing
whitespace deleted and normal redirection characters honored. This pr&penm as ‘magic
open’, can often be used to goodfeft. A user could specify a filename ‘bfsh cat file |, or you
could change certain filenames as needed:

$filename =" s/(.*\.gz)\s*$/gzip —dc < $1}/;
open(FH, $filename) or die "Can't open $filename: $!";

Use the three-argument form to open a file with arbitrary weird characters in it,

open(FOO, "<", $file)
| die "can't open < $file: $!";

otherwise it5 necessary to protectaheading and trailing whitespace:

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

$file =~ s#"(\s)#./$1#;
open(FOO, "< $file\0")
| die "open failed: $!";

(this may not work on some bizarre filesystems). One should conscientiously choose between the
magicandthree-argumentorm of open()

open(IN, $ARGVI0]) || die "can't open $ARGVI[0]: $!";

will allow the user to specify an argument of the fdreh cat file |" , but will not work on a
filename that happens tovgaa tailing space, while

open(IN, "<", $ARGV[0])
|| die "can't open < $ARGV[O]: $!";

will have exactly the opposite restrictions.

If you want a ‘real” C open (seeopen(2) on your system), then you should use $iggopen
function, which inolves no such magic (but may use subthfedént filemodes than Peoipen()
which is mapped to @pen(). Thisis another way to protect your filenames from interpretatieon.
example:

use |0::Handle;

sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
or die "sysopen $path: $!";

$oldfh = select(HANDLE); $| = 1; select($oldfh);

print HANDLE "stuff $$\n";

seek(HANDLE, 0, 0);

print "File contains: ", <HANDLE>;

Using the constructor from tH®::Handle package (or one of its subclasses, suclDag-ile

or lO::Socket), you can generate angnous filehandles that e the scope of the variables used

to hold them, then automatically (but silently) close once their reference counts become zero, typically
at scope exit:

use |0::File;
#...
sub read_myfile_munged {
my $ALL = shift;
or j ustleave it undef to autoviv
my $handle = |O::File->new;
open($handle, "<", "myfile") or die "myfile: $!";
$first = <$handle>

or return (); # Automatically closed here.
mung($first) or die "mung failed"; # Or here.
return (first, <$handle>) if $ALL; # Or here.
return $first; # Or here.

}

WARNING: The previous example has a bug because the automatic close that happens when the
refcount onhandle does not properly detect and repatres. Alwaysclose the handle yourself
and inspect the return value.

close($handle)
[| warn "close failed: $!";

See “seeK’for some details about mixing reading and writing.

opendirDIRHANDLE,EXPR
Opens a directory namegXPR for processing byeaddir , telldir , seekdir , rewinddir
andclosedir . Returns true if successfuDIRHANDLE may be angression whose value can be
used as an indirect dirhandle, usually the real dirhandle nEnmRHANDLE is an undefined scalar
variable (or array or hash element), the variable is assigned a referencevtarsongnous dirhandle;
that is, its autovivified. DIRHANDLEshave their own namespace separate from FILEHANDLES.

See the example e¢addir

perl v5.14.2 2014-02-04 125

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

ord EXPR

ord Returns the numeric (the nati8-bit encoding, like ASCII or EBCDIC, or Unicode) value of the first
character ofEXPR If EXPR is an empty string, returns 0f EXPR is omitted, usess . (Note
character, not byte.)

For the reverse, see “chi. Seeperlunicode for more about Unicode.

our EXPR
ourTYPE EXPR
ourEXPR: ATTRS
ourTYPE EXPR: ATTRS
our associates a simple name with a package variable in the current package for use within the
current scopeWhenuse strict 'vars' is in efect,our lets you use declared globanables
without qualifying them with package names, within the lexical scope afithedeclaration. Irthis
way our differs fromuse vars , which is package-scoped.

Unlike my or state , which allocates storage for anable and associates a simple name with that
storage for use within the current scope; associates a simple name with a package (read: global)
variable in the current package, for use within the current lexical scope. In ath#s,our has the
same scoping rules asyor state , but does not necessarily create a variable.

If more than one value is listed, the list must be placed in parentheses.

our $foo;
our($bar, $baz);

An our declaration declares a global variable that will be visible across its exiral lscope, ¥en
across package boundaries. The package in whichatieble is entered is determined at the point of
the declaration, not at the point of use. This means the following behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the samiedescope are allowed if theare in
different packages. If tyehappen to be in the same package, Perl will enaitnimgs if you hee
asled for them, just lik multiple my declarations. Unli& a £condmy declaration, which will bind

the name to a fresh variable, a second declaration in the same package, in the same scope, is
merely redundant.

use warnings;

package Foo;

our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope

print $bar; # prints 30
our $bar; # emits warning but has no other effect
print $bar; # still prints 30

An our declaration may also i@ a Ist of attributes associated with it.

The exact semantics and interfacerT¥PE andATTRS are still eolving. TYPE is currently bound to
the use ofiields pragma, and attributes are handled usingatirébutes pragma, or starting
from Perl 5.8.0 also via thattribute::Handlers module. Seé Private Variables viany()' in
perlsub for details, and fields, attributes, and Attribute::Handlers.

packTEMPLATE,LIST
Takes aLIST of values and comrts it into a string using the rulesvgn by the TEMPLATE. The
resulting string is the concatenation of thevented \alues. Vpically, each comerted value looks li&

126 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

its machine-leel representation. dt example, on 32—bit machines an ggemay be represented by a
sequence of 4 bytes, which will in Perl be presented as a stringi4htatiracters long.

See perlpacktut for an introduction to this function.
The TEMPLATE is a sequence of characters thaedhe order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null-terminated (ASCIZ) string, will be null padded.

A bit string (ascending bit order inside each byte, like vec()).
A bit string (descending bit order inside each byte).

A hex string (low nybble first).

A hex string (high nybble first).

ToSWOo

¢ A signed char (8-bit) value.
C An unsigned char (octet) value.
W A unsigned char value (can be greater than 255).

s A signed short (16-bit) value.
S An unsigned short value.

I A signed long (32-bit) value.
L An unsigned long value.

g A signed quad (64-bit) value.
Q A unsigned quad value.
(Quads are available only if your system supports 64-bit
integer values _and__ if Perl has been compiled to support those.
Raises an exception otherwise.)

i A signed integer value.
I A unsigned integer value.
(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)

n An unsigned short (16-bit) in "network" (big—endian) order.
N An unsigned long (32-bit) in "network" (big—endian) order.
v An unsigned short (16-bit) in "VAX" (little—endian) order.
V An unsigned long (32-hit) in "VAX" (little—endian) order.

i A Perlinternal signed integer value (IV).

J A Perl internal unsigned integer value (UV).

f A single—precision float in native format.

d A double—precision float in native format.

F A Perlinternal floating—point value (NV) in native format
D A float of long—double precision in native format.
(Long doubles are available only if your system supports long
double values _and_ if Perl has been compiled to support those.
Raises an exception otherwise.)

p A pointer to a null-terminated string.
P A pointer to a structure (fixed-length string).

u A uuencoded string.

U A Unicode character number. Encodes to a character in character mode
and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in byte mode.

perl v5.14.2 2014-02-04 127

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

128

w A BER compressed integer (not an ASN.1 BER, see perlpacktut for
details). Its bytes represent an unsigned integer in base 128,
most significant digit first, with as few digits as possible. Bit
eight (the high bit) is set on each byte except the last.

X A null byte (a.k.a ASCII NUL, "\000", chr(0))
X Back up a byte.
@ NII-fill or truncate to absolute position, counted from the
start of the innermost ()—group.
N ull-fill or truncate to absolute position specified by the value.
(Startof a ()—group.

One or more modifiers belomay optionally follav certain letters in th&EMPLATE (the second
column lists letters for which the modifier is valid):

! s SILil Forces native (short, long, int) sizes instead
of fixed (16—/32-hit) sizes.

XX Make x and X act as alignment commands.

nNvV Treat integers as signed instead of unsigned.

@. Specify position as byte offset in the internal
representation of the packed string. Efficient but
dangerous.

> sSillLqQ Force big—endian byte-order on the type.
jJfFdDpP (The "big end" touches the construct.)

< sSillLqQ Force little—endian byte—order on the type.
jJfFdDpP (The "little end" touches the construct.)

The > and < modifiers can also be used @h groups to force a particular byte-order on all
components in that group, including all its subgroups.

The following rules apply:

e Each letter may optionally be followed by a number indicating the repeat cAuntimeric
repeat count may optionally be enclosed in brackets, a®dk("C[80]", @arr) . The
repeat count gobbles that nyaralues from the.IST when used with all format types other than
a,A Zb,B h H@.,X,X axdP, where it means something else, describedibeupplying
a* for the repeat count instead of a number means to wsevéromary items are left, xcept
for:

e @Xx,andX, where it is equident to0.
e <> where it means relag o the start of the string.
e u,where itis equident to 1 (or 45, which here is egdient).

One can replace a numeric repeat count with a template letter enclosed &tshtaclse the
packed byte length of the bracketed template for the repeat count.

For example, the templatg[lL] skips as manbytes as in a packed long, and the templdte
X[$t] $t" unpacks twice whater $t (when \ariable-&panded) unpacks. If the template in
braclets contains alignment commands (sucR!ff), its packed length is calculated as if the
start of the template had the maximal possible alignment.

When used withZ, a* as the repeat count is guaranteed to add a trailing null byte, so the
resulting string is alays one byte longer than the byte length of the item itself.

When used with@) the repeat count represents an offset from the start of the inn€ymgsiup.

When used with , the repeat count determines the starting position to calculataltnee ofset
as follows:

2014-02-04 perl v5.14.2

PERLFUNC(1)

perl v5.14.2

PerProgrammers Reference Guide PERLFUNC(1)

e Ifthe repeat count i8, it's relative © the current position.
e If the repeat count i§, the offset is relatie o the start of the packed string.

« Andifit's an ntegem, the offset is relatie o the start of thath innermos{) group, or to
the start of the string ii is bigger then the groupvd.

The repeat count far is interpreted as the maximal number of bytes to encode per line of output,
with 0, 1 and 2 replaced by 45. The repeat count should not be more than 65.

Thea, A, and Z types gobble just one value, but pack it as a string of length count, padding with
nulls or spaces as needeWhen unpackingA strips trailing whitespace and nullg, strips
eveaything after the first null, and returns data with no stripping at all.

If the value to pack is too long, the result is truncatédt’ s too long and an explicit count is
provided, Z packs only$count-1 bytes, followed by a null byteThus Z always packs a
trailing null, except when the count is 0.

Likewise, theb and B formats pack a string that'that may bits long. Each such format
generates 1 bit of the result. These are typically followed by a repeat couB likeB64.

Each result bit is based on the least-significant bit of the corresponding input chamcten
ord($char)%2 . In particular characters0" and"1" generate bits O and 1, as do characters
"\000" and™001"

Starting from the beginning of the input string, each 8-tuple of characters\ertednto 1
character of outputWith formatb, the first character of the 8-tuple determines the least-
significant bit of a character; with form&t it determines the most-significant bit of a character.

If the length of the input string is notemly divisible by 8, the remainder is packed as if the input
string were padded by null characters at the eichilarly during unpacking,'éxtra” bits are
ignored.

If the input string is longer than needed, remaining characters are ignored.

A * for the repeat count uses all characters of the input field. On unpacking, bits\aréecoto
a dring of Os and 1s.

Theh andH formats pack a string that manybbles (4-bit groups, representable asadecimal
digits,"0".."9"™a".."f") long.

For each such formatpack() generates 4 bits of resuliVith non-alphabetical characters, the

result is based on the 4 least-significant bits of the input charaeteonord($char)%16 . In
particular characters0" and"1" generate nybbles 0 and 1, as do b{¥@80" and"\001"
For characters'a”.."f" and"A".."F" , the result is compatible with the usuakadecimal

digits, so that'a" and"A" both generate theyhble 0xA==10. Use only these specific xe
characters with this format.

Starting from the kginning of the template tpack() each pair of characters is amnted to 1
character of outputWith formath, the first character of the pair determines the least-significant
nybble of the output character; with forni4tit determines the most-significant nybble.

If the length of the input string is notem, it behaes as if mdded by a null character at the end.
Similarly, “extra” nybbles are ignored during unpacking.

If the input string is longer than needed, extra characters are ignored.

A * for the repeat count uses all characters of the input fieddunpack() nybbles are corerted
to a string of hexadecimal digits.

The p format packs a pointer to a null-terminated stritpu are responsible for ensuring that
the string is not a temporarghae, as that could potentially get deallocated before you got around
to using the packed resulthe P format packs a pointer to a structure of the size indicated by the
length. Anull pointer is created if the corresponding valuegdar P is undef ; similarly with
unpack() where a null pointer unpacks intodef .

If your system has a strange pointer sizeneaning a pointer is neither as big as an int nor as big
as a long—it may not be possible to pack or unpack pointers in big— or little-endian byte order
Attempting to do so raises an exception.

2014-02-04 129

PERLFUNC(1)

130

PerProgrammers Reference Guide PERLFUNC(1)

The/ template character allows packing and unpacking of a sequence of items where ke pack
structure contains a packed item count followed by the packed items thesns€hisis useful

when the structure you're unpacking has encoded the sizes or repeat counts for some of its fields
within the structure itself as separate fields.

For pack , you write length-itent sequence-iterend thelength-itemdescribes he the length
value is packed. Formats &ky to be of most use are igexpacking ones lign for Java drings,
wfor ASN.1 orSNMP, and N for SUnXDR.

For pack , sequence-itermay hae a epeat count, in which case the minimum of that and the
number of gailable items is used as the argumentiémgth-item If it has no repeat count or uses
a ™, the number of wailable items is used.

For unpack , an internal stack of integer arguments unpacked so far is used. You write
/ sequence-iterand the repeat count is obtained by poppirigh# last element from the stack.
Thesequence-itemmust not hee a epeat count.

If sequence-iterrefers to a string type'A" , "a" , or "Z"), thelength-itemis the string length,
not the number of stringdWVith an explicit repeat count for pack, the packed string is adjusted to
that length.For example:

unpack("W/a", "\004Gurusamy") gives ("Guru")
unpack("a3/A A*", "007 Bond J") g ives (" Bond", "J")
unpack("a3 x2 /A A*", "007: Bond, J.") gives ("Bond, J", ".")

pack("n/a* w/a","hello,","world") gives "\000\006hello,\005world"
pack("a/W2", ord("a") .. ord("z")) gives "2ab"

Thelength-itemis not returned explicitly fromnpack .

Supplying a count to thiength-itemformat letter is only useful witl, a, or Z. Packing with a
length-itemof a or Z may introduceé\000" characters, which Perl does nogael as lgd in
numeric strings.

The integer types, S, |, and L may be folleved by a! modifier to specify nate shorts or
longs. Asshown in the example alve, a karel means ractly 32 bits, although the negilong
as seen by the local C compiler may bgéar This is mainly an issue on 64-bit platformou
can see whether usihgmakes an difference this way:

printf "format s is %d, s! is %d\n",
length pack("s"), length pack("s!");

printf "format | is %d, I! is %d\n",
length pack("l'), length pack("I'");

il andl! are also allowed, but only for completeness’ sake. éheeidentical ta andl .

The actual sizes (in bytes) of natishorts, ints, longs, and long longs on the platform where Perl
was huilt are also eailable from the command line:

$ perl =V:{short,int,long{,long}}size
shortsize="2",

intsize='4";

longsize='4',

longlongsize='8";

or programmatically via th€onfig module:

use Config;

print $Config{shortsize}, “\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";

print $Config{longlongsize}, "\n";

$Config{longlongsize} is undefined on systems without long long support.

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

e The integer formats, S,i, |, ,L,j,ahdJ are inherently non-portable between processors and
operating systems becauseyttobey native byteorder and endiannesgor example, a 4-byte
integer 0x12345678 (305419896 decimal) would be orderedehafarranged in and handled by
theCPUregisters) into bytes as

0x12 0x34 0x56 0x78 # big—-endian
0x78 0x56 0x34 0x12 # | ittle—endian

Basically Intel andvAX CPUs are little-endian, whileverybody else, including Motorola
m68k/88k,PPG Sparc,HP R, Power, and Cray are big-endian. Alpha ansliPS can be either:

Digital/Compaq uses (well, used) them in little-endian modé,36G1/Cray uses them in big-
endian mode.

The name®ig-endianandlittle-endianare comic references to thggeeating habits of the little-
endian Lilliputians and the big-endian Blefuscudians from the classic Jonathan Swift satire,
Gulliver's Travels This entered computer lingo via the paper “On Holy Wars and a Plea for
Peace’by Danry Cohen,USscC/ISI IEN137, April 1, 1980.

Some systems may Vveeven weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

You can determine your system endianness with this incantation:
printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);
The byteorder on the platform where Perl was built is aladable via Config:

use Config;
print "$Config{byteorderj\n";

or from the command line:
$ perl -V:byteorder

Byteorders'1234" and"12345678" are little-endian;'4321" and"87654321" are big-
endian.

For portably packed integers, either use the fornrmt®\, v, and V or else use the and <
modifiers described immediately belo See also perlport.

e Starting with Perl 5.9.2, integer and floating-point formats, along withp thed P formats and
() groups, may all be followed by theor < endianness modifiers to respeely enforce big-
or little-endian byte-orderThese modifiers are especially usefulegihow n, N, v, and V don’t
cover signed integers, 64-bit integers, or floating-point values.

Here are some concerns to keep in mind when using an endianness modifier:

e Exchanging signed integers betweeredént platforms works only when all platforms store
them in the same format. Most platforms store signed integers ais-t@mplement
notation, so usually this is not an issue.

e« The > or < modifiers can only be used on floating-point formats on big— or little-endian
machines. Otherwisaftempting to use them raises an exception.

e Forcing big— or little-endian byte-order on floating-poiaiues for data exchange caorlw
only if all platforms use the same binary representation suteadloating-point. Een if
all platforms are usintEEE, there may still be subtle fi#frences. Beingble to use or <
on floating-point values can be useful, but also dangerous if yot klamv exactly what
you're doing. It is not a general way to portably store floating-point values.

< When using> or < on a() group, this affects all types inside the group that accept byte-
order modifiers, including all subgrouph.is silently ignored for all other typesrou are
not allowed to werride the byte-order within a group that already has a byte-order modifier
suffix.

« Real numbers (floats and doubles) are inveatinchine format only Due to the multiplicity of
floating-point formats and the lack of a standamdtivork” representation for them, nadility

perl v5.14.2 2014-02-04 131

PERLFUNC(1)

132

PerProgrammers Reference Guide PERLFUNC(1)

for interchange has been made. This means that packed floating-point data written on one
machine may not be readable on angtban if both useEEE floating-point arithmetic (because
the endianness of the memory representation is not part iEftEspec). Sealso perlport.

If you know exactly what you're doing, you can use theor < modifiers to force big— or little-
endian byte-order on floating-point values.

Because Perl uses doubles (or long doubles, if configured) internally for all numeric calculation,
converting from double into float and thence to doublaiagoses precision, ampack("f",
pack("f", $foo)) will not in general equdfoo .

Pack and unpack can operate imtwodes: character mod€@ mode) where the pael string is
processed per characgtand UTF-8 mode (JO mode) where the packed string is processed in its
UTF-8-encoded Unicode form on a byte-by-byte basis. Character mode is the default unless the
format string starts witkl. You can alays switch mode mid-format with ax@icit CO or UOin

the format. This mode remains in effect until the next mode change, or until the end))of the
group it (directly) applies to.

Using CO to get Unicode characters while usid@ to getnon-Unicode bytes is not necessarily
ohvious. Probabhpnly the first of these is what you want:

$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl =CS —ne 'printf "%v04X\n", $_ for unpack("COA*", $_)'
03B1.03C9
$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl =CS —ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'
CE.B1.CF.89
$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl —CO —ne 'printf "%v02X\n", $_ for unpack("COA*", $)’
CE.B1.CF.89
$ perl -CS -E 'say "X{3B1}\x{3C9}" |

perl —CO —ne 'printf "%v02X\n", $_ for unpack("UOA*", $)’
C3.8E.C2.B1.C3.8F.C2.89

Those gamples also illustrate that you should not try to paek /unpack as a substitute for
the Encode module.

You must yourself do analignment or padding by inserting, foranple, enoughix" es while
packing. Theras no way forpack() and unpack()to knov where characters are going to or
coming from, so thehandle their output and input as flat sequences of characters.

A () group is a sub-TEMPLPE enclosed in parentheseé. group may tak a epeat count
either as postfix, or fonnpack() dso via the/ template characteiWithin each repetition of a
group, positioning with@starts eer at 0. Therefore, the result of

pack("@1A((@2A)@3A)", qw[X Y Z])
is the string\0X\0\0YZ"

x and X accept thé maodifier to act as alignment commandsythemp forward or back to the
closest position aligned at a multipleasfunt characters. For example, pack() or unpack()a
C dructure like

struct {
char ¢; [* one signed, 8-bit character */
double d;
char cc[2];
}
one may need to use the templatex![d] d c[2] . This assumes that doubles must be

aligned to the size of double.
For alignment commands, @ount of 0 is equialent to acount of 1; both are no-ops.

n, N, v andV accept thé modifier to represent signed 16—/32-hit integers in big—/little—endian
order This is portable only when all platforms sharing packed data use the same binary
representation for signed integers; for example, when all platforms uss-complement

2014-02-04 perl v5.14.2

PERLFUNC(1)

PerProgrammers Reference Guide

representation.

Comments can be embedded imMEMPLATE using# through the end of line. White space can

PERLFUNC(1)

separate pack codes from each qtbet modifiers and repeat counts must fallonmediately.

Breaking comple templates into individual line-by-line components, suitably annotated, can do

as much to impnee legbility and maintainability of pack/unpack formats &s can for

complicated pattern matches.

If TEMPLATE requires more arguments thgack() is given, pack() assumes additiondl'
arguments. IfTEMPLATE requires fewer arguments thawegi, extra arguments are ignored.

Examples:

perl v5.14.2

$foo = pack("WWWW",65,66,67,68);

f oo eq"ABCD"

$foo = pack("W4",65,66,67,68);

same thing

$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);

same thing with Unicode circled letters.

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);

same thing with Unicode circled letters. You don't get the UTF-8
bytes because the U at the start of the format caused a switch to
UO-mode, so the UTF-8 bytes get joined into characters

$foo = pack("C0OU4",0x24b6,0x24b7,0x24b8,0x24b9);

f 00 eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"

This is the UTF-8 encoding of the string in the previous example

$foo = pack("ccxxcc",65,66,67,68);
f oo eq "AB\O\OCD"

NOTE: The examples above featuring "W" and "c" are true

only on ASCIl and ASCII-derived systems such as ISO Latin 1
and UTF-8. On EBCDIC systems, the first example would be
$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);
"\001\000\002\000" on little—endian
"\000\001\000\002" on big—endian

$foo = pack("a4","abcd","x","y","z");
"abcd"

$foo = pack("aaaa”,"abcd","x","y","z");
" axyz"

$foo = pack("al4","abcdefg");
" abcdefg\0\0\O\O\O\0\O"

$foo = pack("i9pl", gmtime);
a r eal struct tm (on my system anyway)

$utmp_template ="Z8 28 Z16 L";
$utmp = pack($utmp_template, @utmp1l);
a struct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);
" @utmpl" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, —32)));
}

2014-02-04

133

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

134

$foo = pack('sx2l', 12, 34);

short 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);

short 12, zero fill to position 4, long 34

$foo eq $bar

$bhaz = pack('s.l', 12, 4, 34);

short 12, zero fill to position 4, long 34

$foo = pack('nN', 42, 4711);

pack big—endian 16— and 32-bit unsigned integers
$foo = pack('S>L>", 42, 4711);

exactly the same

$foo = pack('s<I<’, —42, 4711);

pack little—endian 16— and 32-hit signed integers
$foo = pack('(sl)<', —42, 4711);

exactly the same

The same template may generally also be usadpack()

packageNAMESRACE

packageNAMESPACE VERSION

packageNAMESPACE BLOCK

packageNAMESPACE VERSION BLOCK
Declares th&LOCK or the rest of the compilation unit as being in thexginamespace. Thecope of
the package declaration is either the supplied &d¥CK or, in the absence of BLOCK, from the
declaration itself through the end of current scope (the enclosing block, fdgalo). Thatis, the
forms without aBLOCK are operatie through the end of the current scope, just lite my, state
andour operators. Allunqualified dynamic identifiers in this scope will be in theaginamespace,
except where werridden by anothempackage declaration or when thge one of the special
identifiers that qualify intanain:: , like STDOUTARGVYENYV, and the punctuation variables.

A package statement affects dynamic variables, ontyuding those yowe wsedlocal on, kut not

lexical variables, which are created withy, state , or our . Typically it would be the first
declaration in a file included bhequire oruse. You can switch into a package in more than one
place, since this only determines whichaddf symbol table the compiler uses for the rest of that
block. You can refer to identifiers in other packages than the current one by prefixing the identifier

with the package name and a double colon, as $BomePack:var or
ThatPack::INPUT_HANDLE . If package name is omitted, theain package as assumedhat
is, $::sail is equvalent to$main::sail (as well as t®main'sail , dill seen in ancient code,

mostly from Perl 4).

If VERSIONIs provided, package sets thebVERSIONvariable in the gien namespace to aevsion
object with theVERSION provided. VERSION must be a‘strict” style version number as defined by
the version module: a posié decimal number (intger or decimal-fraction) without exponentiation or
else a dotted-decimal v—string with a leadimgcharacter and at least three componeivtsu should
set$VERSIONonly once per package.

See “Packages’in perimod for more information about packages, modules, and classes. See perlsub
for other scoping issues.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipeslike corresponding system call. Note that if you set up a loop of
piped processes, deadlock can occur unless yolegreareful. In addition, note that Perfipes use
10 buffering, so you may need to €t to flush youWRITEHANDLE after each command, depending
on the application.

See IPC::0Open2, IPC::0Open3, and “Bidirectional Communication with Another Proicepgrlipc
for examples of such things.

On systems that support a close-areeflag on files, that flag is set on allwlg opened file
descriptors whosfileno s ae higherthan the current value of $°F (by default 2 &fDERR See
“$°F” in perlvar.

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

POPARRAY
POPEXPR
pop Pops and returns the last value of the agreyytening the array by one element.

Returns the undefined value if the array is ematilough this may also happen at other tim#s.
ARRAY is omitted, pops th@ARG¥rray in the main program, but ti@ _array in subroutines, just
like shift

Starting with Perl 5.14pop can tale a €alar EXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticallifis aspect opop is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

POSSCALAR

pos Returns the offset of where the lastg search left dffor the variable in questio$ (is used when
the variable is not specified). Note that 0 is a valid matédetlindef indicates that the search
position is reset (usually due to match failunet dan also be because no match has yet been run on
the scalar).

pos directly accesses the location used by tlyexg engine to store the offset, so assigningds
will change that offset, and so will also influence tBezero-width assertion in regularpressions.
Both of these effects takdace for the next match, so you daafect the position withpos during
the current match, such as(i{pos() = 5}) or s/lpos() = 5/e

Setting pos also resets thenathed with zes-length flag, described under “Repeatedtferns
Matching a Zero-length Substringi perlre.

Because adiled m//gc match doesn’reset the offset, the return fropos won't change either in
this case. See perlre and perlop.

print FILEHANDLE LIST

print FILEHANDLE

print LIST

print
Prints a string or a list of strings. Returns true if successfillIEHANDLE may be a scalaraviable
containing the name of or a reference to the filehandle, thus introducingvehefléndirection.
(NOTE: If FILEHANDLE is a variable and the next token is a term, it may be misinterpreted as an
operator unless you interpose+aor put parentheses around the argumentsBILEHANDLE is
omitted, prints to the last selected (sseléct’) output handle.If LIST is omitted, printss_ to the
currently selected output handl&o useFILEHANDLE alone to print the content &f to it, you must
use a real filehandle BKFH, not an indirect one li& $fh . To st the default output handle to
something other tha®TDOUT, use the select operation.

The current value d, (if any) is printed between eaclsT item. Thecurrent value o\ (if any) is
printed after the entireIST has been printed. Because print takddST, anything in theLIST is
evduated in list context, including grsubroutines whose return lists you paspiiot . Be careful

not to follov the print leyword with a left parenthesis unless you want the corresponding right
parenthesis to terminate the arguments to the print; put parentheses arouquhahés (or interpose
a+, but that doesn’look as good).

If you're storing handles in an array or hash, or in general wheyeu're using ay expression more
comple than a baneord handle or a plain, unsubscripted scalar variable tovetiieyou will have 1o
use a block returning the filehandle value instead, in which cas&sthenay not be omitted:

print { $files[$i] } "stuffin”;
print { $OK ? STDOUT : STDERR } "stuff\n";

Printing to a closed pipe or socket will generatsl@PIPEsignal. Seeperlipc for more on signal
handling.

printf FILEHANDLE FORMAT, LIST

printf FILEHANDLE

printf FORMAT, LIST

printf
Equivalent to print FILEHANDLE sprintf(FORMAT, LIST) , except that$\ (the output
record separator) is not appended. The first argument of the list will be interpretedpastthe

perl v5.14.2 2014-02-04 135

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

format. Seesprintf for an explanation of the formatgarment. Ifyou omit theLIST, $_ is used;

to useFILEHANDLE without aLIST, you must use a real filehandledikH, not an indirect one lik

$th . If use locale is in effect andPOSIX::setlocale(has been called, the character used for the
decimal separator in formatted floating-point numbersfectgfd by the.C_NUMERIC locale setting.
See perllocale an@lOSIX

Don't fall into the trap of using printf when a simplerint would do. The print is more
efficient and less error prone.

prototypeFUNCTION
Returns the prototype of a function as a string odef if the function has no prototype).
FUNCTION s a reference to, or the name of, the function whose prototype you want teeretrie

If FUNCTION is a string starting wittCORE::, the rest is taken as a name for a Pailtib. If the
builtin is not overridable (such asgw//) or if its arguments cannot be adequately expressed by a
prototype (such asystem), prototype()returnsundef , because theuiltin does not really bela

like a Rerl function. Otherwise, the string describing the eglait prototype is returned.

PushARRAY,LIST

PushEXPRLIST
TreatsARRAY as a stack by appending thedues ofLIST to the end oARRAY. The length 0ARRAY
increases by the length 0fST. Has the same effect as

for $value (LIST) {
$SARRAY[++$#ARRAY] = $value;
}

but is more eficient. Returnghe number of elements in the array following the complptesth .

Starting with Perl 5.14push can take a €alarEXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticaliris aspect opush is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

g/STRING/
gq/STRING/
gx/STRING/
gW/STRING/
Generalized quotes. See “Quote-tikdperators’in perlop.

gr/STRING/
Regexp-lile quote. Seé Regexp Quote-Li& Operators’in perlop.

qguotemet&EXPR

guotemeta
Returns the value d&XPR with all non-‘word” characters backslashedThat is, all characters not
matching/[A-Za-z_0-9]/ will be preceded by a backslash in the returned stringgrdiess of
ary locale settings.)This is the internal function implementing th@ escape in double-quoted
strings.

If EXPRis omitted, use$_.

quotemeta (antQ ...\E) are useful when interpolating strings int@udar expressions, because by
default an interpolated variable will be considered a mini-regular expression. For example:

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox’;
$sentence =" s{$substring}{big bad wolf};

Will cause$sentence to becoméThe big bad wolf jumped over...'
On the other hand:

my $sentence = 'The quick brown fox jumped over the lazy dog’;
my $substring = 'quick.*?fox’;
$sentence =" s{\Q$substring\EXbig bad wolf};

Or:

136 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

my $sentence = 'The quick brown fox jumped over the lazy dog';
my $substring = 'quick.*?fox’;

my $quoted_substring = quotemeta($substring);

$sentence =" s{$quoted_substring{big bad wolf};

Will both leave the sentence as is. Normallwhen accepting literal string input from the yser
quotemeta(pr\Q must be used.

In Perl 5.14, all characters whose code points areealy are not quoted in UTF8-encoded strings,
but al are quoted INUTF-8 strings. Itis planned to change this behavior in 5.16, but the exact rules
haven't been determined yet.

randEXPR

rand
Returns a random fractional number greater than or eqQand less than the value BXPR (EXPR
should be posite.) If EXPRis omitted, the a&luel is used. CurrentlyEXPRwith the \alueO is also
special-cased ds (this was undocumented before Perl 5.8.0 and is subject to change in &rtivay
of Perl). Automatically callsrand unlesssrand has already been called. See asnd .

Apply int() to the value returned bsand() if you want random integers instead of random
fractional numbersFor example,

int(rand(10))
returns a random integer betwe®and9, inclusie.

(Note: If your rand function consistently returns numbers that are tge tartoo small, then your
version of Perl was probably compiled with the wrong numbe&ANDBITS.)

rand() is not cryptographically secue. You should not rly on it in security-sensitve
situations. As of this writing, a number of third-par6GPAN modules dier random number generators
intended by their authors to be cryptographically secure, including: Math::Random::Secure,
Math::Random::MT::Perl, and Math::TrulyRandom.

readFILEHANDLE,SCALAR,LENGTH,OFFSET

readFILEHANDLE,SCALAR,LENGTH
Attempts to read ENGTH charactersof data into @riableSCALAR from the specifietFILEHANDLE.
Returns the number of characters actually r@aat, end of file, or undef if there was an error (in the
latter case$! is also set).SCALAR will be grown or shrunk so that the last character actually read is
the last character of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. Anegdive OFFSETspecifies placement at that matharacters counting baclands from

the end of the stringA positive OFFSETgreater than the length BCALAR results in the string being
padded to the required size with" bytes before the result of the read is appended.

The call is implemented in terms of either Pedt your systens rative fread(3) library function. To
get a trueead(2) system call, segysread .

Note thecharacters depending on the status of the filehandle, either (8-bit) bytes or characters are
read. Bydefault, all filehandles operate on bytes, but for example if the filehandle has been opened
with the :utf8 1/O layer (see‘6pen’, and theopen pragma, open), the I/O will operate on
UTF8-encoded Unicode characters, not bytes. Similarly forgheoding pragma: in that case
pretty much ay characters can be read.

readdirDIRHANDLE
Returns the next directory entry for a directory openedgsndir . If used in list context, returns
all the rest of the entries in the directolly there are no more entries, returns the undefined value in
scalar context and the empty list in list context.

If you're planning to filetest the return values out oéaddir , you'd better prepend the directory in
guestion. Otherwisdyecause we didnthdir there, it would hae keen testing the wrong file.

perl v5.14.2 2014-02-04 137

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

138

opendir(my $dh, $some_dir) || die "can't opendir $some_dir: $!";
@dots = grep { '\./ && —f "$some_dir/$_" } readdir($dh);
closedir $dh;

As of Perl 5.11.2 you can use a begaddir in awhile loop, which will sets_ on every iteration.

opendir(my $dh, $some_dir) || die;
while(readdir $dh) {
print "$some_dir/$_\n";

}
closedir $dh;

readlineEXPR
readline

Reads from the filehandle whose typeglob is containeBXiPR (or from *ARGV if EXPR is not
provided). Inscalar context, each call reads and returns the next line until end-of-file is reached,
whereupon the subsequent call retunnglef . In list context, reads until end-of-file is reached and
returns a list of lines. Note that the notion‘thé’’ used here is whater you may hae cefined with

$/ or$INPUT_RECORD_SEPARATQRSe€" $/” in perlvar.

When$/ is set toundef , whenreadline is in scalar context (i.e., file slurp mode), and when an
empty file is read, it returris the first time, followed byndef subsequently.

This is the internal function implementing tk&XPR>operatoy but you can use it directlyThe
<EXPR>operator is discussed in more detail in “I/O Operatamgerlop.

$line = <STDIN>;
$line = readline(*STDIN); # same thing

If readline encounters an operating system erfr will be set with the corresponding error
message. Itan be helpful to check when you are reading from filehandles you démist, such as

a tty or a sockt. Thefollowing example uses the operator formrefdline and dies if the result is

not defined.

while (! eof($fh)) {
defined($_ = <$fh>) or die "readline failed: $!";

}

Note that you hae an't handlereadline errors that way with th&RGVfilehandle. In that case,
you have 1o open each element @ARGVYourself sinceeof handlesARGWifferently.

foreach my $arg (@ARGV) {
open(my $fh, $arg) or warn "Can't open $arg: $!";

while (! eof($fh)) {
defined($_ = <$fh>)
or die "readline failed for $arg: $!";

}

readlinkEXPR
readlink

Returns the alue of a symbolic link, if symbolic links are implemented. If not, raiseseeption. If
there is a system ertoeturns the undefined value and $tqerrno). IfEXPRis omitted, use$_.

readpipeEXPR
readpipe

EXPRis executed as a system command. The collected standard output of the command is returned.
In scalar context, it comes back as a single (potentially multi-line) string. In list context, returns a list
of lines (havever you've cefined lines with$/ or SINPUT_RECORD_SEPARATQRThis is the

internal function implementing the</EXPR/ operatoy but you can use it directlyThe gx/EXPR/

operator is discussed in more detail in “I/O Operatimgerlop. IfEXPRis omitted, use$_.

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

recvSOCKET,SCALAR,LENGTH,FLAGS
Receves a nessage on a soek Attemptsto receve LENGTH characters of data intoaxiable
SCALAR from the specified/SOCKET filehandle. SCALAR will be grown or shrunk to the length
actually read.Takes the same flags as the system call of the same name. Returns the address of the
sender ifSOCKETs protocol supports this; returns an empty string otherwise. If thene'eror,
returns the undefinedalue. Thiscall is actually implemented in terms mfcvfrom(2) system call.
See ‘UDP: Message Passirign perlipc for examples.

Note thecharacters depending on the status of the socket, either (8-bit) bytes or characters are
receved. Bydefault all sockets operate on bytes, but for example if theesbels been changed using
binmode()to operate with theencoding(utf8) I/O layer (see thepen pragma, open), the 1/O

will operate on UTF8—encoded Unicode characters, not bytes. Similarly fenbeding pragma:

in that case pretty muchyaoharacters can be read.

redoLABEL

redo
Theredo command restarts the loop block withouslaating the conditional agn. Thecontinue
block, if ary, is not executed. Ifthe LABEL is omitted, the command refers to the innermost enclosing
loop. Programshat want to lie to themselves about what was just input normally use this command:

a simpleminded Pascal comment stripper
(\warning: assumes no { or } in strings)
LINE: while (<STDIN>) {
while (s|({.*}.5){-*H$1 |) {}
s{.H |,
it (sl{.*) {
$front=9_;
while (<STDIN>) {
if () { # end of comment?
s|"|$front\{|;
redo LINE;

}
print;

}

redo cannot be used to retry a block that returns a value sumlab§ ,sub{} ,ordo{} ,and
should not be used to exigeep() or map()operation.

Note that a block by itself is semantically identical to a loop tketutes once.Thusredo inside
such a block will effectiely turn it into a looping construct.

See also “continuéfor an illustration of hovast , next , andredo work.

ref EXPR

ref Returns a non-empty string EXPR is a reference, the empty string otherwise EXPR is not
specified,$_ will be used. The value returned depends on the type of thing the reference is a
reference to. Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
10
VSTRING
Regexp

If the referenced object has been blessed into a package, then that package name is returned instead.

perl v5.14.2 2014-02-04 139

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

140

You can think ofref as atypeof operator.
if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
unless (ref($r)) {

print "r is not a reference at all.\n";
}

The return alue LVALUE indicates a reference to an Ivalue that is noargable. You get this from
taking the reference of function calls dipos() or substr() . VSTRING is returned if the
reference points to a version string.

The resuliRegexp indicates that the argument is a regular expression resultingyffém.

See also perlref.

renameOLDNAME,NEWNAME

Changes the name of a file; an existing iIBWVNAME will be clobbered. Returns true for success,
false otherwise.

Behavior of this function varies wildly depending on your system implementatimn.example, it
will usually not work across file system boundariegerethough the systetmvcommand sometimes
compensates for this. Other restrictions include whethepiksvon directories, open files, or pre-
existing files. Check perlport and either temame(2) manpage or equalent system documentation
for details.

For a patform independennove function look at the File::Cgpmodule.

requireVERSION
requireEXPR
require

Demands a version of Perl specified\UBRSION, or demands some semantics specifiedclPR or
by $_ if EXPRis not supplied.

VERSIONmay be either a numeric argument such as 5.006, which will be comp&jedaoa iteral
of the form v5.6.1, which will be compared$dv (aka$PERL_VERSION. An exception is raised
if VERSIONIis greater than the version of the current Perl interpr&empare with ‘use”, which can
do a similar check at compile time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally beided, because it leads to
misleading error messages under earlier versions of Perl that do not support this yax.
equiaent numeric version should be used instead.

require v5.6.1; # r un time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards compatibility

Otherwiserequire demands that a library file be included if it hasiready been includedThe

file is included via the do-FILE mechanism, which is essentially juatiaty ofeval with the caeat
that lexical variables in the \oking script will be invisible to the included code. Has semantics
similar to the following subroutine:

sub require {
my ($filename) = @_;
if (exists $INC{$filename}) {
return 1 if $INC{$filename};
die "Compilation failed in require";
}
my ($realfilename,$result);
ITER: {
foreach $prefix (@INC) {
$realfilename = "$prefix/$filename”;
if (—f $realfilename) {
SINC{$filename} = $realfilename;

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

perl v5.14.2

$result = do $realfilename;
last ITER;
}
}
die "Can't find $filename in \@INC";

}
if ($@) {
$INC{$filename} = undef;
die $@;
} e Isif (I$result) {
delete $SINC{$filename};
die "$filename did not return true value";
} else{
return $result;
}

}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successfutien of ary initialization
code, so is austomary to end such a file with unless you'e sure it'll return true otherwise. Butst’
better just to put thg; , in case you add more statements.

If EXPR is a bareord, the require assumes gt extension and replaces::™ with /" in the
filename for you, to makit easy to load standard modulebhis form of loading of modules does not
risk altering your namespace.

In other words, if you try this:
require Foo::Bar; # a splendid bareword

The require function will actually look for thé=do/Bar.pni file in the directories specified in the
@INCarray.

But if you try this:

$class = 'Foo::Bar’;
require $class; # $class is not a bareword
#or

require "Foo::Bar"; # not a bareword because of the

The require function will look for theFbo::Bar” fi le in the@INCarray and will complain about not
finding "Foo::Bar" there. Inthis case you can do:

eval "require $class";

Now that you understand tworequire looks for files with a bamord argument, there is a little
extra functionality going on behind the scen®&eforerequire looks for a "pm‘ extension, it will
first look for a similar filename with apmc extension. If this file is found, it will be loaded in place
of ary file ending in a “pn' extension.

You can also insert hooks into the impoacility by putting Perl code directly into th@INCarray.
There are three forms of hooks: subroutine references, array references, and blessed objects.

Subroutine references are the simplest case. When the inclusion syallesnttwough@INCand
encounters a subroutine, this subroutine gets called witlpavameters, the first a reference to itself,
and the second the name of the file to be included (Eap/Bar.pnm). The subroutine should return
either nothing or else a list of up to three values in the following order:

1.
2.

A filehandle, from which the file will be read.

A reference to a subroutine. If there is no filehandle (previous item), then this subroutine is
expected to generate one line of source code per call, writing the lin& inémd returning 1,

then finally at end of file returning 0. If there is a filehandle, then the subroutine will be called to
act as a simple source filtgvith the line as read ifi_. Agan, return 1 for each valid line, and 0
after all lines hee been returned.

2014-02-04 141

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

142

3. Optional state for the subroutine. The state is passeddin[af . A reference to the subroutine
itself is passed in & [0] .

If an empty list,undef , or nothing that matches the first alues abwee is returned, themequire

looks at the remaining elements@iNC Note that this filehandle must be a real filehandle (strictly a
typeglob or reference to a typeglob, whether blessed or unblessed); tied filehandles will be ignored and
processing will stop there.

If the hook is an array reference, its first element must be a subroutine refefaigsubroutine is
called as abee, but the first parameter is the array reference. This lets you indirectly prasseats
to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {
my ($coderef, $filename) = @_; # $coderefis \&my_sub

or:

push @INC, [\&my_sub, $x, By, ... |;
sub my_sub {
my ($arrayref, $filename) = @_;
Retrieve $x, $y, ...
my @parameters = @$arrayref[1..$#$arrayref];

}

If the hook is an object, it must provide IMC method that will be called as al®the first parameter
being the object itself(Note that you must fully qualify the s@hrame, as unqualifiedNC is aways
forced into packagmain .) Hereis a typical code layout:

In F oo.pm
package Foo;
subnew{...}
sub Foo::INC {
my ($self, $filename) = @_;

}

In t he main program
push @INC, Foo—>new(...);

These hooks are also permitted to setdRCentry corresponding to the files yhieaveloaded. See
“%INC" in perlvar.

For a yet-more-powerful import facilitysee “use’ and perimod.

reseteXPR
reset

Generally used in eontinue block at the end of a loop to cleariables and resé? searches so

that they work again. Theexpression is interpreted as a list of single characters (hyphens allowed for
ranges). Allvariables and arrays gining with one of those letters are reset to their pristine dtate.
the expression is omitted, one-match searcBpatfern?) are reset to match ag. Onlyresets
variables or searches in the current packagevapd returns 1. Examples:

reset 'X'; # r eset all X variables
reset 'a-z'; # r eset lower case variables
reset; # just reset ?one—time? searches

Resetting"A-Z" is not recommended because yowipe out your @ARGYNd @INCarrays and
your %ENVhash. Resetenly package variables; lexicabwnables are unaffected, but yhelean
themselves up on scope exit anyw&yyou'll probably want to use them instead. See “my”.

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

returnEXPR
return
Returns from a subroutineyal , or do FILE with the value gien in EXPR Evaluation of EXPR
may be in list, scalaor void context, depending onWwdhe return alue will be used, and the coxte
may vary from onexecution to the next (se@antarray). If no EXPRis given, returns an empty
list in list context, the undefined value in scalar context, and (of course) nothing at all in void context.

(In the absence of anxgicit return , a subroutine, &al, or doFILE automatically returns thealue
of the last expressiorvauated.)

reverseLIST
In list context, returns a list value consisting of the elementssafin the opposite orderin scalar
contet, concatenates the elements T and returns a string value with all characters in the opposite
order.

print join(", ", reverse "world", "Hello"); # Hello, world

print scalar reverse "dIrow ,", "olleH"; # Hello, world
Used without arguments in scalar contesterse()reverses$.

$_="dIrow ,olleH";
print reverse; # No output, list context
print scalar reverse; # Hello, world

Note that reersing an array to itself (as @a = reverse @a) will presene ron-existent elements
whenever possible, i.e., for non magical arrays or tied arrays BKISTS andDELETEmethods.

This operator is also handy forvaiting a hash, although there are someeat. If a value is
duplicated in the original hash, only one of those can be representedensnathe inverted hash.
Also, this has to unwind one hash and build a whole oree, which may ta& some time on a lge
hash, such as fromzBM file.

%by _name = reverse %by_address; # | nvert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory faredmdir routine onDIRHANDLE.

rindexSTRSUBSTR,POSITION

rindexSTRSUBSTR
Works just like index() except that it returns the position of theest occurrence 0BUBSTRIn STR. If
POSITIONIs specified, returns the last occurrence beginning at or before that position.

rmdir FILENAME

rmdir
Deletes the directory specified BLENAME if that directory is empty|f it succeeds it returns true;
otherwise it returns false and s#ts(errno). IfFILENAME is omitted, use$_.

To remove a drectory tree recurgely (rm —rf on Unix) look at thermtree function of the
File::Path module.

s/l The substitution operatoBee “Regexp Quote-Lik Operators’in perlop.

SayFILEHANDLE LIST
sayFILEHANDLE

sayLIST
say Just like print , but implicitly appends a mdine. say LIST is simply an abbreviation fof
local $\ = "\n"; print LIST } . To useFILEHANDLE without aLIST to print the contents

of $_ to it, you must use a real filehandle likE, not an indirect one lik§fh .

This keyword is available only when thésay" feature is enabled; see featudternately include a
use v5.10 or later to the current scope.

scalarEXPR
ForcesEXPRto be interpreted in scalar context and returns the valagrR

@counts = (scalar @a, scalar @b, scalar @c);

perl v5.14.2 2014-02-04 143

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

There is no equélent operator to force arxgression to be interpolated in list context because in
practice, this is ner needed. Ifyou really wanted to do so, Wwever, you could use the construction
@{[(some expression)]} , but usually a simpl¢some expression) suffices.

Becausescalar is a unary operatpif you accidentally use a parenthesized list forBEXKeR, this
behaes as a salar comma expressionjaluating all but the last element in void context and returning
the final elementwaluated in scalar conté Thisis seldom what you want.

The following single statement:
print uc(scalar(&foo,$bar)),$baz;
is the moral equalent of these two:

&foo;
print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

seekFILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE's position, just lile the fseek call of stdio . FILEHANDLE may be an
expression whose valuevgs the name of the filehandl& he values foWwHENCE are0 to set the ng
positionin bytesto POSITION 1 to set it to the current position ple©SITION and 2 to set it toEOF
plusPOSITION typically negative. For WHENCEyou may use the constar8EEK _SET SEEK_CUR
and SEEK_END(start of the file, current position, end of the file) from the Fcntl modRkturnsl
on success, false otherwise.

Note thein bytes even if the filehandle has been set to operate on characters (for example by using the
:encoding(utf8) open layer),tell() will return byte offsets, not characterfsdts (because
implementing that would rendseek(Jandtell() rather slow).

If you want to position the file fosysread or syswrite , don't use seek, because Wbffering
malkes its effect on the fils’ read-write position unpredictable and non-portablise sysseek
instead.

Due to the rules and rigors aNSI C, on some systems youMeaio do a ek wheneer you switch
between reading and writingAmongst other things, this may Ve te effect of calling stdig’
clearerr(3). AWHENCEof 1 (SEEK_CURis useful for not moving the file position:

seek(TEST,0,1);

This is also useful for applications emulatitagd —f . Once you hitEOF on your read and then
sleep for a while, you (probably) V&t gick in a dummyseek(}to reset things.The seek doesn't
change the position, butdbesclear the end-of-file condition on the handle, so that tike<elLE>
makes Perl try again to read something.e (Wpe.)

If that doesrt work (some 1I/O implementations are particularly cantankerous), you might need
something lile this:

for (3;) {
for ($curpos = tell(FILE); $_ = <FILE>;
$curpos = tell(FILE)) {
search for some stuff and put it into files
}
sleep($for_a_while);
seek(FILE, $curpos, 0);
}

seekdirDIRHANDLE,POS
Sets the current position for theaddir routine onDIRHANDLE. POSmust be a value returned by
telldir . seekdir also has the same veats about possible directory compaction as the
corresponding system library routine.

selectFILEHANDLE

select
Returns the currently selected filehandle.FILEHANDLE is supplied, sets the wecurrent defult
filehandle for output. This has tweffects: first, avrite or aprint without a filehandle default to

144 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

thisFILEHANDLE. Second, references to variables related to output will refer to this output channel.

For example, to set the top-of-form format for more than one output channel, you might do the
following:

select(REPORTL);
$" ='"reportl_top";
select(REPORT?2);
$" ='"report2_top'";

FILEHANDLE may be an expression whose valugegithe name of the actual filehandle. Thus:
$oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write the
last example as:

use 10::Handle;
STDERR->autoflush(1);

selectRBITS,WBITS,EBITS, TIMEOUT
This calls theselect(2) syscall with the bit masks specified, which can be constructed filsimy
andvec , dong these lines:

$rin = $win = $ein = ";
vec($rin,fileno(STDIN),1) = 1,
vec($win, fileno(STDOUT),1) = 1;
$ein = $rin | $win;

If you want to select on mgiilehandles, you may wish to write a subroutine tts:

sub fhbits {
my(@fhlist) = split(' ',$_[0]);
my($bits);
for (@fhlist) {
vec($bits,fileno($_),1) = 1;
}

$bits;

}
$rin = thbits('STDIN TTY SOCK?);
The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this
$nfound = select($rout=%rin, $wout=$win, $eout=%ein, undef);

Most systems do not bother to return anything usefditimeleft , so alling select()in scalar
context just return$nfound .

Any of the bit masks can also be undéfhe timeout, if specified, is in seconds, which may be
fractional. Note:not all implementations are capable of returning $tieneleft . If not, they
always return$timeleft ~ equal to the suppliedtimeout

You can effect a sleep of 250 milliseconds this way:
select(undef, undef, undef, 0.25);

Note that whetheselect gets restarted after signals (sGyGALRM) is implementation-dependent.
See also perlport for notes on the portabilitgeiect

On errorselect behaes like seleci(2): it returns —1 and se$s .

On some Unigs,selec2) may report a socket file descriptor as “ready for readevgn when no
data is ®ailable, and thus gnsubsequentead would block. This can bevaided if you alvays use
O_NONBLOCK on the socket. Sseleci{2) andfcntl (2) for further details.

perl v5.14.2 2014-02-04 145

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

WARNING: One should not attempt to mixitered 1/O (likeread or <FH>) with select , except as
permitted byPOSIX and even then only orPOSIXsystems. Wu hae © usesysread instead.

semctliD,SEMNUM,CMD,ARG
Calls the System WC functionsemct(2). You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitiorl§.CMD is IPC_STAT or GETALL, then ARG must be a
variable that will hold the returned semid_ds structure or semaphore value Retayns lileioctl

the undefined value for erfd® buttrue " for zero, or the actual return value otherwisbe ARG
must consist of a vector of nai dort intgers, which may be created with
pack("s!",(0)x$nsem) . See also'SysV IPC” i n perlipc, IPC::SysV , IPC::Semaphore
documentation.

semgeKEY ,NSEMS,FLAGS

Calls the System \IPC function semge(2). Returnsthe semaphore id, or the undefined value on
error. See also “SysMPC” i n perlipc, IPC::SysV , IPC::SysV::Semaphore documentation.

semopKEY,OPSTRING
Calls the System WPC function semof2) for semaphore operations such as signalling aaiting.
OPSTRINGmust be a packed array of semop structures. Each semop structure can be generated with
pack("s!3", $semnum, $semop, $semflag) . The length of OPSTRING implies the
number of semaphore operationReturns true if successful, false on erréxs an eample, the
following code waits on semaphddsemnumof semaphore idsemid:

$semop = pack("s!3", $semnum, -1, 0);
die "Semaphore trouble: $\n" unless semop($semid, $semop);

To dgnal the semaphore, replaeé with 1. See also ‘SysV IPC” in perlipc, IPC::SysV , and
IPC::SysV::Semaphore documentation.

sendSOCKET,MSG,FLAGS, TO

sendSOCKET,MSG,FLAGS
Sends a message on a sckAttemptsto send the scalanSG to theSOCKETfilehandle. &kes the
same flags as the system call of the same name. On unconnectets,spolkh must specify a
destination tesend tg in which case it does sendtq2) syscall. Returns the number of characters
sent, or the undefined value on errdhe sendmsg2) syscall is currently unimplemented. Se¢DP:
Message Passirigh perlipc for examples.

Note thecharacters depending on the status of the socket, either (8—bit) bytes or characters are sent.
By default all sockts operate on bytes, but for example if the socket has been changed using
binmode()to operate with theencoding(utf8) I/O layer (see‘bpen’, or the open pragma,

open), the 1/O will operate oTF-8 encoded Unicode characters, not bytes. Similarly for the
:encoding pragma: in that case pretty muclyaharacters can be sent.

setpgrpPID,PGRP
Sets the current process group for the speciied O for the current processRaises an>&eption
when used on a machine that doesmplementPOSIX setpgid2) or BSD setpgrp2). If the
arguments are omitted, it defaults@@® . Note that theBSD 4.2 version obetpgrp does not accept
ary arguments, so onlgetpgrp(0,0) is portable. See alg®dOSIX::setsid()

setpriorityWHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or .a ($ssrsetpriority(2).) Raisesan
exception when used on a machine that daésmplementsetpriority(2).
setsockopSOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requestdRleturnsundef on error Use intger constants provided by the

Socket module for LEVEL and OPNAME. Values for LEVEL can also be obtained from

getprotobyname.OPTVAL might either be a packed string or an gee An integer OPTVAL is
shorthand for pack(“i”,OPTVAL).

An example disabling Nagkedgorithm on a socket:

146 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

shift ARRAY

shift EXPR

shift
Shifts the first value of the arrayfa@d returns it, shortening the array by 1 and movieyghing
down. If there are no elements in the arnaturns the undefinecalue. If ARRAY is omitted, shifts
the @_array within the Igical scope of subroutines and formats, and @&RG\rray outside a
subroutine and also within thexleal scopes established by teeal STRING , BEGIN {} , INIT
{} ,CHECK {} ,UNITCHECK {} ,andEND {} constructs.

Starting with Perl 5.14shift can talke a galarEXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticaliiiis aspect oshift is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

See alsaunshift , push, and pop. shift andunshift do the same thing to the left end of an
array thapop andpush do to the right end.

shmctliD,CMD,ARG
Calls the System WC function shmctl. You'll probably hae o say

use IPC::SysV;

first to get the correct constant definitions.CMD is IPC_STAT, thenARG must be a variable that
will hold the returneghmid_ds structure. Returniike ioctl: undef for error; 'O but true" for zero;
and the actual return value otherwise. See alSysV IPC’ in perlipc and IPC::SysV
documentation.

shmgeKEY,SIZE,FLAGS
Calls the System WC function shmget. Returns the shared memory segment ichdaf on error
See also “Sys\UPC" i n perlipc andIPC::SysV documentation.

shmreadD,VAR,POS,SIZE

shmwritelD,STRING,POS,SIZE
Reads or writes the System V shared memogyneatID starting at positiorrOSfor size SIZE by
attaching to it, coging in/out, and detaching from it. When readingR must be a variable that will
hold the data read. When writing,STRING is too long, onlySIZE bytes are used; BTRING is too
short, nulls are written to fill ol8I1ZE bytes. Returnrue if successfuldlse on errorshmread(}aints
the variable. See als®YysV IPC" i n perlipc, IPC::SysV , and thelPC::Shareable module from
CPAN.

shutdownSOCKET,HOW
Shuts down a socket connection in the manner indicatemlay; which has the same interpretation as
in the syscall of the same name.

shutdown(SOCKET, 0); # | /we have stopped reading data
shutdown(SOCKET, 1); # | /we have stopped writing data
shutdown(SOCKET, 2); # | /we have stopped using this socket

This is useful with sockets when you want to tell the other side you're done writing but not done
reading, or vice ersa. It5 dso a more insistent form of close because it also disables the file
descriptor in apforked copies in other processes.

Returnsl for success; on erroreturnsundef if the first argument is not a valid filehandle, or returns
0 and set$! for ary other failure.

2:2 E)Ig?;urns the sine &XPR (expressed in radians). EXPRis omitted, returns sine &f .
For the irverse sine operation, you may use Math::Trig::asin function, or use this relation:
sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
sleepEXPR

perl v5.14.2 2014-02-04 147

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

148

sleep

Causes the script to sleep for (oe€) EXPR seconds, or foxer if no argument is gien. Returnghe
integer number of seconds actually slept.

May be interrupted if the process remsia sgnal such aSIGALRM

eval {
local $SIG{ALARM} = sub { die "Alarmi\n" };
sleep;
h
die $@ unless $@ eq "Alarm\n";
You probably cannot mixalarm andsleep calls, becausesleep is often implemented using
alarm .

On some older systems, it may sleep up to a full second less than what you requested, depending on
how it counts seconds. Most modern system&gs sleep the full amounfThey may appear to sleep

longer than that, lweever, because your process might not be scheduled riglaty an a kusy
multitasking system.

For delays of finer granularity than one second, the Time::HiRes module @r&iN, and starting
from Perl 5.8 part of the standard distribution) ides usleep() You may also use Peslfour-
argument version o$elect()leaving the first three guments undefined, or you might be able to use
thesyscall interface to accessetitimen(2) if your system supports it. See perlfag8 for details.

See also theosiXmodule'spause function.

socketSOCKET,DOMAIN,TYPE,PROTOCOL

Opens a socket of the specified kind and attaches it to filehamdl&ET. DOMAIN, TYPE, and
PROTOCOL are specified the same as for the syscall of the same némmeshould use Socket
first to get the proper definitions imported. See the examples'Siockets: Client/Sersr
Communicatiori’in perlipc.

On systems that support a close-areeflag on files, the flag will be set for thewlg opened file
descriptoras determined by the value of $"Bee “$°F” in perlvar.

socketpailSOCKETL,SOCKET2,DOMAIN, TYPE,PRTOCOL

Creates an unnamed pair of seikin the specified domain, of the specified typ@MAIN, TYPE,
andPROTOCOL are specified the same as for the syscall of the same name. If unimplemented, raises
an ception. Returngrue if successful.

On systems that support a close-areeflag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of &e “$"F" in perlvar.

Some systems defingdpe in terms ofsocketpair , in which a call topipe(Rdr, Wtr) is
essentially:

use Socket;

socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);

shutdown(Rdr, 1); # no more writing for reader

shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emulattpsdackisinglP
sockets to localhost if your system implements sockets but not socketpair.

SOrtSUBNAME LIST
SOrtBLOCK LIST
SOrtLIST

In list contet, this sorts th&IST and returns the sorted lisalue. Inscalar context, the behaviour of
sort() is undefined.

If SUBNAME or BLOCK is omitted,sort s in gdandard string comparison ordelf SUBNAME is
specified, it gres the name of a subroutine that returns argetdéess than, equal to, or greater tBan
depending on he the elements of the list are to be orderédihe <=> and cmp operators are
extremely useful in such routines$UBNAME may be a scalar variable name (unsubscripted), in
which case the value provides the name of (or a reference to) the actual subroutindrni@lase of

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

a SUBNAME, you can provide 8LOCK as an anonymous, in-line sort subroutine.

If the subroutines prototype is($$) , the elements to be compared are passed by refere@e &

for a normal subroutine. This is slower than unprototyped subroutines, where the elements to be
compared are passed into the subroutine as the package gldbbales$a and $b (see ®ample

belov). Notethat in the latter case, it is usually highly courierductve o declare$a and$b as
lexicals.

The values to be compared areajls passed by reference and should not be modified.

You dso cannot eit out of the sort block or subroutine usingyaof the loop control operators
described in perlsyn or withoto .

Whenuse locale is in efect, sort LIST sortsLIST according to the current collation locale.
See perllocale.

sort() returns aliases into the original list, much as a for boulec variable aliases the list elements.
That is, modifying an element of a list returnedsoyt() (for example, in doreach , mapor grep)
actually modifies the element in the original list. This is usually something tosdided when
writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement $bsdt algorithm was not stable, so
couldgo quadratic.(A stablesort preserves the input order of elements that compare efjtladugh
quicksorts run time is O(NlogN) whenveraged oer all arrays of length N, the time can be O(N**2),
quadraticbehavior for some inputs.)n 5.7, the quicksort implementation was replaced with a stable
meigesort algorithm whose worst-case behavior is O(Nlo@\ijt benchmarks indicated that for some
inputs, on some platforms, the original quicksort veedelr 5.8 has a sort pragma for limited control
of the sort. Its rather blunt control of the underlying algorithm may not persist into future Berls, b
the ability to characterize the input or output in implementation independgstquite probably will.
See the sort pragma.

Examples:

sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

now case-insensitively
@articles = sort {uc($a) cmp uc($b)} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

t his sorts the %age hash by value instead of key
using an in—line function
@eldest = sort { $age{$b} <=> $age{$a} } keys Yage;

sort using explicit subroutine name

sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}

@sortedclass = sort byage @class;

sub backwards { $b cmp $a }
@harry = qw(dog cat x Cain Abel);

perl v5.14.2 2014-02-04 149

PERLFUNC(1)

PerProgrammers Reference Guide PERLFUNC(1)

@george = gw(gone chased yz Punished Axed);
print sort @harry;
prints AbelCaincatdogx
print sort backwards @harry;
prints xdogcatCainAbel
print sort @george, 'to', @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

i nefficiently sort by descending numeric compare using
t he first integer after the first = sign, or the
whole record case-insensitively otherwise

my @new = sort {
($b =" /=(\d+))[0] <=> ($a =" /=(\d+)/)[0]

uc($a) cmp uc($h)
} @old;

same thing, but much more efficiently;

we'll build auxiliary indices instead

f or speed

my @nums = @caps = ();

for (@old) {
push @nums, (/=(\d+)/ ? $1 : undef);
push @caps, uc($);

}

my @new = @old[sort {
$nums[$b] <=> $nums[$a]
|
$caps[$a] cmp $caps[$b]
} 0 ..$#old
I;

same thing, but without any temps
@new =map {$_—>[0] }
sort { $b—>[1] <=> $a—>[1]
|
$a->[2] cmp $b—>[2]
} map {[$_, /=(\d+)/, uc($_)] } @old;

using a prototype allows you to use any comparison subroutine

as a s ort subroutine (including other package's subroutines)

package other;

sub backwards ($$) { $_[1] cmp $_[O]; } # $a and $b are not set here

package main;
@new = sort other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable’;
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

f orce use of mergesort (not portable outside Perl 5.8)
use sort'_mergesort’; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

Warning: syntactical care is required when sorting the list returned from a function. If you want to sort
the list returned by the function céithd_records(@key) , you can use:

150

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

@contact = sort { $a cmp $b } find_records @key;
@contact = sort +find_records(@key);
@contact = sort &find_records(@key);
@contact = sort(find_records(@key));

If instead you want to sort the arr@keywith the comparison routinfind_records() then you
can use:

@contact = sort { find_records() } @key;
@contact = sort find_records(@key);
@contact = sort(find_records @key);
@contact = sort(find_records (@key));

If you're using strict, younust notdeclare$a and$b as leicals. Thg are package globalsThat
means that if you're in thmain package and type

@articles = sort {$b <=> $a} @files;

then$a and$b are$main::a and$main::b (or$:a and$::b), butif you're in theFooPack
package, it the same as typing

@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behalf it returns inconsistent results (sometimes saying
$x[1] s less thar$x[2] and sometimes saying the opposite, fareple) the results are not well-
defined.

Because<=> returnsundef when either operand iaN (not-a-number), and also becaus®t

raises an exception unless the result of a comparison is defined, be careful when sorting with a
comparison function li&k$a <=> $b ary lists that might contain aN The following example

takes advantage thiaaN != NaN to eliminate anyNaNs from the input list.

@result =sort { $a<=>$b} grep{$_==9%_1} @input;

spliceARRAY or EXPROFFSET,LENGTH,LIST

spliceARRAY or EXPROFFSET,LENGTH

spliceARRAY or EXPROFFSET

spliceARRAY or EXPR
Remaores the elements designated OFFSETandLENGTH from an arrayand replaces them with the
elements ofLIST, if any. In list context, returns the elements remxb from the array In scalar
contet, returns the last element remed, orundef if no elements are reraed. Thearray grows or
shrinks as necessarlf OFFSETis neydive then it starts that far from the end of the arrdyt ENGTH
is omitted, remees everything from OFFSETonward. If LENGTH is negaive, removes the elements
from OFFSETonward except for —-LENGTH elements at the end of the artapoth OFFSETand
LENGTH are omitted, remas everything. If OFFSETIis past the end of the arralerl issues a
warning, and splices at the end of the array.

The following equialences hold (assumirg] == 0 and $#a >= $i)
push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = By splice(@a,$i,1,%y)

Example, assuming array lengths are passed before arrays:

perl v5.14.2 2014-02-04 151

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

152

sub aeq { # compare two list values
my(@a) = splice(@_,0,shift);
my(@Db) = splice(@_,0,shift);

return O unless @a == @b; # same len?
while (@a) {
return 0 if pop(@a) ne pop(@b);
}
return 1,

}
if (&aeq($len,@foo[l..$len],0+@bar,@bar)) { ... }

Starting with Perl 5.14splice can talke salarEXPR, which must hold a reference to an unblessed
array The argument will be dereferenced automaticalllgis aspect ofplice is considered highly
experimental. Thexact behaviour may change in a future version of Perl.

split /PATTERN/,EXPR,LIMIT

split /PATTERN/,EXPR

split /PATTERN/

split
Splits the stringEXPRinto a list of strings and returns that lidy default, empty leading fields are
presered, and empty trailing ones are deleted. (If all fields are erntimy are considered to be
trailing.)

In scalar context, returns the number of fields found.
If EXPR is omitted, splits thes_ string. If PATTERN is also omitted, splits on whitespace (after

skipping ay leading whitespace)Anything matchingPATTERN is taken to be a delimiter separating
the fields. (Note that the delimiter may be longer than one character.)

If LIMIT is specified and posit, it represents the maximum number of fieldsEX@R will be split
into, though the actual number of fields returned depends on the number oPAIMERN matches
within EXPR. If LIMIT is unspecified or zero, trailing null fields are stripped (which potential users of
pop would do well to remember)lf LIMIT is negaive, it is treated as if an arbitrarily lge LIMIT had
been specified. Note that splitting BXPRthat e/aluates to the empty stringvedys returns the empty
list, regardless of the IMIT specified.

A pattern matching the empty string (not to be confused with an empty péattewhich is just one
member of the set of patterns matching the empty string), EpIRR into individual charactersFor
example:

print join(":', split(/ */, 'hi there")), "\n";
produces the output 'h:i:t:h:e:r:e’.

As a special case faplit , the empty patterfi specifically matches the empty string; this is not be
confused with the normal use of an empty pattern to mean the last successful Swatohsplit a
string into individual characters, the following:

print join(":', split(//, 'hi there")), "\n";
produces the output 'h:i; :t:h:e:r:e’.

Empty leading fields are produced when there are pesiidth matches at the beginning of the

string; a zero-width match at the beginning of the string does not produce an empty field. For example:

print join(":', split(/(?=\w)/, 'hi there!"));

produces the output 'h:i :t:h:e:r:e!’. Empty trailing fields, on the other hand, are produced when there

is a match at the end of the string (and whanT is given and is not 0), rgardless of the length of
the match.For example:

print join(":', split(//, ‘hi there!’, 1)), "\n";
print join(":', split(AW/, 'hi there!', 1)), "\n";

produce the output 'h:i: :t:h:e:r:e:!:” and 'hi:there:’, respeatyi, both with an empty trailing field.

TheLIMIT parameter can be used to split a line partially

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

($login, $passwd, Sremainder) = split(/:/, $_, 3);

When assigning to a list, ifiMIT is omitted, or zero, Perl suppliesiMIT one larger than the number
of variables in the list, tovaid unnecessary ork. For the list abge LIMIT would have been 4 by
default. Intime critical applications it behe@es you not to split into more fields than you really need.

If the PATTERN contains parentheses, additional list elements are created from each matching
substring in the delimiter.

split(/([,-1)/, "1-10,20", 3);
produces the list value
(1,'-, 10, 20)

If you had the entire header of a normal Unix email messafjbaader , you could split it up into
fields and their values this way:

$header =" s/\n(?=\s)//g; # f ix continuation lines

%hdrs = (UNIX_FROM => split "(\S*?):\s*/m, $header);
The patterrfPATTERN/ may be replaced with arxgression to specify patterns that vary at runtime.
(To do untime compilation only once, uskvariable/o J)
As a special case, specifyindPATTERN of space'("') will split on white space just aplit with
no arguments doesThus, split(" ") can be used to emulatavk’s default behaior, whereas
split(/ /) will give you as maw initial null fields (empty string) as there are leading spages.
split onAs+/ s like asplit('") except that ay leading whitespace produces a null first
field. Asplit with no arguments really doesplit(' ', $) internally.

A PATTERNoOf "/ s treated as if it werEé/m , since it isnt much use otherwise.
Example:

open(PASSWD, '/etc/passwd’);
while (<PASSWD>) {
chomp;
($login, $passwd, $uid, $gid,
$gcos, $home, $shell) = split(/:/);
#...
}

As with regular pattern matching,yaoapturing parentheses that are not matchedsjolit() will
be set taundef when returned:

@fields = split /(A)|B/, "1A2B3";
@ieldsis (1, 'A", 2, undef, 3)

sprintf FORMAT, LIST
Returns a string formatted by the uspiahtf ~ corventions of the C library functiogprintf . See
belov for more details and sesprintf(3) or printf(3) on your system for an explanation of
the general principles.

For example:
Format number with up to 8 leading zeroes
$result = sprintf("%608d", $number);
Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", Snumber);

Perl does itswn sprintf formatting: it emulates the C functiaprintf(3), but doesr’use it except
for floating-point numbers, andven then only standard modifiers are alkd. Non-standard
extensions in your locaprintf(3) are therefore urailable from Perl.

Unlike printf , sprintf ~ does not do what you probably mean when you pass it an array as your
first argument. The array isvgh scalar context, and instead of using the Oth element of the array as
the format, Perl will use the count of elements in the array as the format, which is aveosseatul.

perl v5.14.2 2014-02-04 153

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Perl'ssprintf permits the following uwiersally-known cowersions:

%% a percent sign

%cC a character with the given nhumber

%s a string

%d a signed integer, in decimal

%u an unsigned integer, in decimal

%0 an unsigned integer, in octal

%X an unsigned integer, in hexadecimal

%e a floating—point number, in scientific notation

%f a floating—point number, in fixed decimal notation
%g a floating—point number, in %e or %f notation

In addition, Perl permits the following widely-supported\@sions:

%X like %X, but using upper—case letters

%E like %e, but using an upper—case "E"

%G like %g, but with an upper—case "E" (if applicable)

%b an unsigned integer, in binary

%B like %b, but using an upper—case "B" with the # flag

%p a pointer (outputs the Perl value's address in hexadecimal)

%n special: *stores* the number of characters output so far
into the next variable in the parameter list

Finally, for backvard (and we do mealbackward’) compatibility, Perl permits these unnecessan b
widely-supported carersions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%0 a synonym for %lo
%F a synonym for %f

Note that the number okponent digits in the scientific notation produced’by %E %gand%Gor

numbers with the modulus of the exponent less than 100 is system-dependent: it may be three or less
(zero-padded as necessary). In otherds, 1.23 times ten to the 99th may be eitHeR3e99’ or
“1.23e099".

Between the%and the format letteryou may specify sexal additional attributes controlling the
interpretation of the format. In ordehese are:

format parameter index
An explicit format parameter index, such 2&. By default sprintf will format the next unused
argument in the list, but this allows you toadke arguments out of order:

printf '%2%d %1$d', 12, 34; # prints "34 12"
printf '%3%$d %d %1%$d', 1, 2, 3; # prints"31 1"
flags
one or more of:
space prefix non—negative number with a space
+ prefix non—negative number with a plus sign

- | eft—justify within the field

0 use zeros, not spaces, to right—justify

ensure the leading "0" for any octal,
prefix non-zero hexadecimal with "0x" or "0X",
prefix non—zero binary with "0b" or "0B"

For example:

154 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

printf '<% d>', 12; # prints "< 12>"
printf '<%-+d>", 12; # prints "<+12>"
printf '<%6s>', 12; # prints"< 12>"
printf '<%-6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o0>", 12; # prints "<014>"
printf '<%#x>', 12; # prints "<Oxc>"
printf '<%#X>', 12; # prints "<OXC>"
printf '<%#b>", 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"
When a space and a plus sign axegas he flags at once, a plus sign is used to prefix a pesiti
number.
printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision areegiin the %ocorversion, the precision is incremented isit’
necessary for the leading “0”.

printf '<%#.50>', 012; # prints "<00012>"

printf '<%#.50>', 012345; # prints "<012345>"

printf '<%#.00>', 0; # prints "<0>"
vector flag

This flag tells Perl to interpret the supplied string as a vector gfaérgeone for each character in

the string. Perl applies the format to each integer in turn, then joins the resulting strings with a
separator (a dat by default). This can be useful for displaying ordinal values of characters in
arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n“, $°V; # Perl's version

Put an asterisk before thes to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # | Pv6 address
printf "bits are %0*v8b\n", " ", $bits; # r andom bitstring

You can also explicitly specify the argument number to use for the join string using something
like *2$v ; for example:

printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":"; # 3 | Pv6 addresses

(minimum) width
Arguments are usually formatted to be only as wide as required to displayghe/aue. You
can oeride the width by putting a number here, or get the width from thkeargument (with
*) or from a specified argument (e.g., Wit):

printf "<%s>", "a"; # prints "<a>"

printf "<%6s>", "a"; # prints "< a>"

printf "<%*s>", 6, "a"; # prints "< a>"

printf "<%*2$s>", "a", 6; # prints "< a>"

printf "<%2s>", "long"; # prints "<long>" (does not truncate)

If a field width obtained through is negaive, it has the same effect as theflag: left-
justification.

precision, or maximum width
You can specify a precision (for numeric eersions) or a maximum width (for string
conversions) by specifying a followed by a numberFor floating-point formats»eeptg andG
this specifies he mary places right of the decimal point to shdthe default being 6).For
example:

perl v5.14.2 2014-02-04 155

PERLFUNC(1)

PerProgrammers Reference Guide

t hese examples are subject to system—specific variation

printf '<%f>', 1;

printf '<%.1f>', 1;
printf '<%.0f>', 1;
printf '<%e>', 10;

prints "<1.000000>"

prints "<1.0>"

prints "<1>"

prints "<1.000000e+01>"

printf '<%.1e>', 10; # prints "<1.0e+01>"

[TPRE]

PERLFUNC(1)

For “‘g’’ and “G’’, this specifies the maximum number of digits tovghiacluding those prior to
the decimal point and those after it; for example:

These examples are subject to system—specific variation.

printf '<%g>', 1; # prints "<1>"
printf '<%.10g>", 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>", 100; # prints "<le+02>"

printf '<%.2g>', 100.01; # prints "<le+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"

For integer cowersions, specifying a precision implies that the output of the number itself should

be zero-padded to this width, where the 0 flag is ignored:

printf '<%.6d>", 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%-10.6d>", 1; # prints "<000001 >"
printf '<%10.6d>", 1; # prints "< 000001>"
printf '<%010.6d>'", 1; # prints "< 000001>"
printf '<%+10.6d>", 1; # prints "< +000001>"
printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%-10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>", 1; # prints "< 000001>"
printf '<%#10.6x>", 1; # prints "< 0x000001>"

For string corversions, specifying a precision truncates the string to fit the specified width:

printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using

prints "<000001>"
prints "<000001>"

printf '<%.6x>', 1;
printf '<%.*x>'", 6, 1;

If a precision obtained throughis negative, it counts as having no precision at all.
printf '<%.*s>', 7, "string";
printf '<%.*s>', 3, "string";
printf '<%.*s>', 0, "string";
printf '<%.*s>', -1, "string";

prints "<string>"
prints "<str>"

prints "<>"

prints "<string>"

printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', -1, O; # prints "<0>"

You cannot currently get the precision from a specified nuntdoiit is intended that this will be
possible in the future, for example usifgs$:

printf "<%.*2$x>", 1, 6; # | NVALID, but in future will print "<000001>"
size
For numeric comersions, you can specify the size to interpret the number aslusingv, q, L,
orll . Forinteger comersions i u 0 x X b i D U O), numbers are usually assumed to be

156 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

perl v5.14.2

whatever the default integer size is on your platform (usually 32 or 64 bits), but yoweaide
this to use instead one of the standard C types, as supported by the compiler used to build Perl:

hh interpret integer as C type "char" or "unsigned char"
on Perl 5.14 or later
h i nterpret integer as C type "short" or "unsigned short"

] i ntepret integer as C type "intmax_t" on Perl 5.14
or later, and only with a C99 compiler (unportable)
| i nterpret integer as C type "long" or "unsigned long"
q, L, or Il interpret integer as C type "long long", "unsigned long long",
or "quad" (typically 64-bit integers)
t i ntepret integer as C type "ptrdiff_t" on Perl 5.14 or later
z i ntepretinteger as C type "size_t" on Perl 5.14 or later

As of 5.14, none of these raises arception if thg are not supported on your platform.
However, if warnings are enabled, a warning of fwntf warning class is issued on an
unsupported carersion flag. Should you instead prefer an exception, do this:

use warnings FATAL => "printf";

If you would like to know about a version dependgnbefore you start running the program, put
something lile this at its top:

use 5.014; # f or hhij/t/z/ printf modifiers
You can find out whether your Perl supports quads via Config:

use Config;

if ($Config{useb4bitint} eq "define" || $Config{longsize} >= 8) {
print "Nice quads\n";

}

For floating-point comersions € f g E F G), numbers are usually assumed to be thaudief
floating-point size on your platform (double or long double), but you can force “long double’
with g, L, or Il if your platform supports them. You can find out whether your Perl supports
long doubles via Config:

use Config;
print "long doubles\n" if $Config{d_longdbl} eq "define";

You can find out whether Perl considers “long doubie’be the default floating-point size to use
on your platform via Config:

use Config;

if ($Config{uselongdouble} eq "define") {
print "long doubles by default\n®;

}

It can also be that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&
print "doubles are long doubles\n";

The size specifie¥ has no effect for Perl code, but is supported for compatibility Méticode.
It means “use the standard size for a Perl integer or floating-point number”, which is the default.

order of arguments
Normally, sprintf() takes the n&t unused argument as the value to format for each format
specification. If the format specification us&sto require additional arguments, these are
consumed from the gmument list in the order thieappear in the format specificatidieforethe
value to format. Where an gument is specified by an explicit index, this does not affect the
normal order for the argumentsjea when the explicitly specified indevould have been the
next argument.

So:

2014-02-04 157

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

printf "<%*.*s>", $a, $b, $c;
uses$a for the width,$b for the precision, anfic as the value to format; while:
printf "<%*1$.*s>", $a, $b;
would use$a for the width and precision, a as the value to format.

Here are some more examples; bera that when using an explicit index, tliemay need
escaping:

printf "%2\$d %d\n", 12, 34;
printf "%2\$d %d %d\n", 12, 34;
printf "%3\$d %d %d\n", 12, 34, 56; will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; will print " 34 12\n"

If use locale is in effect andPOSIX::setlocale()has been called, the character used for the
decimal separator in formatted floating-point numbers is affected byQheUMERIC locale. See
perllocale andPOSIX.

SQrtEXPR
sgrt Return the positie gjuare root oEXPR. If EXPRis omitted, use$. Works only for non-ngative
operands unless yoi€ loaded théviath::Complex module.

will print "34 12\n"
will print "34 12 34\n"

HHHHF

use Math::Complex;
print sqrt(—4); # prints 2i

srandeEXPR
srand
Sets and returns the random number seed fomtite operator.

The point of the function is tdseed’ the rand function so thatrand can produce a diérent
sequence each time you run your program. When called with a parasnatel uses that for the
seed; otherwise it (semi-)randomly chooses a sbee@ither case, starting with Perl 5.14, it returns
the seed.

If srand() is not called rplicitly, it is called implicitly without a parameter at the first use of the
rand operator Howeve, this was not true of versions of Perl before 5.004, so if your script will run
under older Perl versions, it should cathnd ; otherwise most programs warall srand() at all.

But there are a fe situations in recent Perls where programs are likely to want te@ad . One is

for generating predictable results generally for testing orugtghg. There, you use
srand($seed) , with the same$seed each time. Another other case is where you need a
cryptographically-strong starting point rather than the generally acceptable default, which is based on
time of day processiD, and memory allocation, or thielev/urandondevice if available. And still

another case is that you may want to sedind() after afork() to avoid child processes sharing

the same seed value as the parent (and consequently each other).

Do not call srand() (i.e., without an argument) more than once per procEks. internal state of
the random number generator should contain more gntigm can be provided by arseed, so
callingsrand() again actuallyosesrandomness.

Most implementations ofrand take an hteger and will silently truncate decimal numberBhis
meanssrand(42) will usually produce the same resultssaand(42.1) . To be sfe, aays
passsrand an integer.

In versions of Perl prior to 5.004 the default seed was just the ctiment This isnt a particularly
good seed, so mgrold programs supply theimm seed value (oftetime ~ $$ ortime ™ ($$
+ ($$ << 15))), butthat isrt necessary anmore.

For cryptographic purposes, waver, you need something much more random than the default seed.
Checksumming the compressed output of one or more rapidly changing operating system status
programs is the usual methoHor example:

srand (time ~ $$ ~ unpack "%L*", "ps axww | gzip —f");

If you're particularly concerned with this, search tbieaN for random number generator modules
instead of rolling out your own.

158 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Frequently called programs (likaGi scripts) that simply use
time ~ $$

for a seed can fall pyeo the mathematical property that
a’b == (a+1)"(b+1)

one-third of the time. So dardo that.

A typical use of the returned seed is for a test program which has tgoasrabinations to test
comprehensily in the time &ailable to it each runlt can test a random subset each time, and should
there be adilure, log the seed used for that run so that it can later be used to reproduce the same
results.

statFILEHANDLE

statEXPR

statDIRHANDLE

stat Returns a 13—-element list giving the status info for a file, either the file openEW&H#ANDLE or
DIRHANDLE, or named byEXPR If EXPRis omitted, it stat$ (not _!). Returnsthe empty list if
stat fails. Typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev, $size,
$atime,$mtime,$ctime,$blksize,$blocks)
= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

0 dev device number of filesystem

1ino inode number

2 nmode file mode (type and permissions)

3 nlink number of (hard) links to the file

4 uid numeric user ID of file's owner

5 gid numeric group ID of file's owner

6 rdev the device identifier (special files only)

7 size total size of file, in bytes

8 atime last access time in seconds since the epoch

9 nmtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)

11 blksize preferred block size for file system 1/O
12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 18¥O.)

(*) Not all fields are supported on all filesystem types. Notahky ctime field is non-portablen
particular you cannot gpect it to be a “creation time”; see “Files and Filesystérrsperlport for
details.

If stat is passed the special filehandle consisting of an underline, no stat is dbtiee burrent
contents of the stat structure from the Eat , Istat , or filetest are returned. Example:

if (—x $file && (($d) = stat()) && $d < 0) {
print "$file is executable NFS file\n";
}

(This works on machines only for which the device numbergstive underNFS.)

Because the mode contains both the file type and its permissions, you should frilaskilef type
portion and (s)printf using'&00" if you want to see the real permissions.

$mode = (stat($filename))[2];
printf "Permissions are %040\n", $mode & 07777;

In scalar conte, stat returns a boolean value indicating success or failure, and, if successful, sets
the information associated with the special filehandle

The File::stat module provides a @enient, by-name access mechanism:

perl v5.14.2 2014-02-04 159

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use File::stat;

$sb = stat($filename);

printf "File is %s, size is %s, perm %040, mtime %s\n",
$filename, $sb—>size, $sb—>mode & 07777,
scalar localtime $sb—>mtime;

You can import symbolic mode constang (F*) and functions §_IS*) from the Fcntl module:

use Fentl :mode’;
$mode = (stat($filename))[2];
$user_rwx ($mode & S_IRWXU) >> 6;

$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH;

printf "Permissions are %040\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;
$is_directory = S_ISDIR($mode);

You could write the last te using the—u and-d operators. CommonlgwailableS_IF* constants
are:

Permissions: read, write, execute, for user, group, others.
S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not necessarily all are available on your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.

S_IREAD S_IWRITE S_IEXEC
and theS_IF* functions are

S_IMODE($mode) the part of $mode containing the permission bits
and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit-anded with (for example) S_IFREG
or with the following functions

The operators —f, —d, I, -b, —c, —p, and -S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct —X operator counterpart, but for the first one
t he —g operator is often equivalent. The ENFMT stands for
r ecord flocking enforcement, a platform—dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

160 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

See your natie chmod(2) andstat(2) documentation for more details about $h¢ constants. @ get
status info for a symbolic link instead of the target file behind the link, usstéihe function.

stateEXPR

stateTYPE EXPR

stateEXPR: ATTRS

stateTYPE EXPR: ATTRS
state declares a lexically scoped variable, juse liky does. Havever, those variables will ner be
reinitialized, contrary to lexical ariables that are reinitialized each time their enclosing block is
entered.

state variables are enabled only when thse feature "state" pragma is in déct. See
feature.

studySCALAR

study
Takes extra time to StudySCALAR ($_ if unspecified) in anticipation of doing mapattern matches
on the string before it is Remodified. This may or may notwatme, depending on the nature and
number of patterns you are searching and the distribution of character frequencies in the string to be
searched; you probably want to compare run times with and without it to see whaskers Those
loops that scan for mgrshort constant strings (including the constant parts of more campatterns)
will benefit most. You may hare aly onestudy active & a time: if you study a different scalar the
first is “unstudied’. (Theway study works is this: a linked list ofwery character in the string to be
searched is made, so we lidor example, where all th&' characters are. From each search
string, the rarest character is selected, based on some static fyetgies constructed from some C
programs and Englishxe Onlythose places that contain this “raréstiaracter are examined.)

For example, here is a loop that inserts ingieoducing entries before wiine containing a certain

pattern:
while (<>) {
study;
print ".IX foo\n" if \bfoo\b/;
print ".IX bar\n" if Abbar\b/;
print ".IX blurfi\n" if Abblurfl\b/;
..
print;
}
In searching foA\bfoo\b/ , only locations in$_ that contairf will be looked at, becaudeis rarer

thano. In general, this is a big win except in pathological cases. The only question is whethes it sa
you more time than it took to build the linked list in the first place.

Note that if you hee look for strings that you donknow till runtime, you can build an entire loop
as a string andval that to aoid recompiling all your patterns all the tim&ogether with undefining
$/ to input entire files as one record, this can be quite fast, @ftéer fthan specialized programslik
fgrep(1). Thefollowing scans a list of files@files) for a list of words @words), and prints out
the names of those files that contain a match:

$search = ‘while (<>) { study;";
foreach $word (@words) {
$search .= "++\$seen{\$ARGV} if N\b$word\\b/;\n";

}
$search .="}";
@ARGV = @files;
undef $/;
eval $search; # t his screams
$/="\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {
print $file, "\n";
}

perl v5.14.2 2014-02-04 161

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

SUbNAME BLOCK

SubNAME (PROTO) BLOCK

SUbNAME : ATTRS BLOCK

SUbNAME (PROTO) : ATTRS BLOCK
This is subroutine definition, not a real functiper se Without a BLOCK it's just a forvard
declaration. WWhout aNAME, it's an aorymous function declaration, so does return a value: the
CODET ef of the closure just created.

See perlsub and perlref for details about subroutines and references; see attributes and
Attribute::Handlers for more information about attributes.

substrEXPR OFFSET,LENGTH,REPLACEMENT

substrEXPR OFFSET,LENGTH

SubstrEXPR OFFSET
Extracts a substring out &XPR and returns it. First character is afset0 (or whateer you've st
$[to (but <don’t do that)). If OFFSETis negaive (or more preciselyless tharf[), starts thatdr
back from the end of the strindf LENGTH is omitted, returnsverything through the end of the
string. IfLENGTH is negdive, leases that mary characters dfthe end of the string.

my $s = "The black cat climbed the green tree";

my $color = substr $s, 4, 5; # black

my $middle = substr $s, 4, —11; # black cat climbed the
my $end = substr $s, 14; # climbed the green tree
my S$tail = substr $s, —4; # tree

my $z = substr $s, -4, 2; #tr

You can use thesubstr()function as an Ivalue, in which caEXPR must itself be an Blue. Ifyou
assign something shorter thaBNGTH, the string will shrink, and if you assign something longer than
LENGTH, the string will grev to accommodate it.To keep the string the same length, you may need to
pad or chop your value usisgrintf

If OFFSETandLENGTH specify a substring that is partly outside the string, only the part within the
string is returned.If the substring is beyond either end of the strghstr()returns the undefined
value and produces aafning. Wherused as an Ivalue, specifying a substring that is entirely outside
the string raises arxeeption. Heres an éample showing the behavior for boundary cases:

my $name = ‘fred’;

substr($name, 4) = 'dy"; # $name is now 'freddy'

my $null = substr $name, 6, 2; # r eturns " (no warning)

my $oops = substr $name, 7; # r eturns undef, with warning
substr($name, 7) = 'gap’; # r aises an exception

An alternatve © using substr()as an Ivalue is to specify the replacement string as the gitimant.
This allows you to replace parts of thkPRand return what was there before in one operation, just as
you can withsplice()

my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # climbed
$s is n ow "The black cat jumped from the green tree"

Note that the Ivalue returned by the threguanent version o$ubstr()acts as a 'magic bullet’; each
time it is assigned to, it remembers which part of the original string is being modified; for example:

$x ='1234",;
for (substr($x,1,2)) {
$ =a} print $x,"\n"; # prints 1la4
$ ='xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_='pg; print $x,"\n"; # prints 5pq9
}

Prior to Perl version 5.9.1, the result of using an Ivalue multiple times was unspecified.

162 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

symlink OLDFILE,NEWFILE
Creates a ne filename symbolically linked to the old filenamReturnsl for successQ otherwise.
On systems that dansupport symbolic links, raises araeption. D check for that, useval:

$symlink_exists = eval { symlink("",""); 1 };

syscallNUMBER, LIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, raisex@ption. Thearguments are interpreted as
follows: if a given agument is numeric, the argument is passed as an int. If not, the pointer to the
string value is passedYou ae responsible to maksure a string is prex¢ended long enough to
receve any esult that might be written into a strinyou can't use a string literal (or other read-only
string) as an argument ®&yscall because Perl has to assume that siring pointer might be
written through. If your integer arguments are not literals and mve been interpreted in a
numeric context, you may need to dildo them to force them to look Bkrumbers. Thiemulates
thesyswrite function (or vice versa):

require 'syscall.ph’; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only Huments to your syscall, which in practice should
(usually) suffice.

Syscall returns whater value returned by the system call it calléthe system calldils, syscall
returns—1 and setsp! (errno). Notethat some system calésin legitimately return—-1. The proper
way to handle such calls is to assi§t=0 before the call, then check thalwe of$! if syscall
returns-1.

Theres a poblem withsyscall(&SYS_pipe) . it returns the file number of the read end of the
pipe it creates, but there is no way to rewidhe file number of the other en&dou can aoid this
problem by usingipe instead.

sysoperFILEHANDLE,FILENAME,MODE

sysoperFILEHANDLE,FILENAME,MODE,PERMS
Opens the file whose filename isvei by FILENAME, and associates it witlFILEHANDLE. If
FILEHANDLE is an &pression, its value is used as the real filehandle wanted; an undefined scalar will
be suitably autavified. This function calls the underlying operating systeoger(2) function with
the parametersILENAME, MODE, and PERMS

The possible values and flag bits of theDE parameter are system-dependenty tre available via
the standard modulecntl . See the documentation of your operating systempen(2) syscall to see
which values and flag bits arealable. You may combine seral flags using th¢ —operator.

Some of the most common values @eRDONLYor opening the file in read-only mode, WRONLY
for opening the file in write-only mode, afd RDWRr opening the file in read-write mode.

For historical reasons, some values work on almestyesystem supported by Perl: 0 means read-
only, 1 means write-onlyand 2 means read/writeWe know that these values doot work under
0S/390& VM/ESA Unix and on the Macintosh; you probably domant to use them in mecode.

If the file named byFILENAME does not exist and thapen call creates it (typically becauséODE
includes theD_CREATag), then the value ?FERMSspecifies the permissions of the newly created
file. If you omit the PERMS agument tosysopen , Perl uses the octalalue 0666. These
permission values need to be in octal, and are modified by your peozgsshtumask.

In mary systems theO_EXCLflag is aailable for opening files in>&lusive node. Thisis not
locking: exclusiveness means here that if the file alreagligts, sysopen(fails. O _EXCLmay not
work on network filesystems, and has no effect unlessSOtheREATflag is set as well.Setting
O_CREAT|O_EXClLprevents the file from being opened if it is a symbolic lirk.does not protect
against symbolic links in the fipath.

Sometimes you may want to truncate an alreadgisting file. This can be done using t@e TRUNC
flag. Thebehavior ofO_TRUNG@vith O_RDONLYs undefined.

You should seldom if eer use 0644 as argument tgysopen , because that takesvay the usess

perl v5.14.2 2014-02-04 163

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

164

option to hae a nore permissie unask. Betteto omit it. See theerlfunc(1l) entry onumask for
more on this.

Note thatsysopen depends on thilopen()C library function. On mapUnix systemsfdopen()is

known to fail when file descriptors exceed a certain value, typically 255. If you need more file
descriptors than that, consider rebuilding Perl to usesti® library, or perhaps using the
POSIX::open(function.

See perlopentut for a kindgentler explanation of opening files.

sysread-ILEHANDLE,SCALAR,LENGTH,OFFSET
sysread-ILEHANDLE,SCALAR,LENGTH

Attempts to read ENGTH bytes of data intoariableSCALAR from the specifiedfILEHANDLE, using
theread(2). It bypassesufferediO, so mixing this with other kinds of readprint , write , seek,

tell , oreof can cause confusion because the perlio or stdio layers usufiflystdata. Returns the
number of bytes actually rea@d,at end of file, or undef if there was an error (in the latter $asis

also set). SCALAR will be grown or shrunk so that the last byte actually read is the last byte of the
scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. Anegdive OFFSETspecifies placement at that matharacters counting backwards from

the end of the stringA positive OFFSETgreater than the length BCALAR results in the string being
padded to the required size with" bytes before the result of the read is appended.

There is nosyseof()function, which is ok, sinceof() doesnt work well on device files (li& tys)
anyway Usesysread()and check for a return value for 0 to decide whether you're done.

Note that if the filehandle has been markedu#f Unicode characters are read instead of bytes
(the LENGTH, OFFSET and the return value ofysread()are in Unicode characters)The
:encoding(...) layer implicitly introduces theutf8 layer See ‘binmode’, ‘‘open’, and the
open pragma, open.

sysseelFILEHANDLE,POSITION,WHENCE

SetsFILEHANDLE's system position in bytes usingeek(2). FILEHANDLE may be an xpression
whose alue gves the name of the filehandle. The values\WHENCE are0 to set the n& position to
POSITION 1 to set the it to the current position pRGSITION and 2 to set it toEOF plus POSITION

typically negative.

Note thein bytes even if the filehandle has been set to operate on characters (for example by using the
:encoding(utf8) I/O layer), tell() will return byte offsets, not character offsets (because
implementing that would rendsysseek(linacceptably slow).

sysseek(pypasses normallfferediO, so mixing it with reads other thasysread (for example<>
orread() print ,write ,seek,tell ,oreof may cause confusion.

For WHENCE, you may also use the constaBEEK_SET SEEK_CURand SEEK_END(start of the
file, current position, end of the file) from the Fcntl modulse of the constants is also more portable
than relying on 0, 1, and Zor example to define a “systellf unction:

use Fcntl 'SEEK_CUR;
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the ne position, or the undefined value aailfire. Aposition of zero is returned as the string
"0 but true" ; thussysseek returns true on success and false on failure, yet you can still easily
determine the v position.

systemLIST
SystemPROGRAM LIST

Does exactly the same thing esec LIST , except that a fork is done first and the parent process
waits for the child process tocié. Note that argument processingnies depending on the number of
arguments. Ifthere is more than one argumentLisT, or if LIST is an array with more than one
value, starts the programvgn by the first element of the list withguments gien by the rest of the

list. If there is only one scalar argument, thguanent is checked for shell metacharacters, and if there
are an, the entire argument is passed to the systeanrhmand shell for parsing (this Akin/sh

—c on Unix platforms, but varies on other platforms). If there are no shell metacharacters in the

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

argument, it is split into words and passed directigxecvp , which is more efficient.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output beforeeration that
may do a fork, but this may not be supported on some platforms (see pefljpobd.safe, you may
need to se$| (PAUTOFLUSH in English) or call thautoflush() method oflO::Handle on
ary open handles.

The return value is the exit status of the program as returned lathecall. To get the actual»at
value, shift right by eight (see belp. See also‘exec”. This is not what you want to use to capture
the output from a command; for that you should use merely backtickg/or, as dscribed in

“ STRING" in perlop. Returnvalue of —1 indicates aaflure to start the program or an error of the
wait(2) system call (inspect $! for the reason).

If you'd like to makesystem (and maw other bits of Perl) die on erronavea look at the autodie
pragma.

Like exec , system allows you to lie to a program about its name if you useyséeem PROGRAM
LIST syntax. Agin, see “&ec”.

Since SIGINT and SIGQUIT are ignored during thexecution of system , if you expect your
program to terminate on receipt of these signals you will need to arrange to do so yourself based on
the return value.

@args = ("command", "argl", "arg2");
system(@args) ==
or die "system @args failed: $?"

If you'd like to nanually inspectsystem ’s failure, you can check all possiblailire modes by
inspecting$? like this:

if ($7 ==-1){
print "failed to execute: $!\n";
}

elsif ($? & 127) {
printf "child died with signal %d, %s coredump\n”,
($? & 127), ($? & 128) ? 'with' : 'without’;
}
else {
printf "child exited with value %d\n", $? >> 8;
}

Alternatively, you may inspect the value $f'CHILD_ERROR_NATIVE} with theW*() calls from
thePOSIXmodule.

Whensystem ’'s arguments arexacuted indirectly by the shell, results and return codes are subject to
its quirks. See"STRING" in perlop and “eec” for details.

Sincesystem does dork andwait it may affect aSIGCHLDhandler See perlipc for details.

syswriteFILEHANDLE,SCALAR,LENGTH,OFFSET

syswriteFILEHANDLE,SCALAR,LENGTH

syswriteFILEHANDLE,SCALAR
Attempts to writeLENGTH bytes of data fromariable SCALAR to the specifietFILEHANDLE, using
write (2). If LENGTH is not specified, writes Whol@CALAR. It bypasses Wiffered IO, so mixing this
with reads (other thagysread()) , print , write , seek, tell , or eof may cause confusion
because the perlio and stdio layers usualiffelb data. Returns the number of bytes actually written,
or undef if there was an error (in this case the erragiable$! is also set). If thekENGTH is
greater than the dat&alable in theSCALAR after theOFFSET, only as much data as isalable will
be written.

An OFFSETmay be specified to write the data from some part of the string other thargitheirog
A negdive OFFSET specifies writing that mancharacters counting baclands from the end of the
string. IfSCALAR s of length zero, you can only use@RFSETof 0.

WARNING: If the filehandle is madd :utf8 , Unicode characters encoded UTF-8 are written
instead of bytes, and the&ENGTH, OFFSET, and return value obyswrite()are in (UTF8-encoded

perl v5.14.2 2014-02-04 165

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

Unicode) characters.The :encoding(...) layer implicitly introduces the:utf8 layer.
Alternately if the handle is not marked with an encoding you attempt to write characters with code
points wer 255, raises anxeeption. Seé binmode”, “open”, and theopen pragma, open.

tell FILEHANDLE

tell Returns the current positian bytesfor FILEHANDLE, or —1 on eror. FILEHANDLE may be an
expression whose valuevgs the name of the actual filehandlé. FILEHANDLE is omitted, assumes
the file last read.

Note thein bytes even if the filehandle has been set to operate on characters (for example by using the
:encoding(utf8) open layer)tell() will return byte offsets, not character offsets (because that
would renderseek(Jandtell() rather slow).

The return value ofell() for the standard streamsdikhe STDIN depends on the operating system: it
may return —1 or something elsell() on pipes, fifos, and sockets usually returns —1.

There is naystell function. Usesysseek(FH, 0, 1) for that.

Do not usetell() (or other liffered 1/O operations) on a filehandle that has been manipulated by
sysread()syswrite() or sysseek() Those functions ignore the buffering, whiédl() does not.

telldir DIRHANDLE
Returns the current position of tmeaddir routines onDIRHANDLE. Value may be gen to
seekdir to access a particular location in a directotglidir has the same veats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST

This function binds aariable to a package class that will provide the implementation foatfebie.
VARIABLE is the name of the variable to be enchant@lASSNAME is the name of a class
implementing objects of correct typdny additional arguments are passed to rtiegr method of the
class (meaningTIESCALAR, TIEHANDLE TIEARRAY, or TIEHASH). Typically these are
arguments such as might be passed todthra_open() function of C. The object returned by the
new method is also returned by ttie function, which would be useful if youamt to access other
methods iICLASSNAME.

Note that functions such &sys andvalues may return huge lists when used on large objects, lik
DBM files. You may prefer to use tleach function to iterate wer such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File', 'fusr/lib/news/history', 1, 0);
while (($key,$val) = each %HIST) {
print $key, ' ="', unpack('L',$val), "\n";
}

untie(%HIST);
A class implementing a hash shouldi@#e following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this

EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this

UNTIE this

A class implementing an ordinary array shouldehtae following methods:

166 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

TIEARRAY classname, LIST
FETCH this, key

STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this

PUSH this, LIST

POP this

SHIFT this

UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DESTROY this

UNTIE this

A class implementing a filehandle shouldiédhe following methods:

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this

GETC this

WRITE this, scalar, length, offset
PRINT this, LIST

PRINTF this, format, LIST
BINMODE this

EOF this

FILENO this

SEEK this, position, whence
TELL this

OPEN this, mode, LIST

CLOSE this

DESTROY this

UNTIE this

A class implementing a scalar shouldiddhe following methods:

TIESCALAR classname, LIST
FETCH this,

STORE this, value
DESTROY this

UNTIE this

Not all methods indicated ab® reed be implemented. See perltie, Tie::Hasé:;:Array, Tie::Scalar,
and Tie::Handle.

Unlike dbmopen, thetie function will notuse orrequire a module for you; you need to do that
explicitly yourself. See DB_File or theonfigmodule for interestingje implementations.

For further details see perltie, “tiedhRIABLE" .

tied VARIABLE
Returns a reference to the object underlWAgRIABLE (the same value that was originally returned
by thetie call that bound the variable to a packag@eturns the undefined valueViRIABLE isn't
tied to a package.

time
Returns the number of non-leap seconds since wdraiene the system considers to be the epoch,
suitable for feeding tgmtime andlocaltime . On nost systems the epoch is 00:0000C,
January 1, 1970; a prominent exception being ®aclassic which uses 00:00:00, January 1, 1904
in the current local time zone for its epoch.

For measuring time in better granularity than one second, use the Time::HiRes module from Perl 5.8
onwards (or fromCPAN before then), grif you hare gettimeofday(2), you may be able to use the
syscall interface of Perl. See perlfaq8 for detalils.

perl v5.14.2 2014-02-04 167

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

For date and time processing look at the gneaglated modules oGPAN. For a compreheng cate
and time representation look at the DateTime module.

times
Returns a four-element listwiing the user and system times in seconds for this process yaexitad
children of this process.

($user,$system,$cuser,$csystem) = times;
In scalar contextjmes returns$user .
Children’s times are only included for terminated children.
tr/ll The transliteration operatoGame ay/// . See “Quote and Quote-likOperators’in perlop.

truncateFILEHANDLE,LENGTH

truncateEXPRLENGTH
Truncates the file opened GMLEHANDLE, or named byEXPR, to the specified length. Raises an
exception if truncate ishimplemented on your system. Returns true if successfdef on error.

The behavior is undefinedUiENGTH is greater than the length of the file.

The position in the file ofFILEHANDLE is left unchanged.You may want to call seek before writing
to the file.

uc EXPR

uc Returns an uppercased versiorE&PR This is the internal function implementing thé escape in
double-quoted strings. It does not attempt to do titlecase mapping on initial letter&uctest™ f or
that.

If EXPRis omitted, use$_.

This function behees the same way under various pragma, such as in a locale, 'atots.

ucfirstEXPR

ucfirst
Returns the value dfEXPR with the first character in uppercase (titlecase in Unicode). This is the
internal function implementing tha escape in double-quoted strings.

If EXPRis omitted, use$_.

This function behees the same way under various pragma, such as in a locale, 'atots.

umaskEXPR

umask
Sets the umask for the processEXXPR and returns the pveous \alue. If EXPRis omitted, merely
returns the current umask.

The Unix permissiomwxr—x——— is represented as three sets of three bits, or three octal OfHts:
(the leading O indicates octal and tsohe of the digits). The umask value is such a number
representing disabled permissions bits. The permission‘nfmdé”) values you passnkdir or
sysopen are modified by your umask, seea if you tellsysopen to create a file with permissions
0777, if your umask i€9022, then the file will actually be created with permissi®is5. If your
umask were0027 (group cart write; others car’read, write, or xecute), then passingysopen
0666 would create a file with mode640 (becaus®666 & 027 is0640).

Here’s some advice: supply a creation moded666 for regular files (irsysopen) and one of0777
for directories (inmkdir) and executable files. This gives users the freedom of choice: if thevant
protected files, themight choose process umasksQ#2, 027, or even the particularly antisocial
mask of077. Programs should rarely ifver make policy decisions better left to the usemhe
exception to this is when writing files that should kepkprivate: mail files, web browser cookies,
.rhostsfiles, and so on.

If umask?2) is not implemented on your system and you are trying to restrict accgssifeelf(i.e.,
(EXPR & 0700) >0), raises anxzeption. Ifumask?2) is not implemented and you are not trying
to restrict access for yourself, retutnsdef .

Remember that a umask is a numibsually given in octal; it isnota dring of octal digits. See also
“oct”, if all you have is a ¢ring.

168 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

undefEXPR

undef
Undefines the value &XPR, which must be an bdlue. Useonly on a scalar value, an array (us@g
a hash (using?9, a subroutine (using), or a typglob (using*). Sayingundef $hash{$key}
will probably not do what youx@ect on most predefined variablesDBM list values, so doih’'do
that; see deleteAlways returns the undefinediae. You can omit th&XPR, in which case nothing is
undefined, but you still get an undefined value that you could, for instance, return from a subroutine,
assign to a variable, or pass as a paramésermples:

undef $foo;

undef $bar{'blurfl'}; # Compare to: delete $bar{blurfl’};
undef @ary;

undef %hash;

undef &mysub;

undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;

select undef, undef, undef, 0.25;

(%a, $b, undef, $c) = &foo; # | gnore third value returned
Note that this is a unary operatoot a list operator.
unlink LIST
unlink

Deletes a list of files. On success, it returns the number of files it successfully deletadur@nif
returns false and se$$ (errno):

my $unlinked = unlink 'a’, 'b', 'c';
unlink @goners;

unlink glob "*.bak";

On error unlink will not tell you which files it could not reme. If you want to kner which files
you could not remme, try them one at a time:

foreach my $file (@goners) {
unlink $file or warn "Could not unlink $file: $!";
}

Note: unlink will not attempt to delete directories unless you are superuser ancJtiiag is
supplied to Perl. Ean if these conditions are met, be warned that unlinking a directory can inflict
damage on your filesystentinally, usingunlink on directories is not supported on maperating
systems. Usemdir instead.

If LIST is omitted,unlink uses$_.

unpackTEMPLATE,EXPR

unpackTEMPLATE
unpack does the neerse ofpack : it takes a string and expands it out into a listalies. (Inscalar
context, it returns merely the first value produced.)

If EXPRis omitted, unpacks th& _string. Seeerlpacktut for an introduction to this function.

The string is broken into chunks described byTBIPLATE. Each chunk is corerted separately to a
value. Typically, either the string is a result gfack , or the characters of the string represent a C
structure of some kind.

The TEMPLATE has the same format as in theck function. Heres a sibroutine that does substring:

sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s
sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed ipack() you may prefix a field with a %<number> to indicate that you

perl v5.14.2 2014-02-04 169

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

want a <number>-bit checksum of the items instead of the items thexmsdbeéult is a 16-bit
checksum. Checksuim calculated by summing numeric values of expanded values (for string fields
the sum obrd($char) s taken; for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

$checksum = do {
local $/; # slurp!
unpack("%32W*",<>) % 65535;
h
The following efficiently counts the number of set bits in a bit vector:
$sethits = unpack("%32b*", $selectmask);

The p andP formats should be used with care. Since Perl has no way of checking wheth&luthe v
passed taunpack() corresponds to a valid memory location, passing a pointer valus tioat’
known to be valid is likely to ha dsastrous consequences.

If there are more pack codes or if the repeat count of a field or a grouges than what the
remainder of the input string all®, the result is not well defined: the repeat count may be decreased,
orunpack() may produce empty strings or zeros, or it may raisexaeption. Ifthe input string is
longer than one described by tEMPLATE, the remainder of that input string is ignored.

See “pack’ for more examples and notes.

untieVARIABLE
Breaks the binding between a variable and a packi@getie .) Hasno effect if the variable is not
tied.

unshiftARRAY ,LIST

unshiftEXPRLIST
Does the opposite of ahift . Or the opposite of gush, depending on he you look at it.
Prepends list to the front of the array and returns thvenmenber of elements in the array.

unshiftf(@ARGV, '-e") unless $ARGV[0] =" I"-/;

Note theLIST is prepended whole, not one element at a time, so the prepended elements stay in the
same orderUsereverse to do the reerse.

Starting with Perl 5.14unshift can take a alar EXPR, which must hold a reference to an
unblessed array The argument will be dereferenced automaticallyis aspect ofunshift is
considered highly»perimental. Thexact behaviour may change in a future version of Perl.

use ModuleVERSION LIST

use ModuleVERSION

use ModuleLIST

use Module

USeVERSION
Imports some semantics into the current package from the named module, generally by aliasing certain
subroutine or variable names into your package. It is exactlyabgpui to

BEGIN { require Module; Module->import(LIST); }
except that Modulenustbe a bareord. Theimportation can be made conditional; see if.

In the peculiaruse VERSION form, VERSION may be either a posit decimal fraction such as
5.006, which will be compared &) , or a vstring of the form v5.6.1, which will be comparedb{&/
(aka$PERL_VERSION. An exception is raised WERSIONis greater than the version of the current
Perl interpreter; Perl will not attempt to parse the rest of the file. Compareredhire’, which can

do a similar check at run timeSsymmetrically,no VERSION allows you to specify that you want a
version of Perl older than the specified one.

SpecifyingVERSION as a literal of the form v5.6.1 should generally beided, because it leads to
misleading error messages under earl@sions of Perl (that is, prior to 5.6.0) that do not support this
syntax. Theequivalent numeric version should be used instead.

170 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

use v5.6.1; # compile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Radion beforause ing library modules that
won't work with older versions of Perl. (®\y not to do this more than wevea.)

Also, if the specified Perl version is greater than or equal to B18e5YERSION will also load the
feature pragma and enable all featuresikable in the requestectrsion. See feature. Similariy
the specified Perl version is greater than or equal to 5.11.0, strictures are exadaéy és withuse
strict (except that thetrict.pmfile is not actually loaded).

TheBEGINforces thaequire andimport to happen at compile timélherequire makes sure
the module is loaded into memory if it hashéen yet. The import is not a builtin; it5 just an
ordinary static method call into thdodule package to tell the module to import the list of features
back into the current package. The module can implemeimjisrt method ag way it likes,
though most modules just choose toeftieirimport method via inheritance from thexporter

class that is defined in thexporter module. Sedexporter If no import method can be found
then the call is skippedyen if there is amUTOLOAD method.

If you do not want to call the packagé@hport method (for instance, to stop your namespace from
being altered), explicitly supply the empty list:

use Module ();
That is exactly equalent to
BEGIN { require Module }

If the VERSION argument is present between Module &, then theuse will call the VERSION
method in class Module with thevgh version as an gument. Thedefault VERSION method,
inherited from theJNIVERSAL class, croaks if the gn version is larger than the value of traiable
$Module::VERSION .

Again, there is a distinction between omittingsT (import called with no aguments) and an
explicit emptyLIST () (import not called). Note that there is no comma afteRSION

Because this is a wide-open intaré, pragmas (compiler diraas) are also implemented thisayw
Currently implemented pragmas are:

use constant;

use diagnostics;

use integer;

use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);

use subs gw(afunc blurfl);
use warnings qw(all);
use sort gw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scepstrigtk or
integer , unlike adinary modules, which import symbols into the current package (which are
effective through the end of the file).

Becauseuse takes effect at compile time, it doesmespect the ordinary flo control of the code
being compiled. In particulaputting ause inside the délse branch of a conditional doetsprevent it
from being processedf a module or pragma only needs to be loaded conditigrihi/can be done
using the if pragma:

use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);

Theres a orrespondingno declaration that unimports meanings importedusg, i.e., it calls
unimport Module LIST instead ofimport . It behaves just agmport does withvERSION, an
omitted or emptyIST, or no tnimport method being found.

perl v5.14.2 2014-02-04 171

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

172

no integer;
no strict 'refs’;
no warnings;

Care should be taken when using tlieVERSION form of no. It isonly meant to be used to assert
that the running Perl is of a earliegrgion than its argument andtto undo the feature-enabling side
effects ofuse VERSION .

See perlmodlib for a list of standard modules and pragi®es.perlrun for theMand-mcommand-
line options to Perl thatge use functionality from the command-line.

utimeLIST
Changes the access and modification times on each file of a list offfiledirst two dements of the
list must be theNUMERIC access and modification times, in that ordeeturns the number of files
successfully changedlhe inode change time of each file is set to the current titaeexample, this
code has the same effect as the Uaixch(1) command when the filedready &istand belong to the
user running the program:

#!/usr/bin/perl
$atime = $mtime = time;
utime $atime, $mtime, @ARGV;

Since Perl 5.7.2, if the first wdements of the list arendef , the utime(2) syscall from your C
library is called with a null secondgaument. On most systems, this will set the dile&écess and
modification times to the current time (i.e., eglént to the gample abwe) and will work even on
files you dort own provided you h&e write permission:

for $file (@ARGV) {
utime(undef, undef, $file)
[| warn "couldn't touch $file: $!";

}

UnderNFSthis will use the time of thRFS server not the time of the local machine. If there is a time
synchronization problem, theFS sener and local machine will ka dfferent times. The Unix
touch(1) command will in fact normally use this form instead of the one shown in the first example.

Passing only one of the first wdements asindef is equvalent to passing a 0 and will notveathe
effect described when both aredef . This also triggers an uninitialized warning.

On systems that suppdtitimes2), you may pass filehandles among the fil®s. systems that dan’
supportfutimeg2), passing filehandles raises aaption. Filehandlemust be passed as globs or
glob references to be recognized; bamels are considered filenames.

valuesHASH
valuesARRAY
valuesEXPR

Returns a list consisting of all thalues of the named hash, or the values of an.afirayscalar
context, returns the number of values.)

The values are returned in an apparently random .ofider actual random order is subject to change
in future versions of Perl, but it is guaranteed to be the same order as eitheysther each
function would produce on the same (unmodified) hash. Since Perl 5.8.1 the ordering is diféerent e
between different runs of Perl for security reasons (&dgorithmic Complexity Attacksin perlsec).

As a side effect, callinggalues()resets theHASH or ARRAY’s internal iterator; se€each’. (In

particular calling values()in void contet resets the iterator with no othevethead. Apart from
resetting the iteratpvalues @array in list context is the same as pla@array . We recommend
that you use void comtekeys @array for this, but reasoned that it takinglues @array out
would require more documentation than leaving it in.)

Note that the values are not copied, which means modifying them will modify the contents of the hash:

for (values %hash) { s /foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same

Starting with Perl 5.14/alues can tale a €alarEXPR, which must hold a reference to an unblessed

2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

hash or array The argument will be dereferenced automaticallhis aspect ofvalues is
considered highly»perimental. Thexact behaviour may change in a future version of Perl.

for (values $hashref) { ... }
for (values $obj—>get_arrayref) { ... }

See alskeys , each, andsort .

vec EXPROFFSET,BITS
Treats the string iEXPR as a bit vector made up of elements of wiglthS and returns the value of
the element specified YFFSETas an unsigned irger. BITS therefore specifies the number of bits
that are reseed for each element in the beéator This must be a power of twfrom 1 to 32 (or 64, if
your platform supports that).

If BITSis 8, “elements’coincide with bytes of the input string.

If BITSis 16 or more, bytes of the input string are grouped into chunks d#i3ig68, and each group
is corverted to a number as withack(Yunpack()with big-endian format®/N (and analogously for
BITS==64). Seé¢ pack’ for details.

If bits is 4 or less, the string is bk into bytes, then the bits of each byte are broken into 8/BITS
groups. Bitsof a byte are numbered in a little-endian-ishywas h 0x01, 0x02, 0x04 , 0x08 ,
0x10, 0x20, 0x40, 0x80. For example, breaking the single input byter(0x36) into two
groups gves a st (0x6, 0x3) ; breaking it into 4 groups gés (0x2, 0x1, 0x3, 0x0)

vec may also be assigned to, in which case parentheses are neededtie gkpression the correct
precedence as in

vec($image, $max_x * $x + By, 8) = 3;

If the selected element is outside the string, tleev0 is returned. If an element tfe end of the
string is written to, Perl will first extend the string with sufficiently snaero bytes. It is an error to
try to write of the beginning of the string (i.e., gative OFFSET).

If the string happens to be encodediag-8internally (and thus has theTF8 flag set), this is ignored
by vec, and it operates on the internal byte string, not the conceptual character semiyeu only
have characters with values less than 256.

Strings created witlvec can also be manipulated with the logical operatqr&, “, and ™. These
operators will assume a bit vector operation is desired when both operands are strintgitwgse
String Operatorsin perlop.

The following code will build up amSCll string sayingPerlPerlPerl' . The comments sho
the string after each step. Note that this code works in the sam@mwbig-endian or little-endian
machines.
my $foo =",
vec($foo, O, 32) = 0x5065726C; # 'Perl’
$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P")
vec($foo, 2, 16) = 0x5065; # 'PerlPe'
vec($foo, 3, 16) = 0x726C; # 'PerlPerl’
vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
vec($foo, 20, 4)=2; # ' PerlPerlPe’ . "\x02"
vec($foo, 21, 4)=7, # ' PerlPerlPer
' ris "\x72"
vec($foo, 45, 2)=3; # ' PerlPerlPer' . "\x0c"
vec($foo, 93, 1) =1, # ' PerlPerlPer' . "\x2c"
vec($foo, 94, 1) =1, # ' PerlPerlPerl’
' I'is "\x6¢"

To transform a bit vector into a string or list o6@hd 1's, use these:

perl v5.14.2 2014-02-04 173

PERLFUNC(1)

PerProgrammers Reference Guide

$hits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you knaw the exact length in bits, it can be used in place of the

Here is an example to illustratevathe bits actually fall in place:

#!/usr/bin/perl —wl

print <<'EQT",

0 1 2

unpack("V",$_) 01234567890123456789012345678901

EOT

for $w (0..3) {

$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$hits = (1<<$shift);

vec($str, $off, $width) = $bits;

$res = unpack("b*",$str);
$val = unpack("V", $str);

write;

}

format STDOUT =

vec($_,@#,@#) = @<< == @##HHHHHTHH @>>>>>>>>>>>>>555>5>>>>>>>>>>>>>
$off, $width, $bits, $val, $res

END__

Regardless of the machine architecture on which it runs, xaenple abae should print the follaving
table:

174

0 1 2

unpack("V",$_) 01234567890123456789012345678901

vec($_, 6,
vec($_, 7,
vec($_, 8,
vec($_, 9,
vec($_,10, 1)
vec($_,11, 1)
vec($_,12, 1)
vec($_,13, 1)
vec($_,14, 1)
vec($_,15, 1)

1)

1)

1)

1)

RPRRPRRRPRRRRR

vec($_,16,
vec($_,17,
vec($_,18,
vec($_,19,

RPRRPRRRPRPRRRR

1l
11
NP

== 16
== 32
== 64
== 128
== 256
== 512
== 1024
== 2048
== 4096
== 8192
== 16384
== 32768
== 65536
== 131072
== 262144
== 524288

2014-02-04

10000000000000000000000000000000
01000000000000000000000000000000
00100000000000000000000000000000
00010000000000000000000000000000
00001000000000000000000000000000
00000100000000000000000000000000
00000010000000000000000000000000
00000001000000000000000000000000
00000000100000000000000000000000
00000000010000000000000000000000
00000000001000000000000000000000
00000000000100000000000000000000
00000000000010000000000000000000
00000000000001000000000000000000
00000000000000100000000000000000
00000000000000010000000000000000
00000000000000001000000000000000
00000000000000000100000000000000
00000000000000000010000000000000
00000000000000000001000000000000

perl v5.14.2

PERLFUNC(1)

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

vec($_,20,1)=1 == 1048576 00000000000000000000100000000000
vec($_,21,1)=1 == 2097152 00000000000000000000010000000000
vec($_,22,1)=1 == 4194304 00000000000000000000001000000000
vec($_,23,1)=1 == 8388608 00000000000000000000000100000000
vec($_,24,1)=1 == 16777216 00000000000000000000000010000000
vec($_,25,1)=1 == 33554432 00000000000000000000000001000000
vec($_,26,1)=1 == 67108864 00000000000000000000000000100000
vec($_,27,1)=1 == 134217728 00000000000000000000000000010000
vec($_,28,1)=1 == 268435456 00000000000000000000000000001000
vec($_,29,1)=1 == 536870912 00000000000000000000000000000100
vec($_,30,1)=1 = 1073741824 00000000000000000000000000000010

vec($_,31,1)=1 2147483648 00000000000000000000000000000001

vec($_,0,2)=1 == 1 10000000000000000000000000000000
vec($_,1,2)=1 == 4 00100000000000000000000000000000
vec($_,2,2)=1 == 16 00001000000000000000000000000000
vec($_, 3,2)=1 == 64 00000010000000000000000000000000
vec($_,4,2)=1 == 256 00000000100000000000000000000000
vec($_,5,2)=1 == 1024 00000000001000000000000000000000
vec($_,6,2)=1 == 4096 00000000000010000000000000000000
vec($_,7,2)=1 == 16384 00000000000000100000000000000000
vec($_,8,2)=1 == 65536 00000000000000001000000000000000
vec($_,9,2)=1 == 262144 00000000000000000010000000000000
vec($_,10,2)=1 == 1048576 00000000000000000000100000000000
vec($_,11,2)=1 == 4194304 00000000000000000000001000000000
vec($_,12,2)=1 == 16777216 00000000000000000000000010000000
vec($_,13,2)=1 == 67108864 00000000000000000000000000100000
vec($_,14,2)=1 == 268435456 00000000000000000000000000001000
vec($_,15,2)=1 1073741824 00000000000000000000000000000010

vec($_,0,2)=2 == 2 01000000000000000000000000000000
vec($_,1,2)=2 == 8 00010000000000000000000000000000
vec($_,2,2)=2 == 32 00000100000000000000000000000000
vec($_, 3,2)=2 == 128 00000001000000000000000000000000
vec($_,4,2)=2 == 512 00000000010000000000000000000000
vec($_,5,2)=2 == 2048 00000000000100000000000000000000
vec($_, 6,2)=2 == 8192 00000000000001000000000000000000
vec($_,7,2)=2 == 32768 00000000000000010000000000000000
vec($_, 8,2)=2 == 131072 00000000000000000100000000000000
vec($_,9,2)=2 == 524288 00000000000000000001000000000000
vec($_,10,2) =2 == 2097152 00000000000000000000010000000000
vec($_,11,2)=2 == 8388608 00000000000000000000000100000000
vec($_,12,2) =2 == 33554432 00000000000000000000000001000000
vec($_,13,2) =2 == 134217728 00000000000000000000000000010000
vec($_,14,2) =2 == 536870912 00000000000000000000000000000100
vec($_,15,2) =2 2147483648 00000000000000000000000000000001

vec($_,0,4)=1 == 1 10000000000000000000000000000000
vec($_,1,4)=1 == 16 00001000000000000000000000000000
vec($_,2,4)=1 == 256 00000000100000000000000000000000
vec($_, 3,4)=1 == 4096 00000000000010000000000000000000
vec($_,4,4)=1 == 65536 00000000000000001000000000000000
vec($_,5,4)=1 == 1048576 00000000000000000000100000000000
vec($_,6,4)=1 == 16777216 00000000000000000000000010000000
vec($_,7,4)=1 == 268435456 00000000000000000000000000001000
vec($_,0,4)=2 == 2 01000000000000000000000000000000
vec($_,1,4)=2 == 32 00000100000000000000000000000000
vec($_,2,4)=2 == 512 00000000010000000000000000000000
vec($_, 3,4)=2 == 8192 00000000000001000000000000000000
vec($_, 4,4)=2 == 131072 00000000000000000100000000000000
vec($_, 5,4)=2 == 2097152 00000000000000000000010000000000
vec($_, 6,4)=2 == 33554432 00000000000000000000000001000000

perl v5.14.2 2014-02-04 175

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

vec($_,7,4)=2 == 536870912 00000000000000000000000000000100
vec($_,0,4)=4 == 4 00100000000000000000000000000000
vec($_,1,4)=4 == 64 00000010000000000000000000000000
vec($_,2,4)=4 == 1024 00000000001000000000000000000000
vec($_, 3,4)=4 == 16384 00000000000000100000000000000000
vec($_, 4,4)=4 == 262144 00000000000000000010000000000000
vec($_,5,4)=4 == 4194304 00000000000000000000001000000000
vec($_, 6,4)=4 == 67108864 00000000000000000000000000100000
vec($_,7,4)=4 1073741824 00000000000000000000000000000010

vec($_,0,4)=8 == 8 00010000000000000000000000000000
vec($_,1,4)=8 == 128 00000001000000000000000000000000
vec($_,2,4)=8 == 2048 00000000000100000000000000000000
vec($_, 3,4)=8 == 32768 00000000000000010000000000000000
vec($_,4,4)=8 == 524288 00000000000000000001000000000000
vec($_,5,4)=8 == 8388608 00000000000000000000000100000000
vec($_,6,4)=8 == 134217728 00000000000000000000000000010000
vec($_,7,4)=8 2147483648 00000000000000000000000000000001

vec($_,0,8)=1 == 1 10000000000000000000000000000000
vec($_,1,8)=1 == 256 00000000100000000000000000000000
vec($_,2,8)=1 == 65536 00000000000000001000000000000000
vec($_, 3,8)=1 == 16777216 00000000000000000000000010000000
vec($_,0,8)=2 == 2 01000000000000000000000000000000
vec($_,1,8)=2 == 512 00000000010000000000000000000000
vec($_, 2,8)=2 == 131072 00000000000000000100000000000000
vec($_, 3,8)=2 == 33554432 00000000000000000000000001000000
vec($_,0,8)=4 == 4 00100000000000000000000000000000
vec($_,1,8)=4 == 1024 00000000001000000000000000000000
vec($_, 2,8)=4 == 262144 00000000000000000010000000000000
vec($_, 3,8)=4 == 67108864 00000000000000000000000000100000
vec($_,0,8)=8 == 8 00010000000000000000000000000000
vec($_,1,8)=8 == 2048 00000000000100000000000000000000
vec($_,2,8)=8 == 524288 00000000000000000001000000000000
vec($_, 3,8)=8 == 134217728 00000000000000000000000000010000
vec($_, 0,8) =16 == 16 00001000000000000000000000000000
vec($_, 1,8) =16 == 4096 00000000000010000000000000000000
vec($_, 2,8) =16 == 1048576 00000000000000000000100000000000
vec($_, 3,8) =16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) =32 == 32 00000100000000000000000000000000
vec($_, 1,8) =32 == 8192 00000000000001000000000000000000
vec($_, 2,8) =32 == 2097152 00000000000000000000010000000000
vec($_, 3,8) =32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) =64 == 64 00000010000000000000000000000000
vec($_, 1,8) =64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = == 1073741824 00000000000000000000000000000010

vec($_, 0, 8) = == 128 00000001000000000000000000000000

vec($_, 1,8) = 128 == 32768 00000000000000010000000000000000

vec($_, 2,8) =128 == 8388608 00000000000000000000000100000000

vec($_, 3, 8) =128 == 2147483648 00000000000000000000000000000001
wait
Behaves like wait(2) on your system: it aits for a child process to terminate and returns the pid of the
deceased process, efl if there are no child processes. The status is returne#i?inand
${"CHILD_ERROR_NATIVE} . Note that a return value efl could mean that child processes are
being automatically reaped, as described in perlipc.

If you use wait in your handler f&SIG{CHLD} it may accidentally for the child created gx() or
system()See perlipc for details.

176 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

waitpid PID,FLAGS

Waits for a particular child process to terminate and returns the pid of the deceased proekss, or
there is no such child process. On some systems, a value of 0 indicates that there are processes still
running. Thestatus is returned $? and${"CHILD_ERROR_NATIVE} . If you say

use POSIX ":sys_wait_h";

#...
do {

$kid = waitpid(-1, WNOHANG);
} while $kid > 0;

then you can do a non-blockingait/for all pending zombie processes. Non-blocking waivéable

on machines supporting either tivaitpid(2) or wait4(2) syscalls.However, waiting for a particular
pid with FLAGS of 0 is implemented\erywhere. (Peremulates the system call by remembering the
status values of processes thatehevited but hae rot been harvested by the Perl script yet.)

Note that on some systems, a return value-df could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

wantarray

Returns true if the context of the currentkeeuting subroutine oeval is looking for a list alue.
Returns false if the context is looking for a scalReturns the undefined value if the codtés
looking for no value (void context).

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

wantarray() 's result is unspecified in the topvé of a file, in aBEGIN, UNITCHECK CHECK
INIT or ENDblock, or in aDESTROYnethod.

This function should he keen namedvantlist()instead.

warn LIST

perl v5.14.2

Prints the value ofIST to STDERR If the last element dfiIST does not end in a newline, it appends
the same file/line number textdie does.

If the output is empty anfi@already contains a value (typically from a previoud)ethat value is

used after appendintt...caught” to $@ This is useful for staying almost, but not entirely
similar todie .
If $@is empty then the strintyVarning: Something's wrong" is used.

No message is printed if there is$IG{_WARN__} handler installed. It is the handier
responsibility to deal with the message as it sees fit (like, for instansertawgit into adie). Most
handlers must therefore arrange to actually display the warnings thadr¢heot prepared to deal
with, by callingwarn again in the handlerNote that this is quite safe and will not produce an endless
loop, since__ WARN__hooks are not called from inside one.

You will find this behavior is slightly different from that 65IG{_DIE_ } handlers (which dot’
suppress the error text, but can insteaddiall again to change it).

Using a__WARN__ handler provides a powerful way to silence all warningeneghe so-called
mandatory ones). An example:

wipe out *all* compile—time warnings

BEGIN {$SIG{_ _WARN_} = sub{warn$_[0]if SDOWARN }}
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no compile-time or run—time warnings before here
$DOWARN = 1;

r un—time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

2014-02-04 177

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

See perlvar for details on settif@SIGentries and for morexamples. Sethe Carp module for other
kinds of warnings using itsarp() andcluck() functions.

whenEXPR BLOCK

whenBLOCK
when is analogous to thease keyword in other languages. Used withf@each loop or the
experimentalgiven block, when can be used in Perl to implemenitch /case like gatements.
Available as a statement after Perl 5.10 and as a statement modifier after 5.14. Here are three
examples:

use v5.10;
foreach (@fruits) {
when (/apples?/) {
say "l like apples."
}

when (/oranges?/) {
say "l don't like oranges."

}
default {
say "l don't like anything"

}
}
r equire 5.14 for when as statement modifier
use v5.14,
foreach (@fruits) {

say "l like apples." when /apples?/;

say "l don't like oranges." when /oranges?;
default { say "l don't like anything" }

}

use v5.10;
given ($fruit) {
when (/apples?/) {
say "l like apples."
}

when (/oranges?/) {
say "l don't like oranges."

}
default {

say "l don't like anything"
}

}

See “Switch statementsh perlsyn for detailed information.

write FILEHANDLE

write EXPR

write
Writes a formatted record (possibly multi-line) to the specifidld=HANDLE, using the format
associated with that file. By drflt the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (seesdleet function) may be set
explicitly by assigning the name of the format to #ievariable.

Top of form processing is handled automatically: if there is fitsgaht room on the current page for

the formatted record, the page is adeed by writing a form feed, a special top-of-page format is used
to format the ne& page header before the record is written. By default, the top-of-page format is the
name of the filehandle with TOP” appended. This would be a problem with aindied filehandles,

but it may be dynamically set to the format of your choice by assigning the name30 trasiable

while that filehandle is selected. The number of lines remaining on the current pagariable$-,

which can be set 10 to force a n& page.

178 2014-02-04 perl v5.14.2

PERLFUNC(1) PerProgrammers Reference Guide PERLFUNC(1)

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts out as
STDOUT but may be changed by theelect operator If the FILEHANDLE is anEXPR, then the
expression iseluated and the resulting string is used to look up the name BfitBEANDLE at run

time. For more on formats, see perlform.

Note that write is1otthe opposite ofead . Unfortunately.
y/ll The transliteration operatoGame adr/// . See “Quote and Quote-l&kOperators’in perlop.

perl v5.14.2 2014-02-04 179

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

NAME

perlvar — Perl predefined variables

DESCRIPTION

The Syntax of Variable Names

Variable names in Perl canve®veaal formats. Usuallythey must begin with a letter or underscore, in
which case thecan be arbitrarily long (up to an internal limit of 251 characters) and may contain letters,
digits, underscores, or the special sequencer' . In this case, the part before the lastor' is taken to

be apackaye qualifier; see perlmod.

Perl variable names may also be a sequence of digits or a single punctuation or control .chlaezseter
names are all reserved for special uses by Perl;x@mmple, the all-digits names are used to hold data
captured by backreferences after gutar expression match. Perl has a special syntax for the single-
control-character names: It understafids (caretX) to mean the controlX character For example, the
notation$"W (dollar-sign careW is the scalar &riable whose name is the single character corwdrhis

is better than typing a literal contrénto your program.

Since Perl 5.6, Perl variable names may be alphanumeric strings that begin with control characters (or
better yet, a caret). These variables must be written in the $§iffoo} ; the braces are not optional.
${"Foo} denotes the scalar variable whose name is a cohtfollowed by tw 0’s. These variables are
resened for future special uses by Perl, except for the ones that begih wttontrol-underscore or caret-
underscore). No control-character name that begins 'witkvill acquire a special meaning inyafuture

version of Perl; such names may therefore be used safely in profamiself, however, is reserved.

Perl identifiers that begin with digits, control characters, or punctuation charactersram om the
effects of thepackage declaration and arewadys forced to be in packageain ; they are also gempt

from strict 'vars' errors. A fev other names are alsaanpt in these ways:
ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT
SIG

In particular the speciall{”"_XYZ} variables are alays taken to be in packageain , regadless of ap
package declarations presently in scope.

SPECIAL VARIABLES

The folloving names hae ecial meaning to Perl. Most punctuation hameg heasonable mnemonics,
or analogs in the shells. Matheless, if you wish to use long variable names, you need only say:

use English;

at the top of your program. This aliases all the short names to the long names in the current package. Some
even havemedium names, generally borrowed framk. To avoid a performance hit, if you dameed the
$PREMATCHMATCHor $POSTMATCHH's best to use thEnglish module without them:

use English '-no_match_vars’;

Before you continue, note the sort order fariables. In general, we first list the variables in case-
insensitve, dmost-lexigraphical order (ignoring th¢ or = preceding words, as ii{"UNICODE} or
$°T), although$_ and@_move wp to the top of the pile.For variables with the same identifieve list it

in order of scalararray, hash, and baveord.

General Variables

180

$ARG
$_ The default input and pattern-searching space. The following pairs aveleqji

while (<>) {...} # equivalent only in while!
while (defined($_=<>)) {...}

["Subject:/
$_="/"Subject:/

trla-z/A-Z/
$ ="trla-z/A-Z/

2011-09-26 perl v5.14.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

chomp
chomp($))

Here are the places where Perl will assdmeven if you dont use it:
e The following functions us$_ as a default argument:

abs, alarm, chomp, chop, ¢bkhroot, cos, definedye, exp, glob, hex, int, Ic, Icfirst, length,
log, Istat, mkdir oct, ord, pos, print, quotemeta, readlink, readpipe, ref, requirerse(in
scalar context only), rmdisin, split (on its second argument), sqrt, stat, study ucfirst,
unlink, unpack.

e Allfile tests ¢f , —d) except for-t , which defaults t&TDIN. See “~X" in perlfunc

e The pattern matching operatioms/ , s/// andtr/// (akay/ll) when used without an
=" operator.

« The default iterator variable infareach loop if no other variable is supplied.
< The implicit iterator variable in thgrep() andmap() functions.
e The implicit variable ofjiven()

« The default place to put an input record whesF&l> operations result is tested by itself as
the sole criterion of while test. Outside avhile test, this will not happen.

As $_ is a global variable, this may lead in some cases to unwanted side-effects. As of perl 5.9.1,
you can nw use a lexical version ¢§_ by declaring it in a file or in a block withy. Moreover,
declaringour $_ restores the glob& in the current scope.

Mnemonic: underline is understood in certain operations.

@ARG

@_ Within a subroutine the arra@_contains the parameters passed to that subroutine. Inside a
subroutine@ is the default array for the array operatoush , pop, shift , and unshift
See perlsub.

$LIST_SEPARATOR

$" When an array or an array slice is interpolated into a double-quoted string or a similat conte
such ad.../ ,its elements are separated by this value. Default is a space. For example, this:

print "The array is: @array\n";
is equvalent to this:
print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. You should consider this variable read-only

although it will be altered acrofark() calls.

Note for Linux users: on Linux, the C functiogstpid() andgetppid() return diferent
values from different threads. In order to be portable, this behavior is not reflect&d Wwhose
value remains consistent across threads. If yantwo call the underlyingetpid() , you may
use theCPAN moduleLinux::Pid

Mnemonic: same as shells.

$REAL_GROUP_ID

$GID

$(The real gid of this process. If you are on a machine that supports membership in multiple groups
simultaneouslygives aspace separated list of groups you are in. The first number is the one
returned bygetgid() , and the subsequent ones @gtgroups() , one of which may be the
same as the first number.

However, a \alue assigned t§(must be a single number used to set the real gid. Scathe v

perl v5.14.2 2011-09-26 181

PERLVAR(1)

182

PerlProgrammers Reference Guide PERR(1)

given by $(shouldnotbe assigned back &(without being forced numeric, such as by adding
zero. Note that this is different to the effeetgd ($)) which does tad a Ist.

You can change both the real gid and thdedive ¢gd at the same time by using
POSIX::setgid() . Changes td&(require a check t8! to detect ay possible errors after
an attempted change.

Mnemonic: parentheses are usedytoup things. The real gid is the group yteft, if you're
running setgid.

$EFFECTIVE_GROUP_ID

$EGID
$)

The efective gd of this process. If you are on a machine that supports membership in multiple
groups simultaneouslgives a pace separated list of groups you are in. The first number is the
one returned bygetegid() , and the subsequent onesdmtgroups() , one of which may be

the same as the first number.

Similarly, a value assigned) must also be a space-separated list of numbers. The first number
sets the déctive gd, and the rest (if any) are passedsédgroups() . To get the effect of an
empty list forsetgroups() , just repeat the meeffective gd; that is, to force an ffctive gd

of 5 and an effeotely emptysetgroups() list, say $) ="55"

You can change both the fe€tive gd and the real gid at the same time by using
POSIX::setgid() (use only a single numericgument). Change® $) require a check to
$! to detect ay possible errors after an attempted change.

$<, $>, $(and$) can be set only on machines that support the corresposelifrg]lug]id()
routine.$(and$) can be swapped only on machines suppogetgegid()

Mnemonic: parentheses are usedjtoup things. The déctive gd is the group thad'right for
you, if you're running setgid.

$PROGRAM_NAME

$0

Contains the name of the program beirecated.

On some (but not all) operating systems assignirgptanodifies the argument area that tie
program sees. On some platforms you maseh@ause speciaps options or a dferentps to see

the changes. Modifying th®0 is more useful as a way of indicating the current program state
than it is for hiding the program you're running.

Note that there are platform-specific limitations on the maximum leng$0ofin the most
extreme case it may be limited to the space occupied by the oginal

In some platforms there may be arbitrary amount of paddingxéongle space characters, after
the modified name as shown pg. In some platforms this padding maytend all the way to
the original length of the argument area, no matter what you do (this is the casanfpteswith
Linux 2.2).

Note forBSD users: setting0 does not completely reme “perl” from theps(1) output. Br

example, settings0 to "foobar" may result in'perl: foobar (perl)" (whether both
the"perl: " prefix and the'‘(perl)” suffix are shown depends on yowaetBSD variant and
version). This is an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so thétr@ad may modify its cgpof the
$0 and the change becomes visiblepggl) (assuming the operating system plays along). Note
that the viev of $0 the other threads i@ will not change since tlyehavetheir own copies of it.

If the program has beenvgh to perl via the switchese or —E, $0 will contain the string—e" .

On Linux as of perl 5.14 thedecy process name will be set withrctl(2) , in addition to
altering thePOSIXname viaargv[0] as perl has done since version 4.000wgstem utilities

that read the tgecy process name such as ps, top and killall will recognize the name you set when
assigning td0. The string you supply will be cutfodit 16 bytes, this is a limitation imposed by
Linux.

Mnemonic: same ash andksh.

2011-09-26 perl v5.14.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash element as

$foo{%a,$b,c}
it really means

$foofjoin($;, $a, $b, $c)}
But dont put

@foo{$a,$b,$c} # a slice-—note the @
which means

($foo{$a},$foo{$b},Sfoo{sc})

Default is \034"”, the same aSUBSEPiIn awk. If your keys mntain binary data there might not
be awy safe value foi$; .

Consider using “realmultidimensional arrays as described in perllol.
Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

$REAL_USER_ID

$UID

$< The real uid of this processolf can change both the real uid and tHecgfe ud at the same
time by usingPOSIX::setuid() . Since changes t#< require a system call, chegk after a
change attempt to detectygmossible errors.

Mnemonic: its the uid you camé&om, if you're running setuid.
$EFFECTIVE_USER_ID

$EUID
$> The effectie ud of this process. For example:
$<=$>; # setreal to effective uid
($<,$>) = ($>,9<); # swap real and effective uids
You can change both the fe€tive ud and the real uid at the same time by using
POSIX::setuid() . Changes t&> require a check t6! to detect ay possible errors after an
attempted change.
$< and$> can be swapped only on machines suppodetgeuid()
Mnemonic: its the uid you wento, if you're running setuid.
$a
$b Special package aviables when usingort() , see ‘sort” in perlfunc. Becauseof this
specialnes$a and$b don't need to be declared (usinge vars , or our()) even when using
the strict 'vars' pragma. Dort'lexicalize them withmy $a or my $b if you want to be
able to use them in thewrt() comparison block or function.
$COMPILING
$C The current value of the flag associated with-tbewitch. Mainlyof use with-MO-=... to allov

code to alter its bek@r when being compiled, such as for exampléAtdrOLOARt compile
time rather than normal, deferred loading. Set#if@ =1 is similar to callingB::minus_c

This variable was added in Perl 5.6.

$DEBUGGING
$D The current value of the debugging flags. May be read or setitsikommand-line equélent,
you can use numeric or symbolic values$dg =10 or$D ="st"

Mnemonic: value ofD switch.

${"ENCODING}
The object eferenceto theEncode object that is used to ceart the source code to Unicode.
Thanks to this variable your Perl script does noteha be written in UTF-8. Default is undef
The direct manipulation of this variable is highly discouraged.

perl v5.14.2 2011-09-26 183

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

184

This variable was added in Perl 5.8.2.

%ENV The hash%ENVcontains your current environment. Setting a valueEMV changes the
environment for aychild processes you subsequeritigk() off.

$SYSTEM_FD_MAX

$F The maximum system file descriptoordinarily 2. System file descriptors are passed to
exec() ed processes, while higher file descriptors are not. Also, duringear() , system file
descriptors are preserveder if theopen() fails (ordinary file descriptors are closed before the
open() is attempted). The close-onee datus of a file descriptor will be decided according to
the value of$"F when the corresponding file, pipe, or socket was opened, not the time of the
exec()

@F The array@Fcontains the fields of each line read in when autosplit mode is turned on. See
perlrun for the—a switch. This array is package-specific, and must be declaredar gifull
package name if not in package main when running witdert 'vars'

${"GLOBAL_PHASE}
The current phase of the perl interpreter.

Possible values are:

CONSTRUCT
The Perlinterpreter* is being constructed viperl_construct . This value
is mostly there for completeness and for use via the underlyiragi@blePL_phase .
It's not really possible for Perl code to beeeuted unless construction of the interpreter
is finished.

START This is the global compile-time. That includes, basicahgry BEGIN block executed
directly or indirectly from during the compile-time of the topdeprogram.

This phase is not calletBEGIN” t o avoid confusion with BEGIN-blocks, as those are
executed during compile-time of grcompilation unit, not just the topsel program. A
new, localised compile-time entered at run-time, for example by construasahs
"use SomeModule" are not global interpreter phases, and thereforetaeftécted
by ${"GLOBAL_PHASE}.

CHECK Execution of anfCHECHKblocks.

INIT Similar to “CHECK”, but for INIT —blocks, notCHECKblocks.
RUN The main run-time, i.e. thexecution of PL_main_root

END Execution of anfENDblocks.

DESTRUCT
Global destruction.

Also note that there’no \alue for UNITCHECK-blocks. That’ because those are run for each
compilation unit individuallyand therefore is not a global interpreter phase.

Not every program has to go through each of the possible phasgesabsition from one phase to
another can only happen in the order described in theedist

An example of all of the phases Perl code can see:
BEGIN { print "compile-time: ${"GLOBAL_PHASE}n" }

INIT { print "init-time: ${"GLOBAL_PHASE}n" }
CHECK { print "check-time: ${"GLOBAL_PHASE}n" }

{

package Print::Phase;
sub new {

my ($class, $time) = @_;
return bless \$time, $class;

2011-09-26 perl v5.14.2

PERLVAR(1)

$H

perl v5.14.2

PerlProgrammers Reference Guide PERR(1)

}

sub DESTROY {
my $self = shift;
print "$$self: ${"GLOBAL_PHASENN";

}
print "run—time: ${"GLOBAL_PHASE}n";

my $runtime = Print::Phase->new(
"lexical variables are garbage collected before END"

)i
END { print "end-time: ${"GLOBAL_PHASE}n" }

our $destruct = Print::Phase—>new(
"package variables are garbage collected after END"

)i
This will print out

compile-time: START

check-time: CHECK

init-time: INIT

run-time: RUN

lexical variables are garbage collected before END: RUN
end-time: END

package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

WARNING: This variable is strictly for internal use onlys availability, behavior and contents
are subject to change without notice.

This variable contains compile-time hints for the Perl interprétethe end of compilation of a
BLOCK the value of this variable is restored to tladue when the interpreter started to compile
the BLOCK.

When perl begins to parseyablock construct that provides a lexical scope (e.gd body,
required file, subroutine bodjoop body or conditional block), the existing value &H is
saved, but its value is left unchanged. When the compilation of the block is completegdirisre
the s&ed value. Betweerthe points where its value isved and restored, code thakexzutes
within BEGIN blocks is free to change the value$of .

This behavior provides the semantic ofit@l scoping, and is used in, for instance, tise
strict pragma.

The contents should be an integerfadint bits of it are used for different pragmatic flags. Hdere’
an example:

sub add_100 { $"H |= 0x100 }

sub foo {
BEGIN { add_100() }
bar—>baz($boon);

}

Consider what happens duringeeution of theBEGIN block. At this point theBEGIN block has
already been compiled, but the bodyfeé() is still being compiled. The mevalue of$'H
will therefore be visible only while the body fafo() is being compiled.

Substitution oBEGIN { add_100() } block with:

2011-09-26 185

PERLVAR(1)

186

%"H

@INC

%INC

PerlProgrammers Reference Guide PERR(1)

BEGIN { require strict; strict—>import(‘'vars') }

demonstrates o use strict 'vars' is implemented. Hers'a @nditional version of the
same lexical pragma:

BEGIN { require strict; strict—>import(‘vars') if $condition }
This variable was added in Perl 5.003.

The %"H hash provides the same scoping semanticad. This makes it useful for
implementation of lexically scoped pragmas. See perlpragma.

This variable was added in Perl 5.6.

The array@INCcontains the list of places that the EXPR, require , or use constructs look
for their library files. It initially consists of the arguments ty ah command-line switches,

followed by the default Perl librarprobably/usr/local/lib/per| followed by *.” , to represent the
current directory(“ .” will not be appended if taint checks are enabled, eitheiToyr by -t .) If
you need to modify this at runtime, you should useube lib pragma to get the machine-

dependent library properly loaded also:

use lib ‘/mypath/libdir/";
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code direct(@IMG
Those hooks may be subroutine references, array references or blessed objentsiuBetin
perlfunc for details.

The hash%INC contains entries for each filename included via dbe require , or use
operators. Thedy is the filename you specified (with module namesvedad to pathnames),
and the wlue is the location of the file found. Thexjuire operator uses this hash to determine
whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference;regeire” in perlfunc for a
description of these hooks), this hook is byadéf inserted intdINCin place of a filename.
Note, havever, that the hook may va %t the%INCentry by itself to provide some more specific
info.

$INPLACE_EDIT

$l The current value of the inplace-edit extension. Weef to disable inplace editing.
Mnemonic: value of-i switch.

™M By default, running out of memory is an untrappable, fatal .etiowevae, if suitably built, Perl
can use the contents $fM as an emgeny memory pool aftedie() ing. Suppose that your
Perl were compiled withkDPERL_EMERGENCY_SBR#Kd used Ped'malloc. Then

$M="a'x (1 << 16);

would allocate a 64K uiffer for use in an emgeng. See thelNSTALLfile in the Perl distribtion
for information on hw to add custom C compilation flags when compiling ped.discourage
casual use of this advanced feature, there is no English long name for this variable.
This variable was added in Perl 5.004.

$OSNAME

$0 The name of the operating system under which thig obperl was built, as determined during

the configuration process. For examples SE@ATFORMS' i n perlport.

The value is identical t@Config{'osname'} . See also Config and theV command-line
switch documented in perlrun.

In Windows platforms,$"O is not \ery helpful: since it is alays MSWin32, it doesnt tell the
difference between 95/98/ME/NT/2000/XP/CE/.NETse Win32::GetOSName() or
Win32::GetOSVersion(jsee Win32 and perlport) to distinguish between the variants.

This variable was added in Perl 5.003.

2011-09-26 perl v5.14.2

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

${"OPEN}

An internal \ariable used by PerllO. A string in dvparts, separated by\@ byte, the first part
describes the input layers, the second part describes the output layers.

This variable was added in Perl 5.8.2.

$PERLDB

$P

%SIG

perl v5.14.2

The internal variable for delgging support. The meanings of the various bits are subject to
change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line debugging. Causé3B::DB() subroutine to be called for each statement
executed. Also causes saving source code lines (ik00).

0x04 Switch of optimizations.

0x08 Presenry nore data for future interagé inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Reporgoto &subroutine as well.

0x100 Provide informate “file’’ names for eas based on the place thevere compiled.

0x200 Preide informatve nrames to angmous subroutines based on the placey there
compiled.

0x400 Sae urce code lines int@{"_<$filename"}

Some bits may be relent at compile-time onlysome at run-time onlyThis is a n&v mechanism
and the details may change. See also perldebguts.

The has®o6SIGcontains signal handlers for signals. For example:

sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig——shutting down\n";
close(LOG);
exit(0);
}
$SIG{INT?} = \&handler;
$SIG{'QUIT'} = \&handler;
$SIG{INT?} = 'DEFAULT'; # restore default action
$SIG{'QUIT'} = 'IGNORE; # i gnore SIGQUIT

Using a value oflGNORE' usually has the effect of ignoring the signal, except forGh&D
signal. See perlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not recommended)
$SIG{"PIPE"} = \&Plumber; # | ust fine; assume current Plumber
$SIG{"PIPE"} = *Plumber; # somewhat esoteric

$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

Be sure not to use a bamrd as the name of a signal hanglest you inadvertently call it.

If your system has theigaction() function then signal handlers are installed using it. This
means you get reliable signal handling.

The default deliery policy of signals changed in Perl 5.8.0 from immediate (alsowknas
“unsafe”) to deferred, also known as “safe signals”. See perlipc for more information.

Certain internal hooks can be also set using #®IG hash. The routine indicated by

2011-09-26 187

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

$SIG{_WARN__} is called when a arning message is about to be printed. Tlkenwg
message is passed as the first argument. The presence WARN___hook causes the ordinary
printing of warnings toSTDERRto be suppressed. You can use this teesaarnings in a
variable, or turn warnings into fatal errors,ditis:

local $SIG{_ _WARN_} = sub{die$ [0] }
eval $proggie;

As the'IGNORE' hook is not supported by WARN_, you can disable warnings using the
empty subroutine:

local $SIG{_ _WARN_} = sub {};

The routine indicated b$SIG{ DIE_} is called when a fatal exception is about to be

thrown. The error message is passed as the figgstn@nt. When a _DIE__ hook routine

returns, the exception processing continues as it wowklihaghe absence of the hook, unless the

hook routine itself exits via goto , a loop exit, or adie() . The __DIE__ handler is

explicitly disabled during the call, so that you can die from @IE__ handler Smilarly for
WARN_.

Due to an implementation glitch, t88I1G{ DIE_ } hook is called een inside areval()

Do not use this to werite a pending exception @ or as a krarre substitute forwerriding
CORE::GLOBAL:die() . This strange action at a distance may be fixed in a future release so
that$SIG{_DIE_ } is only called if your program is about to exit, as was the original intent.
Any other use is deprecated.

__DIE__/__WARN__handlers are very special in one respecty tihay be called to report
(probable) errors found by the parser such a case the parser may be in inconsistent state, so
ary attempt to gauate Perl code from such a handler will probably result ingéagk. This
means that warnings or errors that result from parsing Perl should be usestreitheecaution,

like this:

require Carp if defined $°S;

Carp::confess("Something wrong") if defined &Carp::confess;

die "Something wrong, but could not load Carp to give backtrace...
To see backtrace try starting Perl with -MCarp switch";

Here the first line will loadCarp unlessit is the parser who called the handlEne second line
will print backtrace and die i€arp was available. The third line will be eecuted only ifCarp
was ot available.

Having to even think about the$’S variable in your exception handlers is simply wrong.
$SIG{_DIE_} as currently implemented invites grieis and difficult to track down errors.
Avoid it and use aEND{} or CORE::GLOBAL.::die @erride instead.

See ‘die” in perlfunc, ‘warn” in perlfunc, ‘evad’’ in perlfunc, and warnings for additional
information.

$BASETIME

$T

The time at which the programdse running, in seconds since the epoch (beginning of 1970).
The values returned by thé, —A, and —C filetests are based on this value.

${"TAINT}

Reflects if taint mode is on or off. 1 for on (the program was run +ifith 0 for of, -1 when
only taint warnings are enabled (i.e. withor —TU).

This variable is read-only.

This variable was added in Perl 5.8.

${"UNICODE}

188

Reflects certain Unicode settings of Perl. See perlrun documentation fe€ gwitch for more
information about the possible values.

This variable is set during Perl startup and is thereafter read-only.

This variable was added in Perl 5.8.2.

2011-09-26 perl v5.14.2

PERLVAR(1)

PerlProgrammers Reference Guide PERR(1)

${"UTF8CACHE}

This variable controls the state of the intet@aF-8 offset caching codel for on (the dedult), 0
for off, =1 to debug the caching code by checking all its resuldsnstglinear scans, and
panicking on apdiscrepang.

This variable was added in Perl 5.8.9.

${"UTFSLOCALE}

This variable indicates whethet &8F-8 locale was detected by perl at startup. This information
is used by perl when & in ajust-utf8ness—to—locale mode (as when run with Hgi
command-line switch); see perlrun for more info on this.

This variable was added in Perl 5.8.8.

$PERL_VERSION

sV

The revision, version, and sudssion of the Perl interpreteiepresented asversion object.

This variable first appeared in perl 5.6.0; earlier versions of perl will see an undedioed v
Before perl 5.10.8°V was represented as a v-string.

$°V can be used to determine whether the Perl interpne¢euting a script is in the right range
of versions. For example:

warn "Hashes not randomized\n" if 1$"V or $"V It v5.8.1
To corvert $°V into its string representation usgrintf() 's "%vd" corversion:
printf "version is v%vd\n“, $°V; # Perl's version

See the documentation w$e VERSION andrequire VERSION for a comwenient way to &il
if the running Perl interpreter is too old.

See als@®] for an older representation of the Perl version.
This variable was added in Perl 5.6.

Mnemonic: use "V for Version Control.

${WIN32_SLOPPY_SAT}

If this variable is set to a true value, treat() on Windows will not try to open the file. This
means that the link count cannot be determined and file attributes may be out of date if additional
hardlinks to the file exist. On the other hand, not opening the file is considexstielyeEpecially

for files on network dvies.

This variable could be set in tleitecustomize.dile to configure the local Perl installation to use
“sloppy” stat() by default. See the documentation fefrin perlrun for more information
about site customization.

This variable was added in Perl 5.10.

$EXECUTABLE_NAME

$X

perl v5.14.2

The name used taxecute the current cgpof Perl, from C5 argv[0] or (where supported)
/proc/selflexe

Depending on the host operating system, the valu&™xf may be a relate a absolute
pathname of the perl program file, or may be the string useddkeimerl but not the pathname
of the perl program file. Also, most operating systems perwiking programs that are not in
the PATH ervironment variable, so there is no guarantee that the val@éXofis in PATH. For
VMS, the value may or may not include a version number.

You usually can use the value $fX to re-invoke an independent cgpof the same perl that is
currently running, e.g.,

@first_run = "$°X —le "print int rand 100 for 1..100";

But recall that not all operating systems support forking or capturing of the output of commands,
so this comple statement may not be portable.

It is not safe to use the value®¥X as a path name of a file, as some operating systems teat ha
a mandatory suffix onxecutable files do not require use of thefiguivhen irvoking a command.

2011-09-26 189

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

To corvert the value ofs"X to a path name, use the following statements:

Build up a set of file names (not command names).
use Config;
my $this_perl = $°X;
if ($°0O ne 'VMS") {
$this_perl .= $Config{_exe}
unless $this_perl =~ m/$Config{_exe}$/i;

}

Because manoperating systems permit anyone with read access to the Perl program fileeto mak
a aopy of it, patch the cop and then gecute the cop the security-conscious Perl programmer
should tak care to ivoke the installed cop of perl, not the cop referenced by$™X. The
following statements accomplish this goal, and produce a pathname that caokied as a
command or referenced as a file.

use Config;
my $secure_perl_path = $Config{perlpath};
if ($°0 ne 'VMS") {
$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =~ m/$Config{_exe}$/i;

}

Variables related to regular expressions
Most of the special variables related to regular expressions arefsicts.dPerl sets these variables when it
has a successful match, so you should check the match result before using them. For instance:

if(/P(A)TT(ER)N/) {
print "I found $1 and $2\n";
}

These variables are read-only and dynamically-scoped, unless we note otherwise.

The dynamic nature of thegelar expression variables means that their value is limited to the block that
they are in, as demonstrated by this bit of code:

my $outer = '‘Wallace and Grommit’;
my $inner = 'Mutt and Jeff';

my $pattern = qr/(\S+) and (\S+)/;

sub show_n { print "\$1 is $1; \$2 is $2\n" }

{
OUTER:
show_n() if $outer =~ m/$pattern/;
INNER: {
show_n() if $inner =~ m/$pattern/;
}
show_n();
}

The output shes that while in theOUTERblock, the values o$1 and$2 are from the match agnst
$outer . Inside thedNNER block, the values df1 and$2 are from the match agst$inner , but only
until the end of the block (i.e. the dynamic scope). Aftedfi¢ER block completes, the values $1 and
$2 return to the values for the match agafbmiiter even though we hee rot made another match:

$1 is Wallace; $2 is Grommit
$1 is Mutt; $2 is Jeff
$1 is Wallace; $2 is Grommit

Due to an unfortunate accident of Perimplementation,use English imposes a considerable
performance penalty on allgelar expression matches in a program because it us&s {i$&, and $' ,

190 2011-09-26 perl v5.14.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

regardless of whether tlyeoccur in the scope afse English . For that reason, sayingse English
in libraries is strongly discouraged unless you import it without the match variables:

use English '-no_match_vars'

The Devel::NYTProf and Devel::FindAmpersand modules can help you find uses of these
problematic match variables in your code.

Since Perl 5.10, you can use tipe match operator flag and tl#{"PREMATCH}, ${"MATCH}, and
${"POSTMATCH} variables instead so you only suffer the performance penalties.

$<digits> ($1,%$2, ...)
Contains the subpattern from the corresponding set of capturing parentheses from the last
successful pattern match, not counting patterns matched in nested blocks/¢hbtemagited
already.

These variables are read-only and dynamically-scoped.

Mnemonic: like \digits.

$MATCH
$& The string matched by the last successful pattern match (not countingatarhes hidden within
aBLOCK oreval() enclosed by the curreBLOCK).

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matche® &oid this penaltyyou can extract the same substring by using
“@-". Starting with Perl 5.10, you can use the </p> match flag anB{tMATCH} variable to

do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.
Mnemonic: like& in some editors.

${"MATCH}
This is similar to$& ($MATCH except that it does not incur the performance penalty associated
with that variable, and is only guaranteed to return a defiale@ when the pattern was compiled
or executed with thép modifier.

This variable was added in Perl 5.10.

This variable is read-only and dynamically-scoped.

$PREMATCH
$ The string preceding whater was matched by the last successful pattern match, not counting
ary matches hidden within BLOCK or eval enclosed by the curreBL OCK.

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matche &oid this penaltyyou can extract the same substring by using
“@-". Starting with Perl 5.10, you can use the </p> match flag andsfftRREMATCH}
variable to do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.
Mnemonic:” often precedes a quoted string.

${"PREMATCH}
This is similar to$™ ($PREMATCH) except that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a dedinedwhen the pattern
was compiled or &ecuted with thép maodifier.

This variable was added in Perl 5.10

This variable is read-only and dynamically-scoped.

$POSTMATCH
$ The string following whateer was matched by the last successful pattern match (not counting
ary matches hidden within BLOCK oreval() enclosed by the curreBLOCK). Example:

perl v5.14.2 2011-09-26 191

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

192

local $_ = 'abcdefghi';
/def};
print "$":$&:$"\n"; # prints abc:def:ghi

The use of this variable gwhere in a program imposes a considerable performance penalty on
all regular expression matchebo avoid this penaltyyou can extract the same substring by using
“@-". Starting with Perl 5.10, you can use the </p> match flag an@&{{tROSTMATCH}
variable to do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.

Mnemonic:' often follows a quoted string.

${"POSTMATCH}
This is similar to$' ($POSTMATCHexcept that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a dedinedwhen the pattern
was compiled or gecuted with thép maodifier.

This variable was added in Perl 5.10.

This variable is read-only and dynamically-scoped.

$LAST_PAREN_MATCH
$+ The text matched by the last bracket of the last successful search pattern. This is useful if you
don't know which one of a set of alternadi patterns matched. For example:

[Version: (.*)|Revision: (.*)/ && ($rev = $+);
This variable is read-only and dynamically-scoped.

Mnemonic: be posite and forward looking.

$LAST_SUBMATCH_RESULT
$N The text matched by the used group most-recently closed (i.e. the group with the rightmost
closing parenthesis) of the last successful search pattern.

This is primarily used insid€?{...}) blocks for examining text recently matchedbrF
example, to effectiely capture text to a variable (in addition®b, $2, etc.), replacd...) with

(2:(..)?{$Svar=$'N)

By setting and then usingvar in this way reli#es you from having to worry aboutxactly
which numbered set of parenthesey tire.

This variable was added in Perl 5.8.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST_MATCH_END

@+ This array holds the offsets of the ends of the last successful submatches in the curremtly acti
dynamic scopeb+[0] is the ofset into the string of the end of the entire match. This is the same
value as what theos function returns when called on the variable that was matched against. The
nth element of this array holds the offset of title submatch, s&+[1] is the offset past where
$1 ends, $+[2] the offset past wher®2 ends, and so on. You can uieét+ to determine he
mary subgroups were in the last successful match. See the examyae$ogithe @-variable.

This variable was added in Perl 5.6.

%LAST_PAREN_MATCH
%+ Similar to @+ the %+hash allows access to the named captufiets, should theg exist, in the
last successful match in the currently aetilynamic scope.

For example, $+{foo} is equvalent to$1 after the following match:
'foo' =" /(?<foo>foo)/;

The leys of the %+ hash list only the names ofiffers that hae captured (and that are thus
associated to defined values).

The underlying behaviour 8b+is provided by the Tie::Hash::NamedCapture module.

2011-09-26 perl v5.14.2

PERLVAR(1) PerlProgrammers Reference Guide PERR(1)

Note: %—and%-+are tied views into a common internal hash associated with the last successful
regular expression. Therefore mixing itevatiaccess to them vieaach may hae wnpredictable
results. Lilewise, if the last successful match changes, then the results may be surprising.

This variable was added in Perl 5.10.

This variable is read-only and dynamically-scoped.

@LAST_MATCH_START
@- $-[0] is the offset of the start of the last successful ma%eH.n] is the offset of the start of
the substring matched lmyth subpattern, or undef if the subpattern did not match.

Thus, after a match amst$_, $& coincides withsubstr $_, $-[0], $+[0] — $-[0]