
BASH(1) BASH(1)

NAME
bash − GNU Bourne-Again SHell

SYNOPSIS
bash[options] [file]

COPYRIGHT
Bash is Copyright © 1989-2011 by the Free Software Foundation, Inc.

DESCRIPTION
Bash is ansh-compatible command language interpreter that executes commands read from the standard
input or from a file.Bashalso incorporates useful features from theKorn andC shells (ksh andcsh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the IEEE POSIX
specification (IEEE Standard 1003.1).Bashcan be configured to be POSIX-conformant by default.

OPTIONS
All of the single-character shell options documented in the description of theset builtin command can be
used as options when the shell is invoked. In addition,bash interprets the following options when it is
invoked:

−c string If the −c option is present, then commands are read fromstring. If there are arguments after
thestring, they are assigned to the positional parameters, starting with$0.

−i If the −i option is present, the shell isinteractive.
−l Makebashact as if it had been invoked as a login shell (seeINVOCATION below).
−r If the −r option is present, the shell becomesrestricted (seeRESTRICTED SHELL below).
−s If the −s option is present, or if no arguments remain after option processing, then commands

are read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

−D A l ist of all double-quoted strings preceded by$ is printed on the standard output. These are
the strings that are subject to language translation when the current locale is notC or POSIX.
This implies the−n option; no commands will be executed.

[−+]O [shopt_option]
shopt_optionis one of the shell options accepted by theshopt builtin (seeSHELL BUILTIN
COMMANDS below). If shopt_optionis present,−O sets the value of that option;+O unsets
it. If shopt_optionis not supplied, the names and values of the shell options accepted byshopt
are printed on the standard output.If the invocation option is+O, the output is displayed in a
format that may be reused as input.

−− A −− signals the end of options and disables further option processing.Any arguments after
the−− are treated as filenames and arguments. Anargument of− is equivalent to−−.

Bashalso interprets a number of multi-character options.These options must appear on the command line
before the single-character options to be recognized.

−−debugger
Arrange for the debugger profile to be executed before the shell starts.Turns on extended debug-
ging mode (see the description of theextdebugoption to theshoptbuiltin below).

−−dump−po−strings
Equivalent to−D, but the output is in the GNUgettextpo (portable object) file format.

−−dump−strings
Equivalent to−D.

−−help Display a usage message on standard output and exit successfully.
−−init−file file
−−rcfile file

Execute commands fromfile instead of the standard personal initialization file˜/.bashrc if the
shell is interactive (seeINVOCATION below).

−−login
Equivalent to−l.

−−noediting
Do not use the GNUreadline library to read command lines when the shell is interactive.

GNU Bash-4.2 2010 December 28 1

BASH(1) BASH(1)

−−noprofile
Do not read either the system-wide startup file/etc/profileor any of the personal initialization files
˜/.bash_profile, ˜/.bash_login, or ˜/.profile. By default,bash reads these files when it is invoked as
a login shell (seeINVOCATION below).

−−norc Do not read and execute the personal initialization filẽ/.bashrc if the shell is interactive. This
option is on by default if the shell is invoked as sh.

−−posix
Change the behavior of bash where the default operation differs from the POSIX standard to
match the standard (posix mode).

−−restricted
The shell becomes restricted (seeRESTRICTED SHELL below).

−−verbose
Equivalent to −v.

−−version
Show version information for this instance ofbashon the standard output and exit successfully.

ARGUMENTS
If arguments remain after option processing, and neither the−c nor the−soption has been supplied, the first
argument is assumed to be the name of a file containing shell commands.If bash is invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining arguments.Bash
reads and executes commands from this file, then exits. Bash’s exit status is the exit status of the last com-
mand executed in the script. If no commands are executed, the exit status is 0. An attempt is first made to
open the file in the current directory, and, if no file is found, then the shell searches the directories inPATH
for the script.

INVOCATION
A login shellis one whose first character of argument zero is a−, or one started with the−−login option.

An interactiveshell is one started without non-option arguments and without the−c option whose standard
input and error are both connected to terminals (as determined byisatty(3)), or one started with the−i
option. PS1is set and$− includesi if bash is interactive, allowing a shell script or a startup file to test this
state.

The following paragraphs describe how bashexecutes its startup files. If any of the files exist but cannot be
read,bash reports an error. Tildes are expanded in file names as described below underTi lde Expansion
in theEXPANSION section.

Whenbash is invoked as an interactive login shell, or as a non-interactive shell with the−−login option, it
first reads and executes commands from the file/etc/profile, if that file exists. After reading that file, it
looks for˜/.bash_profile, ˜/.bash_login, and ˜/.profile, in that order, and reads and executes commands from
the first one that exists and is readable.The −−noprofile option may be used when the shell is started to
inhibit this behavior.

When a login shell exits,bashreads and executes commands from the file˜/.bash_logout, if it exists.

When an interactive shell that is not a login shell is started,bash reads and executes commands from
˜/.bashrc, if that file exists. Thismay be inhibited by using the−−norc option. The−−rcfile file option will
forcebashto read and execute commands fromfile instead of̃ /.bashrc.

When bash is started non-interactively, to run a shell script, for example, it looks for the variable
BASH_ENV in the environment, expands its value if it appears there, and uses the expanded value as the
name of a file to read and execute. Bashbehaves as if the following command were executed:

if [−n "$BASH_ENV"]; then . "$BASH_ENV"; fi

but the value of thePATH variable is not used to search for the file name.

If bash is invoked with the namesh, it tries to mimic the startup behavior of historical versions ofsh as
closely as possible, while conforming to the POSIX standard as well. When invoked as an interactive login
shell, or a non-interactive shell with the−−login option, it first attempts to read and execute commands
from /etc/profileand˜/.profile, in that order. The−−noprofile option may be used to inhibit this behavior.
When invoked as an interactive shell with the namesh, bash looks for the variableENV, expands its value
if it is defined, and uses the expanded value as the name of a file to read and execute. Sincea shell invoked

2 2010 December 28 GNU Bash-4.2

BASH(1) BASH(1)

assh does not attempt to read and execute commands from any other startup files, the−−rcfile option has
no effect. A non-interactive shell invoked with the namesh does not attempt to read any other startup files.
When invoked as sh, bashentersposixmode after the startup files are read.

Whenbash is started inposixmode, as with the−−posixcommand line option, it follows the POSIX stan-
dard for startup files. In this mode, interactive shells expand theENV variable and commands are read and
executed from the file whose name is the expanded value. Noother startup files are read.

Bashattempts to determine when it is being run with its standard input connected to a network connection,
as when executed by the remote shell daemon, usuallyrshd, or the secure shell daemonsshd. If bashdeter-
mines it is being run in this fashion, it reads and executes commands from̃/.bashrc, if that file exists and is
readable. Itwill not do this if invoked as sh. The−−norc option may be used to inhibit this behavior, and
the−−rcfile option may be used to force another file to be read, but rshd does not generally invoke the shell
with those options or allow them to be specified.

If the shell is started with the effective user (group) id not equal to the real user (group) id, and the−p
option is not supplied, no startup files are read, shell functions are not inherited from the environment, the
SHELLOPTS, BASHOPTS, CDPATH, andGLOBIGNORE variables, if they appear in the environment, are
ignored, and the effective user id is set to the real user id. If the−p option is supplied at invocation, the
startup behavior is the same, but the effective user id is not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as atoken.
name A word consisting only of alphanumeric characters and underscores, and beginning with an alpha-

betic character or an underscore. Also referred to as anidentifier .
metacharacter

A character that, when unquoted, separates words. Oneof the following:
| & ; () < > space tab

control operator
A tokenthat performs a control function. It is one of the following symbols:
|| & && ; ;; () | |& <newline>

RESERVED WORDS
Reserved wordsare words that have a special meaning to the shell. The following words are recognized as
reserved when unquoted and either the first word of a simple command (seeSHELL GRAMMAR below) or
the third word of acaseor for command:

! case do done elif else esac fi for function if in select then until
while { } time [[]]

SHELL GRAMMAR
Simple Commands

A simple commandis a sequence of optional variable assignments followed byblank-separated words and
redirections, and terminated by acontrol operator. The first word specifies the command to be executed,
and is passed as argument zero. The remaining words are passed as arguments to the invoked command.

The return value of asimple commandis its exit status, or 128+n if the command is terminated by signaln.

Pipelines
A pipeline is a sequence of one or more commands separated by one of the control operators| or |& . The
format for a pipeline is:

[time [−p]] [!] command[[| |&] command2...]

The standard output ofcommandis connected via a pipe to the standard input ofcommand2. This connec-
tion is performed before any redirections specified by the command (seeREDIRECTION below). If |& is
used, the standard error ofcommandis connected tocommand2’s standard input through the pipe; it is
shorthand for2>&1 |. This implicit redirection of the standard error is performed after any redirections
specified by the command.

The return status of a pipeline is the exit status of the last command, unless thepipefail option is enabled.
If pipefail is enabled, the pipeline’s return status is the value of the last (rightmost) command to exit with a
non-zero status, or zero if all commands exit successfully. If the reserved word ! precedes a pipeline, the
exit status of that pipeline is the logical negation of the exit status as described above. The shell waits for

GNU Bash-4.2 2010 December 28 3

BASH(1) BASH(1)

all commands in the pipeline to terminate before returning a value.

If the time reserved word precedes a pipeline, the elapsed as well as user and system time consumed by its
execution are reported when the pipeline terminates.The−p option changes the output format to that spec-
ified by POSIX. When the shell is inposix mode, it does not recognizetime as a reserved word if the next
token begins with a ‘-’. The TIMEFORMAT variable may be set to a format string that specifies how the
timing information should be displayed; see the description ofTIMEFORMAT under Shell Variables
below.

When the shell is inposix mode, time may be followed by a newline. In this case, the shell displays the
total user and system time consumed by the shell and its children.The TIMEFORMAT variable may be
used to specify the format of the time information.

Each command in a pipeline is executed as a separate process (i.e., in a subshell).

Lists
A list is a sequence of one or more pipelines separated by one of the operators;, & , && , or ||, and option-
ally terminated by one of;, & , or <newline>.

Of these list operators,&& and || have equal precedence, followed by ; and& , which have equal prece-
dence.

A sequence of one or more newlines may appear in alist instead of a semicolon to delimit commands.

If a command is terminated by the control operator& , the shell executes the command in thebackgroundin
a subshell. Theshell does not wait for the command to finish, and the return status is 0. Commands sepa-
rated by a; are executed sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last command executed.

AND and OR lists are sequences of one of more pipelines separated by the&& and || control operators,
respectively. AND and OR lists are executed with left associativity. An AND list has the form

command1&& command2

command2is executed if, and only if,command1returns an exit status of zero.

An OR list has the form

command1|| command2

command2is executed if and only ifcommand1returns a non-zero exit status. The return status of AND
and OR lists is the exit status of the last command executed in the list.

Compound Commands
A compound commandis one of the following:

(list) list is executed in a subshell environment (seeCOMMAND EXECUTION ENVIR ONMENT below).
Variable assignments and builtin commands that affect the shell’s environment do not remain in
effect after the command completes. The return status is the exit status oflist.

{ list; } list is simply executed in the current shell environment. list must be terminated with a newline or
semicolon. Thisis known as agroup command. The return status is the exit status oflist. Note
that unlike the metacharacters(and), { and} arereserved wordsand must occur where a reserved
word is permitted to be recognized. Since they do not cause a word break, they must be separated
from list by whitespace or another shell metacharacter.

((expression))
Theexpressionis evaluated according to the rules described below underARITHMETIC EV ALUA-
TION . If the value of the expression is non-zero, the return status is 0; otherwise the return status
is 1. This is exactly equivalent tolet " expression" .

[[expression]]
Return a status of 0 or 1 depending on the evaluation of the conditional expressionexpression.
Expressions are composed of the primaries described below under CONDITION AL EXPRES-
SIONS. Word splitting and pathname expansion are not performed on the words between the[[
and]] ; tilde expansion, parameter and variable expansion, arithmetic expansion, command substi-
tution, process substitution, and quote removal are performed. Conditional operators such as−f
must be unquoted to be recognized as primaries.

When used with[[, the< and> operators sort lexicographically using the current locale.

4 2010 December 28 GNU Bash-4.2

BASH(1) BASH(1)

When the== and!= operators are used, the string to the right of the operator is considered a pat-
tern and matched according to the rules described below under Pattern Matching. If the shell
option nocasematchis enabled, the match is performed without regard to the case of alphabetic
characters. Thereturn value is 0 if the string matches (==) or does not match (!=) the pattern, and
1 otherwise. Any part of the pattern may be quoted to force it to be matched as a string.

An additional binary operator, =˜, is available, with the same precedence as== and!=. When it is
used, the string to the right of the operator is considered an extended regular expression and
matched accordingly (as inregex(3)). Thereturn value is 0 if the string matches the pattern, and 1
otherwise. Ifthe regular expression is syntactically incorrect, the conditional expression’s return
value is 2. If the shell optionnocasematchis enabled, the match is performed without regard to
the case of alphabetic characters.Any part of the pattern may be quoted to force it to be matched
as a string. Substrings matched by parenthesized subexpressions within the regular expression are
saved in the array variableBASH_REMATCH . The element ofBASH_REMATCH with index 0 is
the portion of the string matching the entire regular expression. Theelement ofBASH_REMATCH
with indexn is the portion of the string matching thenth parenthesized subexpression.

Expressions may be combined using the following operators, listed in decreasing order of prece-
dence:

(expression)
Returns the value ofexpression. This may be used to override the normal precedence of
operators.

! expression
True if expressionis false.

expression1&& expression2
True if bothexpression1andexpression2are true.

expression1|| expression2
True if eitherexpression1or expression2is true.

The && and || operators do not evaluate expression2if the value ofexpression1is sufficient to
determine the return value of the entire conditional expression.

for name[[in [word ...]] ;] do list ; done
The list of words following in is expanded, generating a list of items.The variablenameis set to
each element of this list in turn, andlist is executed each time. If thein word is omitted, thefor
command executeslist once for each positional parameter that is set (seePARAMETERS below).
The return status is the exit status of the last command that executes. Ifthe expansion of the items
following in results in an empty list, no commands are executed, and the return status is 0.

for ((expr1 ; expr2 ; expr3)) ; do list ; done
First, the arithmetic expressionexpr1 is evaluated according to the rules described below under
ARITHMETIC EV ALUATION . The arithmetic expressionexpr2 is then evaluated repeatedly until
it evaluates to zero.Each timeexpr2 evaluates to a non-zero value,list is executed and the arith-
metic expressionexpr3 is evaluated. Ifany expression is omitted, it behaves as if it evaluates to 1.
The return value is the exit status of the last command inlist that is executed, or false if any of the
expressions is invalid.

selectname[in word] ; do list ; done
The list of words following in is expanded, generating a list of items. The set of expanded words
is printed on the standard error, each preceded by a number. If the in word is omitted, the posi-
tional parameters are printed (seePARAMETERS below). ThePS3prompt is then displayed and a
line read from the standard input. If the line consists of a number corresponding to one of the dis-
played words, then the value ofname is set to that word. If the line is empty, the words and
prompt are displayed again. If EOF is read, the command completes.Any other value read causes
nameto be set to null. The line read is saved in the variableREPLY . The list is executed after
each selection until abreak command is executed. Theexit status ofselectis the exit status of the
last command executed inlist, or zero if no commands were executed.

caseword in [[(] pattern[| pattern] ...) list ;;] ... esac
A casecommand first expandsword, and tries to match it against eachpattern in turn, using the
same matching rules as for pathname expansion (seePathname Expansionbelow). Theword is
expanded using tilde expansion, parameter and variable expansion, arithmetic substitution,

GNU Bash-4.2 2010 December 28 5

BASH(1) BASH(1)

command substitution, process substitution and quote removal. Each pattern examined is
expanded using tilde expansion, parameter and variable expansion, arithmetic substitution, com-
mand substitution, and process substitution. If the shell optionnocasematchis enabled, the match
is performed without regard to the case of alphabetic characters.When a match is found, the cor-
respondinglist is executed. If the ;; operator is used, no subsequent matches are attempted after
the first pattern match.Using ;& in place of;; causes execution to continue with thelist associ-
ated with the next set of patterns.Using ;;& in place of;; causes the shell to test the next pattern
list in the statement, if any, and execute any associatedlist on a successful match. The exit status
is zero if no pattern matches. Otherwise, it is the exit status of the last command executed inlist.

if list; then list; [elif list; then list;] ... [elselist;] fi
The if list is executed. Ifits exit status is zero, thethen list is executed. Otherwise,eachelif list
is executed in turn, and if its exit status is zero, the correspondingthen list is executed and the
command completes. Otherwise, theelselist is executed, if present. The exit status is the exit sta-
tus of the last command executed, or zero if no condition tested true.

while list-1; do list-2; done
until list-1; do list-2; done

The while command continuously executes the listlist-2 as long as the last command in the list
list-1 returns an exit status of zero.Theuntil command is identical to thewhile command, except
that the test is negated; list-2 is executed as long as the last command inlist-1 returns a non-zero
exit status. The exit status of thewhile anduntil commands is the exit status of the last command
executed inlist-2, or zero if none was executed.

Coprocesses
A coprocessis a shell command preceded by thecoproc reserved word. A coprocess is executed asyn-
chronously in a subshell, as if the command had been terminated with the& control operator, with a two-
way pipe established between the executing shell and the coprocess.

The format for a coprocess is:

coproc [NAME] command[redirections]

This creates a coprocess namedNAME. If NAME is not supplied, the default name isCOPROC. NAME
must not be supplied ifcommandis asimple command(see above); otherwise, it is interpreted as the first
word of the simple command. When the coproc is executed, the shell creates an array variable (seeArrays
below) namedNAME in the context of the executing shell. The standard output ofcommandis connected
via a pipe to a file descriptor in the executing shell, and that file descriptor is assigned toNAME[0]. The
standard input ofcommandis connected via a pipe to a file descriptor in the executing shell, and that file
descriptor is assigned toNAME[1]. This pipe is established before any redirections specified by the com-
mand (seeREDIRECTION below). The file descriptors can be utilized as arguments to shell commands
and redirections using standard word expansions. Theprocess ID of the shell spawned to execute the
coprocess is available as the value of the variableNAME_PID. Thewait builtin command may be used to
wait for the coprocess to terminate.

The return status of a coprocess is the exit status ofcommand.

Shell Function Definitions
A shell function is an object that is called like a simple command and executes a compound command with
a new set of positional parameters. Shell functions are declared as follows:

name() compound−command[redirection]
function name[()] compound−command[redirection]

This defines a function namedname. The reserved word function is optional. If the function
reserved word is supplied, the parentheses are optional.Thebodyof the function is the compound
commandcompound−command(seeCompound Commandsabove). Thatcommand is usually a
list of commands between { and }, but may be any command listed underCompound Commands
above. compound−commandis executed whenever name is specified as the name of a simple
command. Any redirections (seeREDIRECTION below) specified when a function is defined are
performed when the function is executed. Theexit status of a function definition is zero unless a
syntax error occurs or a readonly function with the same name already exists. Whenexecuted, the
exit status of a function is the exit status of the last command executed in the body. (SeeFUNC-
TIONS below.)

6 2010 December 28 GNU Bash-4.2

BASH(1) BASH(1)

COMMENTS
In a non-interactive shell, or an interactive shell in which theinteractive_commentsoption to theshopt
builtin is enabled (seeSHELL BUILTIN COMMANDS below), a word beginning with# causes that word
and all remaining characters on that line to be ignored.An interactive shell without theinteractive_com-
ments option enabled does not allow comments. Theinteractive_commentsoption is on by default in
interactive shells.

QUOTING
Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can be
used to disable special treatment for special characters, to prevent reserved words from being recognized as
such, and to prevent parameter expansion.

Each of themetacharacterslisted above underDEFINITIONS has special meaning to the shell and must be
quoted if it is to represent itself.

When the command history expansion facilities are being used (seeHISTORY EXPANSION below), the
history expansioncharacter, usually!, must be quoted to prevent history expansion.

There are three quoting mechanisms: theescape character, single quotes, and double quotes.

A non-quoted backslash (\) is theescape character. It preserves the literal value of the next character that
follows, with the exception of <newline>. If a \<newline> pair appears, and the backslash is not itself
quoted, the\<newline> is treated as a line continuation (that is, it is removed from the input stream and
effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within the quotes.A sin-
gle quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the
exception of$, `, \, and, when history expansion is enabled,!. The characters$ and ` retain their special
meaning within double quotes.The backslash retains its special meaning only when followed by one of the
following characters:$, `, " , \, or <newline>. A double quote may be quoted within double quotes by pre-
ceding it with a backslash. If enabled, history expansion will be performed unless an! appearing in double
quotes is escaped using a backslash. The backslash preceding the! is not removed.

The special parameters* and@ have special meaning when in double quotes (seePARAMETERS below).

Words of the form$'string' are treated specially. The word expands tostring, with backslash-escaped char-
acters replaced as specified by the ANSI C standard.Backslash escape sequences, if present, are decoded
as follows:

\a alert (bell)
\b backspace
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' single quote
\" double quote
\nnn the eight-bit character whose value is the octal valuennn(one to three digits)
\xHH the eight-bit character whose value is the hexadecimal valueHH (one or two hex digits)
\uHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHH
(one to four hex digits)

\UHHHHHHHH
the Unicode (ISO/IEC 10646) character whose value is the hexadecimal valueHHHHH-
HHH (one to eight hex digits)

\cx a control-x character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar sign ($"string") will cause the string to be translated according

GNU Bash-4.2 2010 December 28 7

BASH(1) BASH(1)

to the current locale.If the current locale isC or POSIX, the dollar sign is ignored. If the string is trans-
lated and replaced, the replacement is double-quoted.

PARAMETERS
A parameteris an entity that stores values. Itcan be aname, a number, or one of the special characters
listed below underSpecial Parameters. A variable is a parameter denoted by aname. A variable has a
valueand zero or moreattributes. Attributes are assigned using thedeclarebuiltin command (seedeclare
below in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assigned a value. Thenull string is a valid value. Oncea variable is set, it
may be unset only by using theunsetbuiltin command (seeSHELL BUILTIN COMMANDS below).

A variablemay be assigned to by a statement of the form

name=[value]

If valueis not given, the variable is assigned the null string.All valuesundergo tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quote removal (seeEXPANSION
below). If the variable has itsinteger attribute set, thenvalueis evaluated as an arithmetic expression even
if the $((...)) expansion is not used (seeArithmetic Expansion below). Word splitting is not performed,
with the exception of"$@" as explained below under Special Parameters. Pathname expansion is not
performed. Assignmentstatements may also appear as arguments to thealias, declare, typeset, export,
readonly, and local builtin commands.

In the context where an assignment statement is assigning a value to a shell variable or array index, the +=
operator can be used to append to or add to the variable’s previous value. When+= is applied to a variable
for which theinteger attribute has been set,valueis evaluated as an arithmetic expression and added to the
variable’s current value, which is also evaluated. When+= is applied to an array variable using compound
assignment (seeArrays below), the variable’s value is not unset (as it is when using =), and new values are
appended to the array beginning at one greater than the array’s maximum index (for indexed arrays) or
added as additional key−value pairs in an associative array. When applied to a string-valued variable,value
is expanded and appended to the variable’s value.

Positional Parameters
A positional parameteris a parameter denoted by one or more digits, other than the single digit 0.Posi-
tional parameters are assigned from the shell’s arguments when it is invoked, and may be reassigned using
the set builtin command. Positional parameters may not be assigned to with assignment statements.The
positional parameters are temporarily replaced when a shell function is executed (seeFUNCTIONS below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in
braces (seeEXPANSION below).

Special Parameters
The shell treats several parameters specially. These parameters may only be referenced; assignment to
them is not allowed.
* Expands to the positional parameters, starting from one.When the expansion occurs within dou-

ble quotes, it expands to a single word with the value of each parameter separated by the first char-
acter of theIFS special variable. Thatis, "$*" is equivalent to "$1c$2c...", wherec is the first char-
acter of the value of theIFS variable. If IFS is unset, the parameters are separated by spaces.If
IFS is null, the parameters are joined without intervening separators.

@ Expands to the positional parameters, starting from one.When the expansion occurs within dou-
ble quotes, each parameter expands to a separate word. Thatis, "$@" is equivalent to "$1" "$2" ...
If the double-quoted expansion occurs within a word, the expansion of the first parameter is joined
with the beginning part of the original word, and the expansion of the last parameter is joined with
the last part of the original word. Whenthere are no positional parameters, "$@" and $@ expand
to nothing (i.e., they are removed).

Expands to the number of positional parameters in decimal.
? Expands to the exit status of the most recently executed foreground pipeline.
− Expands to the current option flags as specified upon invocation, by theset builtin command, or

those set by the shell itself (such as the−i option).
$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current

shell, not the subshell.
! Expands to the process ID of the most recently executed background (asynchronous) command.

8 2010 December 28 GNU Bash-4.2

BASH(1) BASH(1)

0 Expands to the name of the shell or shell script.This is set at shell initialization.If bash is
invoked with a file of commands,$0 is set to the name of that file.If bash is started with the−c
option, then$0 is set to the first argument after the string to be executed, if one is present.Other-
wise, it is set to the file name used to invokebash, as giv en by argument zero.

_ At shell startup, set to the absolute pathname used to invoke the shell or shell script being executed
as passed in the environment or argument list. Subsequently, expands to the last argument to the
previous command, after expansion. Alsoset to the full pathname used to invoke each command
executed and placed in the environment exported to that command. When checking mail, this
parameter holds the name of the mail file currently being checked.

Shell Variables
The following variables are set by the shell:

BASH Expands to the full file name used to invoke this instance ofbash.
BASHOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid argument for the−s
option to theshopt builtin command (seeSHELL BUILTIN COMMANDS below). The options
appearing inBASHOPTSare those reported ason by shopt. If this variable is in the environment
whenbash starts up, each shell option in the list will be enabled before reading any startup files.
This variable is read-only.

BASHPID
Expands to the process ID of the currentbashprocess. Thisdiffers from$$ under certain circum-
stances, such as subshells that do not requirebashto be re-initialized.

BASH_ALIASES
An associative array variable whose members correspond to the internal list of aliases as main-
tained by thealias builtin. Elementsadded to this array appear in the alias list; unsetting array ele-
ments cause aliases to be removed from the alias list.

BASH_ARGC
An array variable whose values are the number of parameters in each frame of the currentbash
execution call stack. The number of parameters to the current subroutine (shell function or script
executed with. or source) is at the top of the stack.When a subroutine is executed, the number of
parameters passed is pushed ontoBASH_ARGC. The shell setsBASH_ARGC only when in
extended debugging mode (see the description of theextdebugoption to theshoptbuiltin below)

BASH_ARGV
An array variable containing all of the parameters in the currentbash execution call stack.The
final parameter of the last subroutine call is at the top of the stack; the first parameter of the initial
call is at the bottom. When a subroutine is executed, the parameters supplied are pushed onto
BASH_ARGV. The shell setsBASH_ARGV only when in extended debugging mode (see the
description of theextdebugoption to theshoptbuiltin below)

BASH_CMDS
An associative array variable whose members correspond to the internal hash table of commands
as maintained by thehashbuiltin. Elementsadded to this array appear in the hash table; unsetting
array elements cause commands to be removed from the hash table.

BASH_COMMAND
The command currently being executed or about to be executed, unless the shell is executing a
command as the result of a trap, in which case it is the command executing at the time of the trap.

BASH_EXECUTION_STRING
The command argument to the−c invocation option.

BASH_LINENO
An array variable whose members are the line numbers in source files where each corresponding
member ofFUNCNAME was inv oked. ${BASH_LINENO[$i]} is the line number in the source
file (${BASH_SOURCE[$i+1]}) where ${FUNCNAME[$i]} was called (or
${BASH_LINENO[$i-1]} if referenced within another shell function).UseLINENO to obtain the
current line number.

BASH_REMATCH
An array variable whose members are assigned by the=˜ binary operator to the[[conditional com-
mand. Theelement with index 0 is the portion of the string matching the entire regular expression.
The element with index n is the portion of the string matching thenth parenthesized subexpres-
sion. Thisvariable is read-only.

GNU Bash-4.2 2010 December 28 9

BASH(1) BASH(1)

BASH_SOURCE
An array variable whose members are the source filenames where the corresponding shell function
names in theFUNCNAME array variable are defined. The shell function${FUNCNAME[$i]} is
defined in the file${BASH_SOURCE[$i]} and called from${BASH_SOURCE[$i+1]} .

BASH_SUBSHELL
Incremented by one each time a subshell or subshell environment is spawned. Theinitial value is
0.

BASH_VERSINFO
A readonly array variable whose members hold version information for this instance ofbash. The
values assigned to the array members are as follows:

BASH_VERSINFO[0] The major version number (therelease).
BASH_VERSINFO[1] The minor version number (theversion).
BASH_VERSINFO[2] The patch level.
BASH_VERSINFO[3] The build version.
BASH_VERSINFO[4] The release status (e.g.,beta1).
BASH_VERSINFO[5] The value ofMACHTYPE .

BASH_VERSION
Expands to a string describing the version of this instance ofbash.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor position. This vari-
able is available only in shell functions invoked by the programmable completion facilities (see
Programmable Completionbelow).

COMP_KEY
The key (or final key of a key sequence) used to invoke the current completion function.

COMP_LINE
The current command line. This variable is available only in shell functions and external com-
mands invoked by the programmable completion facilities (seeProgrammable Completion
below).

COMP_POINT
The index of the current cursor position relative to the beginning of the current command. If the
current cursor position is at the end of the current command, the value of this variable is equal to
${#COMP_LINE} . This variable is available only in shell functions and external commands
invoked by the programmable completion facilities (seeProgrammable Completionbelow).

COMP_TYPE
Set to an integer value corresponding to the type of completion attempted that caused a completion
function to be called:TAB, for normal completion,?, for listing completions after successive tabs,
!, for listing alternatives on partial word completion,@, to list completions if the word is not
unmodified, or%, for menu completion. This variable is available only in shell functions and
external commands invoked by the programmable completion facilities (seeProgrammable
Completion below).

COMP_WORDBREAKS
The set of characters that thereadline library treats as word separators when performing word
completion. IfCOMP_WORDBREAKS is unset, it loses its special properties, even if it is subse-
quently reset.

COMP_WORDS
An array variable (seeArrays below) consisting of the individual words in the current command
line. The line is split into words asreadline would split it, usingCOMP_WORDBREAKS as
described above. This variable is available only in shell functions invoked by the programmable
completion facilities (seeProgrammable Completionbelow).

COPROC
An array variable (seeArrays below) created to hold the file descriptors for output from and input
to an unnamed coprocess (seeCoprocessesabove).

DIRSTACK
An array variable (seeArrays below) containing the current contents of the directory stack.
Directories appear in the stack in the order they are displayed by thedirs builtin. Assigning to
members of this array variable may be used to modify directories already in the stack, but the
pushd andpopd builtins must be used to add and remove directories. Assignmentto this variable
will not change the current directory. If DIRSTACK is unset, it loses its special properties, even if

10 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

it is subsequently reset.
EUID Expands to the effective user ID of the current user, initialized at shell startup.This variable is

readonly.
FUNCNAME

An array variable containing the names of all shell functions currently in the execution call stack.
The element with index 0 is the name of any currently-executing shell function. The bottom-most
element (the one with the highest index) is "main" . This variable exists only when a shell func-
tion is executing. Assignmentsto FUNCNAME have no effect and return an error status.If FUNC-
NAME is unset, it loses its special properties, even if it is subsequently reset.

This variable can be used withBASH_LINENO andBASH_SOURCE. Each element ofFUNC-
NAME has corresponding elements inBASH_LINENO and BASH_SOURCE to describe the
call stack.For instance,${FUNCNAME[$i]} was called from the file${BASH_SOURCE[$i+1]}
at line number${BASH_LINENO[$i]} . The caller builtin displays the current call stack using
this information.

GROUPS
An array variable containing the list of groups of which the current user is a member. Assign-
ments toGROUPS have no effect and return an error status.If GROUPS is unset, it loses its spe-
cial properties, even if it is subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command.If HISTCMD is unset, it
loses its special properties, even if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine on whichbash is execut-
ing. Thedefault is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function.When not in a script or
function, the value substituted is not guaranteed to be meaningful.If LINENO is unset, it loses its
special properties, even if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on whichbash is executing, in
the standard GNUcpu-company-systemformat. Thedefault is system-dependent.

MAPFILE
An array variable (seeArrays below) created to hold the text read by themapfile builtin when no
variable name is supplied.

OLDPWD
The previous working directory as set by thecd command.

OPTARG
The value of the last option argument processed by thegetopts builtin command (seeSHELL
BUILTIN COMMANDS below).

OPTIND
The index of the next argument to be processed by thegetopts builtin command (seeSHELL
BUILTIN COMMANDS below).

OSTYPE
Automatically set to a string that describes the operating system on whichbash is executing. The
default is system-dependent.

PIPESTATUS
An array variable (seeArrays below) containing a list of exit status values from the processes in
the most-recently-executed foreground pipeline (which may contain only a single command).

PPID The process ID of the shell’s parent. Thisvariable is readonly.
PWD The current working directory as set by thecd command.
RANDOM

Each time this parameter is referenced, a random integer between 0 and 32767 is generated.The
sequence of random numbers may be initialized by assigning a value toRANDOM . If RANDOM is
unset, it loses its special properties, even if it is subsequently reset.

GNU Bash-4.2 2010 December 28 11

BASH(1) BASH(1)

READLINE_LINE
The contents of thereadline line buffer, for use withbind -x (seeSHELL BUILTIN COM-
MANDS below).

READLINE_POINT
The position of the insertion point in thereadline line buffer, for use withbind -x (seeSHELL
BUILTIN COMMANDS below).

REPLY
Set to the line of input read by theread builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is returned.
If a value is assigned toSECONDS, the value returned upon subsequent references is the number
of seconds since the assignment plus the value assigned.If SECONDSis unset, it loses its special
properties, even if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for the
−o option to theset builtin command (seeSHELL BUILTIN COMMANDS below). The options
appearing inSHELLOPTS are those reported ason by set −o. If this variable is in the environment
whenbash starts up, each shell option in the list will be enabled before reading any startup files.
This variable is read-only.

SHLVL
Incremented by one each time an instance ofbash is started.

UID Expands to the user ID of the current user, initialized at shell startup. This variable is readonly.

The following variables are used by the shell. In some cases,bash assigns a default value to a variable;
these cases are noted below.

BASH_ENV
If this parameter is set whenbash is executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, as in˜/.bashrc. The value ofBASH_ENV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
as a file name.PATH is not used to search for the resultant file name.

BASH_XTRACEFD
If set to an integer corresponding to a valid file descriptor, bashwill write the trace output gener-
ated whenset -x is enabled to that file descriptor. The file descriptor is closed when
BASH_XTRACEFD is unset or assigned a new value. UnsettingBASH_XTRACEFD or assigning it
the empty string causes the trace output to be sent to the standard error. Note that setting
BASH_XTRACEFD to 2 (the standard error file descriptor) and then unsetting it will result in the
standard error being closed.

CDPATH
The search path for thecd command. Thisis a colon-separated list of directories in which the
shell looks for destination directories specified by thecd command. A sample value is
".:˜:/usr" .

COLUMNS
Used by theselectcompound command to determine the terminal width when printing selection
lists. Automaticallyset upon receipt of aSIGWINCH .

COMPREPLY
An array variable from whichbash reads the possible completions generated by a shell function
invoked by the programmable completion facility (seeProgrammable Completionbelow).

EMACS
If bashfinds this variable in the environment when the shell starts with valuet , it assumes that the
shell is running in an Emacs shell buffer and disables line editing.

ENV Similar toBASH_ENV; used when the shell is invoked in POSIX mode.
FCEDIT

The default editor for thefc builtin command.
FIGNORE

A colon-separated list of suffixes to ignore when performing filename completion (seeREADLINE
below). A filename whose suffix matches one of the entries inFIGNORE is excluded from the list
of matched filenames.A sample value is".o:˜" .

12 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

FUNCNEST
If set to a numeric value greater than 0, defines a maximum function nesting level. Functioninvo-
cations that exceed this nesting level will cause the current command to abort.

GLOBIGNORE
A colon-separated list of patterns defining the set of filenames to be ignored by pathname expan-
sion. If a filename matched by a pathname expansion pattern also matches one of the patterns in
GLOBIGNORE , it is removed from the list of matches.

HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history list. If the list
of values includesignorespace, lines which begin with aspacecharacter are not saved in the his-
tory list. A value ofignoredupscauses lines matching the previous history entry to not be saved.
A value ofignorebothis shorthand forignorespaceand ignoredups. A value of erasedupscauses
all previous lines matching the current line to be removed from the history list before that line is
saved. Any value not in the above list is ignored.If HISTCONTROL is unset, or does not include
a valid value, all lines read by the shell parser are saved on the history list, subject to the value of
HISTIGNORE . The second and subsequent lines of a multi-line compound command are not
tested, and are added to the history regardless of the value ofHISTCONTROL .

HISTFILE
The name of the file in which command history is saved (seeHISTORY below). Thedefault value
is ˜/.bash_history. If unset, the command history is not saved when an interactive shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file.When this variable is assigned a
value, the history file is truncated, if necessary, by removing the oldest entries, to contain no more
than that number of lines. The default value is 500.The history file is also truncated to this size
after writing it when an interactive shell exits.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be saved on the his-
tory list. Each pattern is anchored at the beginning of the line and must match the complete line
(no implicit ‘* ’ is appended). Eachpattern is tested against the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching characters, ‘& ’
matches the previous history line.‘& ’ may be escaped using a backslash; the backslash is
removed before attempting a match.The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the value ofHISTIGNORE .

HISTSIZE
The number of commands to remember in the command history (seeHISTORY below). The
default value is 500.

HISTTIMEFORMAT
If this variable is set and not null, its value is used as a format string forstrftime(3) to print the
time stamp associated with each history entry displayed by thehistory builtin. If this variable is
set, time stamps are written to the history file so they may be preserved across shell sessions.This
uses the history comment character to distinguish timestamps from other history lines.

HOME
The home directory of the current user; the default argument for thecd builtin command. The
value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same format as/etc/hoststhat should be read when the shell
needs to complete a hostname.The list of possible hostname completions may be changed while
the shell is running; the next time hostname completion is attempted after the value is changed,
bashadds the contents of the new file to the existing list.If HOSTFILE is set, but has no value, or
does not name a readable file,bashattempts to read/etc/hoststo obtain the list of possible host-
name completions. WhenHOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines into
words with theread builtin command. The default value is ‘‘<space><tab><newline>’’.

IGNOREEOF
Controls the action of an interactive shell on receipt of anEOF character as the sole input. If set,
the value is the number of consecutive EOF characters which must be typed as the first characters
on an input line beforebashexits. If the variable exists but does not have a numeric value, or has
no value, the default value is 10. If it does not exist,EOF signifies the end of input to the shell.

GNU Bash-4.2 2010 December 28 13

BASH(1) BASH(1)

INPUTRC
The filename for thereadline startup file, overriding the default of˜/.inputrc (seeREADLINE
below).

LANG Used to determine the locale category for any category not specifically selected with a variable
starting withLC_.

LC_ALL
This variable overrides the value ofLANG and any other LC_ variable specifying a locale cate-
gory.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expansion,
and determines the behavior of range expressions, equivalence classes, and collating sequences
within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings preceded by a$.

LC_NUMERIC
This variable determines the locale category used for number formatting.

LINES Used by theselectcompound command to determine the column length for printing selection lists.
Automatically set upon receipt of aSIGWINCH .

MAIL If this parameter is set to a file or directory name and theMAILP ATH variable is not set,bash
informs the user of the arrival of mail in the specified file or Maildir-format directory.

MAILCHECK
Specifies how often (in seconds)bashchecks for mail. The default is 60 seconds.When it is time
to check for mail, the shell does so before displaying the primary prompt.If this variable is unset,
or set to a value that is not a number greater than or equal to zero, the shell disables mail checking.

MAILP ATH
A colon-separated list of file names to be checked for mail. The message to be printed when mail
arrives in a particular file may be specified by separating the file name from the message with a
‘?’. Whenused in the text of the message,$_ expands to the name of the current mailfile.Exam-
ple:
MAILP ATH='/var/mail/bfox?"You have mail":˜/shell−mail?"$_ has mail!"'
Bashsupplies a default value for this variable, but the location of the user mail files that it uses is
system dependent (e.g., /var/mail/$USER).

OPTERR
If set to the value 1,bashdisplays error messages generated by thegetoptsbuiltin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell is invoked
or a shell script is executed.

PATH The search path for commands.It is a colon-separated list of directories in which the shell looks
for commands (seeCOMMAND EXECUTION below). A zero-length (null) directory name in the
value of PATH indicates the current directory. A null directory name may appear as two adjacent
colons, or as an initial or trailing colon. The default path is system-dependent, and is set by the
administrator who installs bash. A common value is
/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin .

POSIXLY_CORRECT
If this variable is in the environment whenbashstarts, the shell entersposix modebefore reading
the startup files, as if the−−posix invocation option had been supplied. If it is set while the shell is
running,bashenablesposix mode, as if the commandset -o posix had been executed.

PROMPT_COMMAND
If set, the value is executed as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM
If set to a number greater than zero, the value is used as the number of trailing directory compo-
nents to retain when expanding the\w and \W prompt string escapes (seePROMPTING below).
Characters removed are replaced with an ellipsis.

PS1 The value of this parameter is expanded (seePROMPTING below) and used as the primary prompt
string. Thedefault value is ‘‘\s−\v\$ ’’ .

PS2 The value of this parameter is expanded as withPS1and used as the secondary prompt string.The
default is ‘‘> ’’ .

14 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

PS3 The value of this parameter is used as the prompt for theselectcommand (seeSHELL GRAM-
MAR above).

PS4 The value of this parameter is expanded as withPS1and the value is printed before each command
bashdisplays during an execution trace. The first character ofPS4is replicated multiple times, as
necessary, to indicate multiple levels of indirection. The default is ‘‘+ ’’ .

SHELL
The full pathname to the shell is kept in this environment variable. If it is not set when the shell
starts,bashassigns to it the full pathname of the current user’s login shell.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing information for
pipelines prefixed with thetime reserved word should be displayed.The % character introduces
an escape sequence that is expanded to a time value or other information. The escape sequences
and their meanings are as follows; the braces denote optional portions.

%% A l iteral% .
%[p][l]R The elapsed time in seconds.
%[p][l]U The number of CPU seconds spent in user mode.
%[p][l]S The number of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.

The optionalp is a digit specifying theprecision, the number of fractional digits after a decimal
point. A value of 0 causes no decimal point or fraction to be output. At most three places after the
decimal point may be specified; values ofp greater than 3 are changed to 3.If p is not specified,
the value 3 is used.

The optionall specifies a longer format, including minutes, of the formMMmSS.FFs. Thevalue
of p determines whether or not the fraction is included.

If this variable is not set,bashacts as if it had the value$'\nreal\t%3lR\nuser\t%3lU\nsys%3lS' .
If the value is null, no timing information is displayed.A trailing newline is added when the for-
mat string is displayed.

TMOUT
If set to a value greater than zero,TMOUT is treated as the default timeout for theread builtin.
Theselectcommand terminates if input does not arrive after TMOUT seconds when input is com-
ing from a terminal. In an interactive shell, the value is interpreted as the number of seconds to
wait for input after issuing the primary prompt.Bash terminates after waiting for that number of
seconds if input does not arrive.

TMPDIR
If set,bashuses its value as the name of a directory in whichbashcreates temporary files for the
shell’s use.

auto_resume
This variable controls how the shell interacts with the user and job control.If this variable is set,
single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job. There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selected.The nameof a stopped job, in this
context, is the command line used to start it. If set to the valueexact, the string supplied must
match the name of a stopped job exactly; if set tosubstring, the string supplied needs to match a
substring of the name of a stopped job. The substringvalue provides functionality analogous to
the %? job identifier (seeJOB CONTROL below). If set to any other value, the supplied string
must be a prefix of a stopped job’s name; this provides functionality analogous to the%string job
identifier.

histchars
The two or three characters which control history expansion and tokenization (seeHISTORY
EXPANSION below). The first character is thehistory expansioncharacter, the character which
signals the start of a history expansion, normally ‘!’. The second character is thequick substitu-
tion character, which is used as shorthand for re-running the previous command entered, substitut-
ing one string for another in the command. The default is ‘ˆ’. The optional third character is the
character which indicates that the remainder of the line is a comment when found as the first char-
acter of a word, normally ‘#’. The history comment character causes history substitution to be
skipped for the remaining words on the line.It does not necessarily cause the shell parser to treat
the rest of the line as a comment.

GNU Bash-4.2 2010 December 28 15

BASH(1) BASH(1)

Arrays
Bash provides one-dimensional indexed and associative array variables. Any variable may be used as an
indexed array; thedeclarebuiltin will explicitly declare an array. There is no maximum limit on the size of
an array, nor any requirement that members be indexed or assigned contiguously. Indexed arrays are refer-
enced using integers (including arithmetic expressions) andare zero-based; associative arrays are refer-
enced using arbitrary strings.

An indexed array is created automatically if any variable is assigned to using the syntaxname[sub-
script]=value. The subscriptis treated as an arithmetic expression that must evaluate to a number. If sub-
script evaluates to a number less than zero, it is used as an offset from one greater than the array’s maxi-
mum index (so a subcript of -1 refers to the last element of the array).To explicitly declare an indexed
array, use declare −a name(seeSHELL BUILTIN COMMANDS below). declare −a name[subscript] is
also accepted; thesubscriptis ignored.

Associative arrays are created usingdeclare −A name.

Attributes may be specified for an array variable using thedeclare and readonly builtins. Eachattribute
applies to all members of an array.

Arrays are assigned to using compound assignments of the formname=(value1 ... valuen), where each
valueis of the form [subscript]=string. Indexed array assignments do not require the bracket and subscript.
When assigning to indexed arrays, if the optional brackets and subscript are supplied, that index is assigned
to; otherwise the index of the element assigned is the last index assigned to by the statement plus one.
Indexing starts at zero.

When assigning to an associative array, the subscript is required.

This syntax is also accepted by thedeclarebuiltin. Individual array elements may be assigned to using the
name[subscript]=valuesyntax introduced above.

Any element of an array may be referenced using ${name[subscript]}. The braces are required to avoid
conflicts with pathname expansion. Ifsubscript is @ or * , the word expands to all members ofname.
These subscripts differ only when the word appears within double quotes.If the word is double-quoted,
${name[*]} expands to a single word with the value of each array member separated by the first character
of the IFS special variable, and ${name[@]} expands each element ofnameto a separate word. When
there are no array members, ${name[@]} expands to nothing. If the double-quoted expansion occurs
within a word, the expansion of the first parameter is joined with the beginning part of the original word,
and the expansion of the last parameter is joined with the last part of the original word. Thisis analogous
to the expansion of the special parameters* and@ (seeSpecial Parametersabove). ${#name[subscript]}
expands to the length of ${name[subscript]}. If subscriptis * or @, the expansion is the number of ele-
ments in the array. Referencing an array variable without a subscript is equivalent to referencing the array
with a subscript of 0.

An array variable is considered set if a subscript has been assigned a value. Thenull string is a valid value.

Theunsetbuiltin is used to destroy arrays. unsetname[subscript] destroys the array element at index sub-
script. Care must be taken to avoid unwanted side effects caused by pathname expansion. unset name,
wherenameis an array, or unsetname[subscript], wheresubscriptis * or @, removes the entire array.

The declare, local, and readonly builtins each accept a−a option to specify an indexed array and a−A
option to specify an associative array. If both options are supplied,−A takes precedence.The read builtin
accepts a−a option to assign a list of words read from the standard input to an array. Thesetanddeclare
builtins display array values in a way that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split into words. Thereare seven kinds of
expansion performed:brace expansion, tilde expansion, parameter and variable expansion, command sub-
stitution, arithmetic expansion, word splitting, andpathname expansion.

The order of expansions is: brace expansion, tilde expansion, parameter, variable and arithmetic expansion
and command substitution (done in a left-to-right fashion), word splitting, and pathname expansion.

On systems that can support it, there is an additional expansion available:process substitution.

Only brace expansion, word splitting, and pathname expansion can change the number of words of the
expansion; other expansions expand a single word to a single word. Theonly exceptions to this are the
expansions of "$@" and "${name[@]}" as explained above (seePARAMETERS).

16 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

Brace Expansion
Brace expansionis a mechanism by which arbitrary strings may be generated. This mechanism is similar
to pathname expansion, but the filenames generated need not exist. Patterns to be brace expanded take the
form of an optionalpreamble, followed by either a series of comma-separated strings or a sequence expres-
sion between a pair of braces, followed by an optionalpostscript. The preamble is prefixed to each string
contained within the braces, and the postscript is then appended to each resulting string, expanding left to
right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is
preserved. For example, a{d,c,b}e expands into ‘ade ace abe’.

A sequence expression takes the form{x..y[..incr]} , wherex andy are either integers or single characters,
and incr, an optional increment, is an integer. When integers are supplied, the expression expands to each
number betweenx andy, inclusive. Supplied integers may be prefixed with0 to force each term to have the
same width. When eitherx or y begins with a zero, the shell attempts to force all generated terms to contain
the same number of digits, zero-padding where necessary. When characters are supplied, the expression
expands to each character lexicographically betweenx andy, inclusive. Note that bothx andy must be of
the same type. When the increment is supplied, it is used as the difference between each term. The default
increment is 1 or -1 as appropriate.

Brace expansion is performed before any other expansions, and any characters special to other expansions
are preserved in the result. It is strictly textual. Bashdoes not apply any syntactic interpretation to the con-
text of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at least one
unquoted comma or a valid sequence expression. Any incorrectly formed brace expansion is left
unchanged. A{ or , may be quoted with a backslash to prevent its being considered part of a brace expres-
sion. To avoid conflicts with parameter expansion, the string${ is not considered eligible for brace expan-
sion.

This construct is typically used as shorthand when the common prefix of the strings to be generated is
longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with historical versions ofsh. sh does not treat open-
ing or closing braces specially when they appear as part of a word, and preserves them in the output.Bash
removes braces from words as a consequence of brace expansion. For example, a word entered tosh as
file{1,2} appears identically in the output. The same word is output asfile1 file2after expansion bybash.
If strict compatibility withsh is desired, startbashwith the+B option or disable brace expansion with the
+B option to thesetcommand (seeSHELL BUILTIN COMMANDS below).

Ti lde Expansion
If a word begins with an unquoted tilde character (‘˜’), all of the characters preceding the first unquoted
slash (or all characters, if there is no unquoted slash) are considered atilde-prefix. If none of the characters
in the tilde-prefix are quoted, the characters in the tilde-prefix following the tilde are treated as a possible
login name. If this login name is the null string, the tilde is replaced with the value of the shell parameter
HOME . If HOME is unset, the home directory of the user executing the shell is substituted instead.Other-
wise, the tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is a ‘˜+’, the value of the shell variablePWD replaces the tilde-prefix.If the tilde-prefix is
a ‘˜−’, the value of the shell variableOLDPWD , if it is set, is substituted.If the characters following the
tilde in the tilde-prefix consist of a numberN, optionally prefixed by a ‘+’ or a ‘−’, the tilde-prefix is
replaced with the corresponding element from the directory stack, as it would be displayed by thedirs
builtin invoked with the tilde-prefix as an argument. Ifthe characters following the tilde in the tilde-prefix
consist of a number without a leading ‘+’ or ‘−’, ‘+’ is assumed.

If the login name is invalid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately following a: or the first=. In
these cases, tilde expansion is also performed.Consequently, one may use file names with tildes in assign-
ments toPATH , MAILP ATH, andCDPATH, and the shell assigns the expanded value.

GNU Bash-4.2 2010 December 28 17

BASH(1) BASH(1)

Parameter Expansion
The ‘$’ character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to pro-
tect the variable to be expanded from characters immediately following it which could be interpreted as part
of the name.

When braces are used, the matching ending brace is the first ‘}’ not escaped by a backslash or within a
quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter
expansion.

${parameter}
The value ofparameteris substituted. The braces are required whenparameteris a positional
parameter with more than one digit, or whenparameteris followed by a character which is not to
be interpreted as part of its name.

If the first character ofparameteris an exclamation point (!), a level of variable indirection is introduced.
Bashuses the value of the variable formed from the rest ofparameteras the name of the variable; this vari-
able is then expanded and that value is used in the rest of the substitution, rather than the value ofparame-
ter itself. Thisis known asindirect expansion. The exceptions to this are the expansions of ${!prefix* } and
${ !name[@]} described below. The exclamation point must immediately follow the left brace in order to
introduce indirection.

In each of the cases below, word is subject to tilde expansion, parameter expansion, command substitution,
and arithmetic expansion.

When not performing substring expansion, using the forms documented below, bash tests for a parameter
that is unset or null. Omitting the colon results in a test only for a parameter that is unset.

${parameter:−word}
Use Default Values. If parameteris unset or null, the expansion ofword is substituted.Other-
wise, the value ofparameteris substituted.

${parameter:=word}
Assign Default Values. If parameter is unset or null, the expansion ofword is assigned to
parameter. The value ofparameteris then substituted. Positional parameters and special param-
eters may not be assigned to in this way.

${parameter:?word}
Display Error if Null or Unset . If parameteris null or unset, the expansion ofword (or a mes-
sage to that effect ifword is not present) is written to the standard error and the shell, if it is not
interactive, exits. Otherwise,the value ofparameteris substituted.

${parameter:+word}
Use Alternate Value. If parameteris null or unset, nothing is substituted, otherwise the expan-
sion ofword is substituted.

${parameter:offset}
${parameter:offset:length}

Substring Expansion. Expands to up tolengthcharacters ofparameterstarting at the character
specified byoffset. If lengthis omitted, expands to the substring ofparameterstarting at the char-
acter specified byoffset. lengthandoffsetare arithmetic expressions (seeARITHMETIC EV ALU-
ATION below). If offsetevaluates to a number less than zero, the value is used as an offset from
the end of the value ofparameter. If lengthevaluates to a number less than zero, andparameteris
not @ and not an indexed or associative array, it is interpreted as an offset from the end of the
value ofparameterrather than a number of characters, and the expansion is the characters between
the two offsets. Ifparameteris @, the result islengthpositional parameters beginning atoffset. If
parameteris an indexed array name subscripted by @ or *, the result is thelengthmembers of the
array beginning with ${parameter[offset]}. A negative offsetis taken relative to one greater than
the maximum index of the specified array. Substring expansion applied to an associative array
produces undefined results. Note that a negative offset must be separated from the colon by at
least one space to avoid being confused with the :- expansion. Substringindexing is zero-based
unless the positional parameters are used, in which case the indexing starts at 1 by default. If off-
setis 0, and the positional parameters are used,$0 is prefixed to the list.

${ !prefix* }

18 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

${ !prefix@}
Names matching prefix. Expands to the names of variables whose names begin withprefix, sepa-
rated by the first character of theIFS special variable. When@ is used and the expansion appears
within double quotes, each variable name expands to a separate word.

${ !name[@]}
${ !name[*]}

List of array k eys. If name is an array variable, expands to the list of array indices (keys)
assigned inname. If nameis not an array, expands to 0 ifnameis set and null otherwise.When
@ is used and the expansion appears within double quotes, each key expands to a separate word.

${#parameter}
Parameter length. The length in characters of the value ofparameteris substituted.If parame-
ter is * or @, the value substituted is the number of positional parameters.If parameteris an
array name subscripted by* or @, the value substituted is the number of elements in the array.

${parameter#word}
${parameter##word}

Remove matching prefix pattern. The word is expanded to produce a pattern just as in path-
name expansion. Ifthe pattern matches the beginning of the value ofparameter, then the result of
the expansion is the expanded value ofparameterwith the shortest matching pattern (the ‘‘#’’
case) or the longest matching pattern (the ‘‘##’’ case) deleted.If parameteris @ or * , the pattern
removal operation is applied to each positional parameter in turn, and the expansion is the resul-
tant list. If parameteris an array variable subscripted with@ or * , the pattern removal operation
is applied to each member of the array in turn, and the expansion is the resultant list.

${parameter%word}
${parameter%% word}

Remove matching suffix pattern. Theword is expanded to produce a pattern just as in pathname
expansion. Ifthe pattern matches a trailing portion of the expanded value ofparameter, then the
result of the expansion is the expanded value ofparameterwith the shortest matching pattern (the
‘‘ % ’’ case) or the longest matching pattern (the ‘‘%% ’’ case) deleted.If parameteris @ or * , the
pattern removal operation is applied to each positional parameter in turn, and the expansion is the
resultant list.If parameteris an array variable subscripted with@ or * , the pattern removal oper-
ation is applied to each member of the array in turn, and the expansion is the resultant list.

${parameter/pattern/string}
Pattern substitution . The pattern is expanded to produce a pattern just as in pathname expan-
sion. Parameter is expanded and the longest match ofpatternagainst its value is replaced with
string. If patternbegins with/, all matches ofpatternare replaced withstring. Normally only the
first match is replaced.If patternbegins with#, it must match at the beginning of the expanded
value of parameter. If patternbegins with% , it must match at the end of the expanded value of
parameter. If string is null, matches ofpattern are deleted and the/ following pattern may be
omitted. If parameteris @ or * , the substitution operation is applied to each positional parameter
in turn, and the expansion is the resultant list.If parameteris an array variable subscripted with
@ or * , the substitution operation is applied to each member of the array in turn, and the expan-
sion is the resultant list.

${parameter̂pattern}
${parameter̂̂ pattern}
${parameter,pattern}
${parameter,,pattern}

Case modification. This expansion modifies the case of alphabetic characters inparameter. The
pattern is expanded to produce a pattern just as in pathname expansion. Thê operator converts
lowercase letters matchingpatternto uppercase; the, operator converts matching uppercase letters
to lowercase. Thê̂ and,, expansions convert each matched character in the expanded value; theˆ
and , expansions match and convert only the first character in the expanded value. If pattern is
omitted, it is treated like a?, which matches every character. If parameteris @ or * , the case
modification operation is applied to each positional parameter in turn, and the expansion is the
resultant list. If parameteris an array variable subscripted with@ or * , the case modification
operation is applied to each member of the array in turn, and the expansion is the resultant list.

GNU Bash-4.2 2010 December 28 19

BASH(1) BASH(1)

Command Substitution
Command substitutionallows the output of a command to replace the command name.There are two
forms:

$(command)
or

`command̀

Bashperforms the expansion by executingcommandand replacing the command substitution with the stan-
dard output of the command, with any trailing newlines deleted. Embedded newlines are not deleted, but
they may be removed during word splitting. The command substitution$(cat file) can be replaced by the
equivalent but faster$(< file).

When the old-style backquote form of substitution is used, backslash retains its literal meaning except
when followed by$, `, or \. The first backquote not preceded by a backslash terminates the command sub-
stitution. Whenusing the $(command) form, all characters between the parentheses make up the com-
mand; none are treated specially.

Command substitutions may be nested.To nest when using the backquoted form, escape the inner back-
quotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not performed
on the results.

Arithmetic Expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result.
The format for arithmetic expansion is:

$((expression))

Theexpressionis treated as if it were within double quotes, but a double quote inside the parentheses is not
treated specially. All tokens in the expression undergo parameter expansion, string expansion, command
substitution, and quote removal. Arithmeticexpansions may be nested.

The evaluation is performed according to the rules listed below under ARITHMETIC EV ALUATION . If
expressionis invalid, bashprints a message indicating failure and no substitution occurs.

Process Substitution
Process substitutionis supported on systems that support named pipes (FIFOs) or the /dev/fd method of
naming open files. It takes the form of<(list) or >(list). The processlist is run with its input or output con-
nected to aFIFO or some file in/dev/fd. The name of this file is passed as an argument to the current com-
mand as the result of the expansion. Ifthe>(list) form is used, writing to the file will provide input forlist.
If the <(list) form is used, the file passed as an argument should be read to obtain the output oflist.

When available, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that
did not occur within double quotes forword splitting.

The shell treats each character ofIFS as a delimiter, and splits the results of the other expansions into words
on these characters.If IFS is unset, or its value is exactly <space><tab><newline>, the default, then
sequences of<space>, <tab>, and <newline>at the beginning and end of the results of the previous expan-
sions are ignored, and any sequence ofIFS characters not at the beginning or end serves to delimit words.
If IFS has a value other than the default, then sequences of the whitespace charactersspaceand tab are
ignored at the beginning and end of the word, as long as the whitespace character is in the value ofIFS (an
IFS whitespace character).Any character inIFS that is notIFS whitespace, along with any adjacentIFS
whitespace characters, delimits a field.A sequence ofIFS whitespace characters is also treated as a delim-
iter. If the value ofIFS is null, no word splitting occurs.

Explicit null arguments ("" or ' ') are retained. Unquoted implicit null arguments, resulting from the
expansion of parameters that have no values, are removed. If a parameter with no value is expanded within
double quotes, a null argument results and is retained.

Note that if no expansion occurs, no splitting is performed.

20 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

Pathname Expansion
After word splitting, unless the−f option has been set,bashscans each word for the characters* , ?, and [.
If one of these characters appears, then the word is regarded as apattern, and replaced with an alphabeti-
cally sorted list of file names matching the pattern.If no matching file names are found, and the shell
optionnullglob is not enabled, the word is left unchanged. If thenullglob option is set, and no matches are
found, the word is removed. If the failglob shell option is set, and no matches are found, an error message
is printed and the command is not executed. If the shell optionnocaseglobis enabled, the match is per-
formed without regard to the case of alphabetic characters.When a pattern is used for pathname expansion,
the character‘‘ .’’ at the start of a name or immediately following a slash must be matched explicitly, unless
the shell optiondotglob is set. When matching a pathname, the slash character must always be matched
explicitly. In other cases, the‘‘ .’’ character is not treated specially. See the description ofshopt below
underSHELL BUILTIN COMMANDS for a description of thenocaseglob, nullglob, failglob, and dotglob
shell options.

TheGLOBIGNORE shell variable may be used to restrict the set of file names matching apattern. If GLO-
BIGNORE is set, each matching file name that also matches one of the patterns inGLOBIGNORE is
removed from the list of matches. The file names‘‘ .’’ and‘‘ ..’’ are always ignored whenGLOBIGNORE is
set and not null.However, settingGLOBIGNORE to a non-null value has the effect of enabling thedotglob
shell option, so all other file names beginning with a‘‘ .’’ will match. To get the old behavior of ignoring
file names beginning with a‘‘ .’’ , make ‘‘ .*’’ one of the patterns inGLOBIGNORE . Thedotglob option is
disabled whenGLOBIGNORE is unset.

Pattern Matching

Any character that appears in a pattern, other than the special pattern characters described below, matches
itself. TheNUL character may not occur in a pattern.A backslash escapes the following character; the
escaping backslash is discarded when matching. The special pattern characters must be quoted if they are
to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string. When theglobstar shell option is enabled,
and* is used in a pathname expansion context, two adjacent*s used as a single pattern
will match all files and zero or more directories and subdirectories. If followed by a/,
two adjacent*s will match only directories and subdirectories.

? Matches any single character.
[...] Matches any one of the enclosed characters.A pair of characters separated by a hyphen

denotes arange expression; any character that sorts between those two characters, inclu-
sive, using the current locale’s collating sequence and character set, is matched.If the
first character following the[is a ! or a ˆ then any character not enclosed is matched.
The sorting order of characters in range expressions is determined by the current locale
and the value of theLC_COLLATE shell variable, if set.A − may be matched by includ-
ing it as the first or last character in the set.A] may be matched by including it as the
first character in the set.

Within [and], character classescan be specified using the syntax[:class:] , whereclass
is one of the following classes defined in the POSIX standard:
alnum alpha ascii blank cntrl digit graph lower print punct space
upper word xdigit
A character class matches any character belonging to that class.The word character
class matches letters, digits, and the character _.

Within [and], an equivalence classcan be specified using the syntax[=c=], which
matches all characters with the same collation weight (as defined by the current locale) as
the characterc.

Within [and], the syntax[.symbol.] matches the collating symbolsymbol.

If the extglob shell option is enabled using theshopt builtin, several extended pattern matching operators
are recognized. In the following description, apattern-listis a list of one or more patterns separated by a|.
Composite patterns may be formed using one or more of the following sub-patterns:

GNU Bash-4.2 2010 December 28 21

BASH(1) BASH(1)

?(pattern-list)
Matches zero or one occurrence of the given patterns

*(pattern-list)
Matches zero or more occurrences of the given patterns

+(pattern-list)
Matches one or more occurrences of the given patterns

@(pattern-list)
Matches one of the given patterns

!(pattern-list)
Matches anything except one of the given patterns

Quote Removal
After the preceding expansions, all unquoted occurrences of the characters\, ' , and " that did not result
from one of the above expansions are removed.

REDIRECTION
Before a command is executed, its input and output may beredirectedusing a special notation interpreted
by the shell.Redirection may also be used to open and close files for the current shell execution environ-
ment. Thefollowing redirection operators may precede or appear anywhere within asimple commandor
may follow acommand. Redirections are processed in the order they appear, from left to right.

Each redirection that may be preceded by a file descriptor number may instead be preceded by a word of
the form {varname}. In this case, for each redirection operator except >&- and <&-, the shell will allocate
a file descriptor greater than 10 and assign it tovarname. If >&- or <&- is preceded by {varname}, the
value ofvarnamedefines the file descriptor to close.

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirect-
ion operator is<, the redirection refers to the standard input (file descriptor 0). If the first character of the
redirection operator is>, the redirection refers to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless otherwise noted, is sub-
jected to brace expansion, tilde expansion, parameter expansion, command substitution, arithmetic expan-
sion, quote removal, pathname expansion, and word splitting. If it expands to more than one word, bash
reports an error.

Note that the order of redirections is significant.For example, the command

ls > dirlist 2>& 1

directs both standard output and standard error to the filedirlist , while the command

ls 2>& 1 > dirlist

directs only the standard output to filedirlist , because the standard error was duplicated from the standard
output before the standard output was redirected todirlist .

Bash handles several filenames specially when they are used in redirections, as described in the following
table:

/dev/fd/fd
If fd is a valid integer, file descriptorfd is duplicated.

/dev/stdin
File descriptor 0 is duplicated.

/dev/stdout
File descriptor 1 is duplicated.

/dev/stderr
File descriptor 2 is duplicated.

/dev/tcp/host/port
If host is a valid hostname or Internet address, andport is an integer port number or ser-
vice name,bashattempts to open a TCP connection to the corresponding socket.

/dev/udp/host/port
If host is a valid hostname or Internet address, andport is an integer port number or ser-
vice name,bashattempts to open a UDP connection to the corresponding socket.

A failure to open or create a file causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care, as they may conflict with file

22 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

descriptors the shell uses internally.

Redirecting Input
Redirection of input causes the file whose name results from the expansion ofword to be opened for read-
ing on file descriptorn, or the standard input (file descriptor 0) ifn is not specified.

The general format for redirecting input is:

[n]<word

Redirecting Output
Redirection of output causes the file whose name results from the expansion ofword to be opened for writ-
ing on file descriptorn, or the standard output (file descriptor 1) ifn is not specified. If the file does not
exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:

[n]>word

If the redirection operator is>, and thenoclobber option to thesetbuiltin has been enabled, the redirection
will fail if the file whose name results from the expansion ofword exists and is a regular file. If the redi-
rection operator is>|, or the redirection operator is> and thenoclobber option to thesetbuiltin command
is not enabled, the redirection is attempted even if the file named bywordexists.

Appending Redirected Output
Redirection of output in this fashion causes the file whose name results from the expansion ofword to be
opened for appending on file descriptorn, or the standard output (file descriptor 1) ifn is not specified.If
the file does not exist it is created.

The general format for appending output is:

[n]>>word

Redirecting Standard Output and Standard Error
This construct allows both the standard output (file descriptor 1) and the standard error output (file descrip-
tor 2) to be redirected to the file whose name is the expansion ofword.

There are two formats for redirecting standard output and standard error:

&> word
and

>& word

Of the two forms, the first is preferred. This is semantically equivalent to

>word2>& 1

Appending Standard Output and Standard Error
This construct allows both the standard output (file descriptor 1) and the standard error output (file descrip-
tor 2) to be appended to the file whose name is the expansion ofword.

The format for appending standard output and standard error is:

&>>word

This is semantically equivalent to

>>word2>& 1

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing only
delimiter (with no trailing blanks) is seen.All of the lines read up to that point are then used as the stan-
dard input for a command.

The format of here-documents is:

<<[−]word
here-document

delimiter

No parameter expansion, command substitution, arithmetic expansion, or pathname expansion is performed
on word. If any characters inword are quoted, thedelimiter is the result of quote removal on word, and
the lines in the here-document are not expanded. Ifword is unquoted, all lines of the here-document are

GNU Bash-4.2 2010 December 28 23

BASH(1) BASH(1)

subjected to parameter expansion, command substitution, and arithmetic expansion. Inthe latter case, the
character sequence\<newline> is ignored, and\ must be used to quote the characters\, $, and `.

If the redirection operator is<<−, then all leading tab characters are stripped from input lines and the line
containingdelimiter. This allows here-documents within shell scripts to be indented in a natural fashion.

Here Strings
A variant of here documents, the format is:

<<<word

Theword is expanded and supplied to the command on its standard input.

Duplicating File Descriptors
The redirection operator

[n]<& word

is used to duplicate input file descriptors.If word expands to one or more digits, the file descriptor denoted
by n is made to be a copy of that file descriptor. If the digits inword do not specify a file descriptor open
for input, a redirection error occurs.If word evaluates to−, file descriptorn is closed.If n is not specified,
the standard input (file descriptor 0) is used.

The operator

[n]>& word

is used similarly to duplicate output file descriptors.If n is not specified, the standard output (file descrip-
tor 1) is used. If the digits inword do not specify a file descriptor open for output, a redirection error
occurs. Asa special case, ifn is omitted, andword does not expand to one or more digits, the standard out-
put and standard error are redirected as described previously.

Moving File Descriptors
The redirection operator

[n]<& digit−

moves the file descriptordigit to file descriptorn, or the standard input (file descriptor 0) ifn is not speci-
fied. digit is closed after being duplicated ton.

Similarly, the redirection operator

[n]>& digit−

moves the file descriptordigit to file descriptorn, or the standard output (file descriptor 1) ifn is not speci-
fied.

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansion ofword to be opened for both reading and writing on file
descriptorn, or on file descriptor 0 ifn is not specified. If the file does not exist, it is created.

ALIASES
Aliasesallow a string to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset with thealias andunalias builtin commands
(seeSHELL BUILTIN COMMANDS below). The first word of each simple command, if unquoted, is
checked to see if it has an alias. If so, that word is replaced by the text of the alias. The characters/, $, `,
and= and any of the shellmetacharactersor quoting characters listed above may not appear in an alias
name. Thereplacement text may contain any valid shell input, including shell metacharacters.The first
word of the replacement text is tested for aliases, but a word that is identical to an alias being expanded is
not expanded a second time.This means that one may aliasls to ls −F, for instance, andbashdoes not try
to recursively expand the replacement text. If the last character of the alias value is ablank, then the next
command word following the alias is also checked for alias expansion.

Aliases are created and listed with thealiascommand, and removed with theunaliascommand.

There is no mechanism for using arguments in the replacement text. If arguments are needed, a shell func-
tion should be used (seeFUNCTIONS below).

24 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

Aliases are not expanded when the shell is not interactive, unless theexpand_aliasesshell option is set
usingshopt (see the description ofshoptunderSHELL BUILTIN COMMANDS below).

The rules concerning the definition and use of aliases are somewhat confusing.Bashalways reads at least
one complete line of input before executing any of the commands on that line.Aliases are expanded when
a command is read, not when it is executed. Therefore,an alias definition appearing on the same line as
another command does not take effect until the next line of input is read.The commands following the
alias definition on that line are not affected by the new alias. Thisbehavior is also an issue when functions
are executed. Aliasesare expanded when a function definition is read, not when the function is executed,
because a function definition is itself a compound command.As a consequence, aliases defined in a func-
tion are not available until after that function is executed. To be safe, always put alias definitions on a sepa-
rate line, and do not usealias in compound commands.

For almost every purpose, aliases are superseded by shell functions.

FUNCTIONS
A shell function, defined as described above underSHELL GRAMMAR , stores a series of commands for
later execution. Whenthe name of a shell function is used as a simple command name, the list of com-
mands associated with that function name is executed. Functionsare executed in the context of the current
shell; no new process is created to interpret them (contrast this with the execution of a shell script).When a
function is executed, the arguments to the function become the positional parameters during its execution.
The special parameter# is updated to reflect the change. Special parameter0 is unchanged. The first ele-
ment of theFUNCNAME variable is set to the name of the function while the function is executing.

All other aspects of the shell execution environment are identical between a function and its caller with
these exceptions: theDEBUG andRETURN traps (see the description of thetrap builtin under SHELL
BUILTIN COMMANDS below) are not inherited unless the function has been given the trace attribute (see
the description of thedeclarebuiltin below) or the−o functraceshell option has been enabled with theset
builtin (in which case all functions inherit theDEBUG andRETURN traps), and theERR trap is not inher-
ited unless the−o errtrace shell option has been enabled.

Variables local to the function may be declared with thelocal builtin command. Ordinarily, variables and
their values are shared between the function and its caller.

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum function nesting
level. Functioninvocations that exceed the limit cause the entire command to abort.

If the builtin commandreturn is executed in a function, the function completes and execution resumes with
the next command after the function call.Any command associated with theRETURN trap is executed
before execution resumes.When a function completes, the values of the positional parameters and the spe-
cial parameter# are restored to the values they had prior to the function’s execution.

Function names and definitions may be listed with the−f option to thedeclare or typeset builtin com-
mands. The−F option todeclare or typesetwill list the function names only (and optionally the source
file and line number, if theextdebugshell option is enabled).Functions may be exported so that subshells
automatically have them defined with the−f option to theexport builtin. A function definition may be
deleted using the−f option to theunsetbuiltin. Note that shell functions and variables with the same name
may result in multiple identically-named entries in the environment passed to the shell’s children. Care
should be taken in cases where this may cause a problem.

Functions may be recursive. TheFUNCNEST variable may be used to limit the depth of the function call
stack and restrict the number of function invocations. Bydefault, no limit is imposed on the number of
recursive calls.

ARITHMETIC EVALU ATION
The shell allows arithmetic expressions to be evaluated, under certain circumstances (see thelet and
declarebuiltin commands andArithmetic Expansion). Evaluation is done in fixed-width integers with no
check for overflow, though division by 0 is trapped and flagged as an error. The operators and their prece-
dence, associativity, and values are the same as in the C language.The following list of operators is
grouped into levels of equal-precedence operators. The levels are listed in order of decreasing precedence.

id++ id−−
variable post-increment and post-decrement

GNU Bash-4.2 2010 December 28 25

BASH(1) BASH(1)

++id −−id
variable pre-increment and pre-decrement

− + unary minus and plus
! ˜ logical and bitwise negation
** exponentiation
* / % multiplication, division, remainder
+ − addition, subtraction
<< >> left and right bitwise shifts
<= >= < >

comparison
== != equality and inequality
& bitwise AND
ˆ bitwise exclusive OR
| bitwise OR
&& logical AND
|| logical OR
expr?expr:expr

conditional operator
= *= /= %= += −= <<= >>= &= ˆ= |=

assignment
expr1 , expr2

comma

Shell variables are allowed as operands; parameter expansion is performed before the expression is evalu-
ated. Within an expression, shell variables may also be referenced by name without using the parameter
expansion syntax.A shell variable that is null or unset evaluates to 0 when referenced by name without
using the parameter expansion syntax. The value of a variable is evaluated as an arithmetic expression
when it is referenced, or when a variable which has been given the integer attribute usingdeclare -i is
assigned a value. Anull value evaluates to 0.A shell variable need not have its integer attribute turned on
to be used in an expression.

Constants with a leading 0 are interpreted as octal numbers.A leading 0x or 0X denotes hexadecimal.
Otherwise, numbers take the form [base#]n, where the optionalbaseis a decimal number between 2 and 64
representing the arithmetic base, andn is a number in that base.If base#is omitted, then base 10 is used.
The digits greater than 9 are represented by the lowercase letters, the uppercase letters, @, and _, in that
order. If baseis less than or equal to 36, lowercase and uppercase letters may be used interchangeably to
represent numbers between 10 and 35.

Operators are evaluated in order of precedence.Sub-expressions in parentheses are evaluated first and may
override the precedence rules above.

CONDITIONAL EXPRESSIONS
Conditional expressions are used by the[[compound command and thetest and[builtin commands to test
file attributes and perform string and arithmetic comparisons. Expressions are formed from the following
unary or binary primaries. If any file argument to one of the primaries is of the form/dev/fd/n, then file
descriptorn is checked. If the file argument to one of the primaries is one of/dev/stdin, /dev/stdout, or
/dev/stderr, file descriptor 0, 1, or 2, respectively, is checked.

Unless otherwise specified, primaries that operate on files follow symbolic links and operate on the target
of the link, rather than the link itself.

When used with[[, the < and> operators sort lexicographically using the current locale.The test com-
mand sorts using ASCII ordering.

−a file True if file exists.
−b file True if file exists and is a block special file.
−c file True if file exists and is a character special file.
−d file True if file exists and is a directory.
−efile True if file exists.
−f file True if file exists and is a regular file.
−g file True if file exists and is set-group-id.

26 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

−h file True if file exists and is a symbolic link.
−k file True if file exists and its ‘‘sticky’’ bit is set.
−p file True if file exists and is a named pipe (FIFO).
−r file True if file exists and is readable.
−sfile True if file exists and has a size greater than zero.
−t fd True if file descriptorfd is open and refers to a terminal.
−u file True if file exists and its set-user-id bit is set.
−w file True if file exists and is writable.
−x file True if file exists and is executable.
−G file True if file exists and is owned by the effective group id.
−L file True if file exists and is a symbolic link.
−N file True if file exists and has been modified since it was last read.
−O file True if file exists and is owned by the effective user id.
−Sfile True if file exists and is a socket.
file1−ef file2

True if file1andfile2 refer to the same device and inode numbers.
file1−nt file2

True if file1 is newer (according to modification date) thanfile2, or if file1exists andfile2does not.
file1−ot file2

True if file1 is older thanfile2, or if file2exists andfile1does not.
−o optname

True if the shell optionoptnameis enabled. See the list of options under the description of the−o
option to thesetbuiltin below.

−v varname
True if the shell variablevarnameis set (has been assigned a value).

−z string
True if the length ofstring is zero.

string
−n string

True if the length ofstring is non-zero.

string1== string2
string1= string2

True if the strings are equal.= should be used with thetestcommand for POSIX conformance.

string1!= string2
True if the strings are not equal.

string1< string2
True if string1sorts beforestring2 lexicographically.

string1> string2
True if string1sorts afterstring2 lexicographically.

arg1OP arg2
OP is one of−eq, −ne, −lt , −le, −gt, or −ge. These arithmetic binary operators return true ifarg1
is equal to, not equal to, less than, less than or equal to, greater than, or greater than or equal to
arg2, respectively. Arg1andarg2 may be positive or neg ative integers.

SIMPLE COMMAND EXPANSION
When a simple command is executed, the shell performs the following expansions, assignments, and redi-
rections, from left to right.

1. The words that the parser has marked as variable assignments (those preceding the command
name) and redirections are saved for later processing.

2. The words that are not variable assignments or redirections are expanded. Ifany words remain
after expansion, the first word is taken to be the name of the command and the remaining words
are the arguments.

3. Redirections are performed as described above underREDIRECTION .

4. The text after the= in each variable assignment undergoes tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal before being assigned to the vari-
able.

GNU Bash-4.2 2010 December 28 27

BASH(1) BASH(1)

If no command name results, the variable assignments affect the current shell environment. Otherwise,the
variables are added to the environment of the executed command and do not affect the current shell envi-
ronment. Ifany of the assignments attempts to assign a value to a readonly variable, an error occurs, and
the command exits with a non-zero status.

If no command name results, redirections are performed, but do not affect the current shell environment. A
redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below. Otherwise, the
command exits. If one of the expansions contained a command substitution, the exit status of the command
is the exit status of the last command substitution performed. If there were no command substitutions, the
command exits with a status of zero.

COMMAND EXECUTION
After a command has been split into words, if it results in a simple command and an optional list of argu-
ments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by
that name, that function is invoked as described above in FUNCTIONS. If the name does not match a func-
tion, the shell searches for it in the list of shell builtins. If a match is found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes,bashsearches each element of
the PATH for a directory containing an executable file by that name.Bash uses a hash table to remember
the full pathnames of executable files (seehash under SHELL BUILTIN COMMANDS below). A full
search of the directories inPATH is performed only if the command is not found in the hash table. If the
search is unsuccessful, the shell searches for a defined shell function namedcommand_not_found_han-
dle. If that function exists, it is invoked with the original command and the original command’s arguments
as its arguments, and the function’s exit status becomes the exit status of the shell. If that function is not
defined, the shell prints an error message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, the shell executes the
named program in a separate execution environment. Argument 0 is set to the name given, and the remain-
ing arguments to the command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be ashell script, a file containing shell commands.A subshell is spawned to execute it. This
subshell reinitializes itself, so that the effect is as if a new shell had been invoked to handle the script, with
the exception that the locations of commands remembered by the parent (seehash below under SHELL
BUILTIN COMMANDS) are retained by the child.

If the program is a file beginning with#!, the remainder of the first line specifies an interpreter for the pro-
gram. Theshell executes the specified interpreter on operating systems that do not handle this executable
format themselves. Thearguments to the interpreter consist of a single optional argument following the
interpreter name on the first line of the program, followed by the name of the program, followed by the
command arguments, if any.

COMMAND EXECUTION ENVIRONMENT
The shell has anexecution environment, which consists of the following:

• open files inherited by the shell at invocation, as modified by redirections supplied to theexec
builtin

• the current working directory as set bycd, pushd, or popd, or inherited by the shell at invocation

• the file creation mode mask as set byumaskor inherited from the shell’s parent

• current traps set bytrap

• shell parameters that are set by variable assignment or withsetor inherited from the shell’s parent
in the environment

• shell functions defined during execution or inherited from the shell’s parent in the environment

• options enabled at invocation (either by default or with command-line arguments) or byset

• options enabled byshopt

• shell aliases defined withalias

28 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

• various process IDs, including those of background jobs, the value of$$, and the value ofPPID

When a simple command other than a builtin or shell function is to be executed, it is invoked in a separate
execution environment that consists of the following. Unlessotherwise noted, the values are inherited from
the shell.

• the shell’s open files, plus any modifications and additions specified by redirections to the com-
mand

• the current working directory

• the file creation mode mask

• shell variables and functions marked for export, along with variables exported for the command,
passed in the environment

• traps caught by the shell are reset to the values inherited from the shell’s parent, and traps ignored
by the shell are ignored

A command invoked in this separate environment cannot affect the shell’s execution environment.

Command substitution, commands grouped with parentheses, and asynchronous commands are invoked in
a subshell environment that is a duplicate of the shell environment, except that traps caught by the shell are
reset to the values that the shell inherited from its parent at invocation. Builtincommands that are invoked
as part of a pipeline are also executed in a subshell environment. Changesmade to the subshell environ-
ment cannot affect the shell’s execution environment.

Subshells spawned to execute command substitutions inherit the value of the−e option from the parent
shell. Whennot inposixmode,bashclears the−eoption in such subshells.

If a command is followed by a& and job control is not active, the default standard input for the command
is the empty file/dev/null. Otherwise, the invoked command inherits the file descriptors of the calling shell
as modified by redirections.

ENVIRONMENT
When a program is invoked it is giv en an array of strings called theenvironment. This is a list of
name−valuepairs, of the formname=value.

The shell provides several ways to manipulate the environment. Oninvocation, the shell scans its own
environment and creates a parameter for each name found, automatically marking it forexport to child pro-
cesses. Executed commands inherit the environment. Theexport anddeclare −x commands allow param-
eters and functions to be added to and deleted from the environment. If the value of a parameter in the
environment is modified, the new value becomes part of the environment, replacing the old. The environ-
ment inherited by any executed command consists of the shell’s initial environment, whose values may be
modified in the shell, less any pairs removed by theunsetcommand, plus any additions via theexport and
declare −x commands.

The environment for any simple commandor function may be augmented temporarily by prefixing it with
parameter assignments, as described above in PARAMETERS . These assignment statements affect only the
environment seen by that command.

If the −k option is set (see theset builtin command below), thenall parameter assignments are placed in
the environment for a command, not just those that precede the command name.

Whenbash invokes an external command, the variable_ is set to the full file name of the command and
passed to that command in its environment.

EXIT STATUS
The exit status of an executed command is the value returned by thewaitpid system call or equivalent func-
tion. Exit statuses fall between 0 and 255, though, as explained below, the shell may use values above 125
specially. Exit statuses from shell builtins and compound commands are also limited to this range. Under
certain circumstances, the shell will use special values to indicate specific failure modes.

For the shell’s purposes, a command which exits with a zero exit status has succeeded.An exit status of
zero indicates success.A non-zero exit status indicates failure. Whena command terminates on a fatal sig-
nalN, bashuses the value of 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is
found but is not executable, the return status is 126.

GNU Bash-4.2 2010 December 28 29

BASH(1) BASH(1)

If a command fails because of an error during expansion or redirection, the exit status is greater than zero.

Shell builtin commands return a status of 0 (true) if successful, and non-zero (false) if an error occurs while
they execute. All builtins return an exit status of 2 to indicate incorrect usage.

Bash itself returns the exit status of the last command executed, unless a syntax error occurs, in which case
it exits with a non-zero value. Seealso theexit builtin command below.

SIGNALS
Whenbash is interactive, in the absence of any traps, it ignoresSIGTERM (so thatkill 0 does not kill an
interactive shell), andSIGINT is caught and handled (so that thewait builtin is interruptible). In all cases,
bash ignoresSIGQUIT . If job control is in effect,bash ignoresSIGTTIN , SIGTTOU , andSIGTSTP.

Non-builtin commands run bybash have signal handlers set to the values inherited by the shell from its
parent. Whenjob control is not in effect, asynchronous commands ignoreSIGINT andSIGQUIT in addi-
tion to these inherited handlers.Commands run as a result of command substitution ignore the keyboard-
generated job control signalsSIGTTIN , SIGTTOU , andSIGTSTP.

The shell exits by default upon receipt of aSIGHUP. Before exiting, an interactive shell resends the
SIGHUP to all jobs, running or stopped. Stopped jobs are sentSIGCONT to ensure that they receive the
SIGHUP. To prevent the shell from sending the signal to a particular job, it should be removed from the
jobs table with thedisown builtin (see SHELL BUILTIN COMMANDS below) or marked to not receive
SIGHUP usingdisown −h.

If the huponexit shell option has been set withshopt, bashsends aSIGHUP to all jobs when an interactive
login shell exits.

If bash is waiting for a command to complete and receives a signal for which a trap has been set, the trap
will not be executed until the command completes.Whenbash is waiting for an asynchronous command
via thewait builtin, the reception of a signal for which a trap has been set will cause thewait builtin to
return immediately with an exit status greater than 128, immediately after which the trap is executed.

JOB CONTROL
Job control refers to the ability to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point.A user typically employs this facility via an interactive interface
supplied jointly by the operating system kernel’s terminal driver andbash.

The shell associates ajob with each pipeline.It keeps a table of currently executing jobs, which may be
listed with thejobs command. Whenbashstarts a job asynchronously (in thebackground), it prints a line
that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated
with this job is 25647.All of the processes in a single pipeline are members of the same job. Bash uses
the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the operating system maintains the
notion of acurrent terminal process group ID. Members of this process group (processes whose process
group ID is equal to the current terminal process group ID) receive keyboard-generated signals such asSIG-
INT . These processes are said to be in theforeground. Backgroundprocesses are those whose process
group ID differs from the terminal’s; such processes are immune to keyboard-generated signals. Only fore-
ground processes are allowed to read from or, if the user so specifies withstty tostop , write to the ter-
minal. Backgroundprocesses which attempt to read from (write to whenstty tostop is in effect) the
terminal are sent aSIGTTIN (SIGTT OU) signal by the kernel’s terminal driver, which, unless caught, sus-
pends the process.

If the operating system on whichbash is running supports job control,bash contains facilities to use it.
Typing thesuspendcharacter (typicallŷZ, Control-Z) while a process is running causes that process to be
stopped and returns control tobash. Typing the delayed suspendcharacter (typicallŷ Y, Control-Y)
causes the process to be stopped when it attempts to read input from the terminal, and control to be returned
to bash. The user may then manipulate the state of this job, using thebg command to continue it in the
background, thefg command to continue it in the foreground, or thekill command to kill it. A ˆZ takes
effect immediately, and has the additional side effect of causing pending output and typeahead to be dis-
carded.

There are a number of ways to refer to a job in the shell. The character% introduces a job specification

30 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

(jobspec). Jobnumbern may be referred to as%n . A job may also be referred to using a prefix of the
name used to start it, or using a substring that appears in its command line.For example,%ce refers to a
stoppedce job. If a prefix matches more than one job,bash reports an error. Using %?ce, on the other
hand, refers to any job containing the stringce in its command line. If the substring matches more than one
job, bashreports an error. The symbols%% and%+ refer to the shell’s notion of thecurrent job, which is
the last job stopped while it was in the foreground or started in the background.The previous jobmay be
referenced using%− . If there is only a single job,%+ and%− can both be used to refer to that job. In
output pertaining to jobs (e.g., the output of thejobs command), the current job is always flagged with a+,
and the previous job with a−. A single % (with no accompanying job specification) also refers to the cur-
rent job.

Simply naming a job can be used to bring it into the foreground:%1 is a synonym for‘‘ fg %1’’ , bringing
job 1 from the background into the foreground. Similarly, ‘‘ %1 &’ ’ resumes job 1 in the background,
equivalent to‘‘ bg %1’’ .

The shell learns immediately whenever a job changes state.Normally,bashwaits until it is about to print a
prompt before reporting changes in a job’s status so as to not interrupt any other output. If the−b option to
thesetbuiltin command is enabled,bashreports such changes immediately. Any trap onSIGCHLD is exe-
cuted for each child that exits.

If an attempt to exit bash is made while jobs are stopped (or, if thecheckjobsshell option has been enabled
using theshopt builtin, running), the shell prints a warning message, and, if thecheckjobs option is
enabled, lists the jobs and their statuses.The jobs command may then be used to inspect their status. If a
second attempt to exit is made without an intervening command, the shell does not print another warning,
and any stopped jobs are terminated.

PROMPTING
When executing interactively, bash displays the primary promptPS1when it is ready to read a command,
and the secondary promptPS2 when it needs more input to complete a command.Bash allows these
prompt strings to be customized by inserting a number of backslash-escaped special characters that are
decoded as follows:

\a an ASCII bell character (07)
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\D{format}

the format is passed tostrftime(3) and the result is inserted into the prompt string; an
emptyformatresults in a locale-specific time representation. The braces are required

\e an ASCII escape character (033)
\h the hostname up to the first ‘.’
\H the hostname
\j the number of jobs currently managed by the shell
\l the basename of the shell’s terminal device name
\n newline
\r carriage return
\s the name of the shell, the basename of$0 (the portion following the final slash)
\t the current time in 24-hour HH:MM:SS format
\T the current time in 12-hour HH:MM:SS format
\@ the current time in 12-hour am/pm format
\A the current time in 24-hour HH:MM format
\u the username of the current user
\v the version ofbash(e.g., 2.00)
\V the release ofbash, version + patch level (e.g., 2.00.0)
\w the current working directory, with $HOME abbreviated with a tilde (uses the value of the

PROMPT_DIRTRIM variable)
\W the basename of the current working directory, with $HOME abbreviated with a tilde
\! the history number of this command
\# the command number of this command
\$ if the effective UID is 0, a#, otherwise a$
\nnn the character corresponding to the octal numbernnn
\\ a backslash
\[begin a sequence of non-printing characters, which could be used to embed a terminal

control sequence into the prompt

GNU Bash-4.2 2010 December 28 31

BASH(1) BASH(1)

\] end a sequence of non-printing characters

The command number and the history number are usually different: the history number of a command is its
position in the history list, which may include commands restored from the history file (seeHISTORY
below), while the command number is the position in the sequence of commands executed during the cur-
rent shell session. After the string is decoded, it is expanded via parameter expansion, command substitu-
tion, arithmetic expansion, and quote removal, subject to the value of thepromptvars shell option (see the
description of theshoptcommand underSHELL BUILTIN COMMANDS below).

READLINE
This is the library that handles reading input when using an interactive shell, unless the−−noediting option
is given at shell invocation. Lineediting is also used when using the−e option to theread builtin. By
default, the line editing commands are similar to those of Emacs.A vi-style line editing interface is also
available. Lineediting can be enabled at any time using the−o emacsor −o vi options to theset builtin
(seeSHELL BUILTIN COMMANDS below). To turn off l ine editing after the shell is running, use the+o
emacsor +o vi options to thesetbuiltin.

Readline Notation
In this section, the Emacs-style notation is used to denote keystrokes. Controlkeys are denoted by C−key,
e.g., C−n means Control−N.Similarly, metakeys are denoted by M−key, so M−x means Meta−X.(On
keyboards without ametakey, M−x means ESCx, i.e., press the Escape key then thex key. This makes
ESC themeta prefix. The combination M−C−x means ESC−Control−x, or press the Escape key then hold
the Control key while pressing thex key.)

Readline commands may be given numericarguments, which normally act as a repeat count.Sometimes,
however, it is the sign of the argument that is significant.Passing a negative argument to a command that
acts in the forward direction (e.g.,kill−line) causes that command to act in a backward direction.Com-
mands whose behavior with arguments deviates from this are noted below.

When a command is described askilling text, the text deleted is saved for possible future retrieval (yank-
ing). Thekilled text is saved in akill ring. Consecutive kills cause the text to be accumulated into one unit,
which can be yanked all at once. Commands which do not kill text separate the chunks of text on the kill
ring.

Readline Initialization
Readline is customized by putting commands in an initialization file (theinputrc file). Thename of this file
is taken from the value of theINPUTRC variable. If that variable is unset, the default is˜/.inputrc. When a
program which uses the readline library starts up, the initialization file is read, and the key bindings and
variables are set. There are only a few basic constructs allowed in the readline initialization file.Blank
lines are ignored. Lines beginning with a# are comments. Lines beginning with a$ indicate conditional
constructs. Otherlines denote key bindings and variable settings.

The default key-bindings may be changed with aninputrc file. Otherprograms that use this library may
add their own commands and bindings.

For example, placing

M−Control−u: universal−argument
or

C−Meta−u: universal−argument
into theinputrc would make M−C−u execute the readline commanduniversal−argument.

The following symbolic character names are recognized:RUBOUT, DEL, ESC, LFD, NEWLINE, RET,
RETURN, SPC, SPACE, andTAB.

In addition to command names, readline allows keys to be bound to a string that is inserted when the key is
pressed (amacro).

Readline Key Bindings
The syntax for controlling key bindings in theinputrc file is simple. All that is required is the name of the
command or the text of a macro and a key sequence to which it should be bound. The name may be speci-
fied in one of two ways: as a symbolic key name, possibly withMeta− or Control− prefixes, or as a key
sequence.

When using the formkeyname: function−nameor macro, keynameis the name of a key spelled out in Eng-
lish. For example:

32 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

Control-u: universal−argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example,C−u is bound to the functionuniversal−argument, M−DEL is bound to the func-
tion backward−kill−word , and C−o is bound to run the macro expressed on the right hand side (that is, to
insert the text> output into the line).

In the second form,"keyseq" : function−nameor macro, keyseqdiffers fromkeynameabove in that strings
denoting an entire key sequence may be specified by placing the sequence within double quotes.Some
GNU Emacs style key escapes can be used, as in the following example, but the symbolic character names
are not recognized.

"\C−u": universal−argument
"\C−x\C−r": re−read−init−file
"\e[11˜": "Function Key 1"

In this example,C−u is again bound to the functionuniversal−argument. C−x C−r is bound to the func-
tion re−read−init−file, and ESC [1 1 ˜is bound to insert the textFunction Key 1 .

The full set of GNU Emacs style escape sequences is
\C− control prefix
\M− meta prefix
\e an escape character
\\ backslash
\" literal "
\' literal '

In addition to the GNU Emacs style escape sequences, a second set of backslash escapes is available:
\a alert (bell)
\b backspace
\d delete
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\nnn the eight-bit character whose value is the octal valuennn(one to three digits)
\xHH the eight-bit character whose value is the hexadecimal valueHH (one or two hex digits)

When entering the text of a macro, single or double quotes must be used to indicate a macro definition.
Unquoted text is assumed to be a function name.In the macro body, the backslash escapes described above
are expanded. Backslashwill quote any other character in the macro text, including " and '.

Bashallows the current readline key bindings to be displayed or modified with thebind builtin command.
The editing mode may be switched during interactive use by using the−o option to thesetbuiltin command
(seeSHELL BUILTIN COMMANDS below).

Readline Variables
Readline has variables that can be used to further customize its behavior. A variable may be set in theinpu-
trc file with a statement of the form

setvariable−name value

Except where noted, readline variables can take the valuesOn or Off (without regard to case).Unrecog-
nized variable names are ignored. When a variable value is read, empty or null values, "on" (case-insensi-
tive), and "1" are equivalent toOn. All other values are equivalent toOff . The variables and their default
values are:

bell−style (audible)
Controls what happens when readline wants to ring the terminal bell.If set tonone, readline never
rings the bell. If set tovisible, readline uses a visible bell if one is available. If set toaudible,
readline attempts to ring the terminal’s bell.

GNU Bash-4.2 2010 December 28 33

BASH(1) BASH(1)

bind−tty−special−chars (On)
If set toOn, readline attempts to bind the control characters treated specially by the kernel’s termi-
nal driver to their readline equivalents.

comment−begin (‘‘#’’)
The string that is inserted when the readlineinsert−comment command is executed. Thiscom-
mand is bound toM−# in emacs mode and to# in vi command mode.

completion−ignore−case (Off)
If set toOn, readline performs filename matching and completion in a case−insensitive fashion.

completion−prefix−display−length (0)
The length in characters of the common prefix of a list of possible completions that is displayed
without modification. When set to a value greater than zero, common prefixes longer than this
value are replaced with an ellipsis when displaying possible completions.

completion−query−items (100)
This determines when the user is queried about viewing the number of possible completions gen-
erated by thepossible−completionscommand. Itmay be set to any integer value greater than or
equal to zero. If the number of possible completions is greater than or equal to the value of this
variable, the user is asked whether or not he wishes to view them; otherwise they are simply listed
on the terminal.

convert−meta (On)
If set toOn, readline will convert characters with the eighth bit set to an ASCII key sequence by
stripping the eighth bit and prefixing an escape character (in effect, using escape as themeta pre-
fix).

disable−completion (Off)
If set toOn, readline will inhibit word completion. Completion characters will be inserted into the
line as if they had been mapped toself-insert.

editing−mode (emacs)
Controls whether readline begins with a set of key bindings similar toEmacsor vi. editing−mode
can be set to eitheremacsor vi.

echo−control−characters (On)
When set toOn, on operating systems that indicate they support it, readline echoes a character
corresponding to a signal generated from the keyboard.

enable−keypad (Off)
When set toOn, readline will try to enable the application keypad when it is called. Some sys-
tems need this to enable the arrow keys.

enable−meta−key (On)
When set toOn, readline will try to enable any meta modifier key the terminal claims to support
when it is called. On many terminals, the meta key is used to send eight-bit characters.

expand−tilde (Off)
If set toOn, tilde expansion is performed when readline attempts word completion.

history−preserve−point (Off)
If set to On, the history code attempts to place point at the same location on each history line
retrieved with previous-history or next-history.

history−size (0)
Set the maximum number of history entries saved in the history list. If set to zero, the number of
entries in the history list is not limited.

horizontal−scroll−mode (Off)
When set toOn, makes readline use a single line for display, scrolling the input horizontally on a
single screen line when it becomes longer than the screen width rather than wrapping to a new
line.

input−meta (Off)
If set toOn, readline will enable eight-bit input (that is, it will not strip the high bit from the char-
acters it reads), regardless of what the terminal claims it can support. The namemeta−flag is a
synonym for this variable.

isearch−terminators (‘‘C−[C−J’’)
The string of characters that should terminate an incremental search without subsequently execut-
ing the character as a command. If this variable has not been given a value, the charactersESC
andC−J will terminate an incremental search.

34 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

keymap (emacs)
Set the current readline keymap. Theset of valid keymap names isemacs, emacs−standard,
emacs−meta, emacs−ctlx, vi, vi−command, and vi−insert. vi is equivalent tovi−command; emacs
is equivalent to emacs−standard. The default value isemacs; the value ofediting−mode also
affects the default keymap.

mark−directories (On)
If set toOn, completed directory names have a slash appended.

mark−modified−lines (Off)
If set toOn, history lines that have been modified are displayed with a preceding asterisk (*).

mark−symlinked−directories (Off)
If set toOn, completed names which are symbolic links to directories have a slash appended (sub-
ject to the value ofmark−directories).

match−hidden−files (On)
This variable, when set toOn, causes readline to match files whose names begin with a ‘.’ (hidden
files) when performing filename completion.If set toOff , the leading ‘.’ must be supplied by the
user in the filename to be completed.

menu−complete−display−prefix (Off)
If set to On, menu completion displays the common prefix of the list of possible completions
(which may be empty) before cycling through the list.

output−meta (Off)
If set toOn, readline will display characters with the eighth bit set directly rather than as a meta-
prefixed escape sequence.

page−completions (On)
If set toOn, readline uses an internalmore-like pager to display a screenful of possible comple-
tions at a time.

print−completions−horizontally (Off)
If set to On, readline will display completions with matches sorted horizontally in alphabetical
order, rather than down the screen.

re vert−all−at−newline (Off)
If set toOn, readline will undo all changes to history lines before returning whenaccept−line is
executed. Bydefault, history lines may be modified and retain individual undo lists across calls to
readline.

show−all−if−ambiguous (Off)
This alters the default behavior of the completion functions. If set toOn, words which have more
than one possible completion cause the matches to be listed immediately instead of ringing the
bell.

show−all−if−unmodified (Off)
This alters the default behavior of the completion functions in a fashion similar to
show−all−if−ambiguous. If set to On, words which have more than one possible completion
without any possible partial completion (the possible completions don’t share a common prefix)
cause the matches to be listed immediately instead of ringing the bell.

skip−completed−text (Off)
If set toOn, this alters the default completion behavior when inserting a single match into the line.
It’s only active when performing completion in the middle of a word. If enabled, readline does not
insert characters from the completion that match characters after point in the word being com-
pleted, so portions of the word following the cursor are not duplicated.

visible−stats (Off)
If set toOn, a character denoting a file’s type as reported bystat(2) is appended to the filename
when listing possible completions.

Readline Conditional Constructs
Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor
which allows key bindings and variable settings to be performed as the result of tests.There are four parser
directives used.

$if The$if construct allows bindings to be made based on the editing mode, the terminal being used,
or the application using readline. The text of the test extends to the end of the line; no characters
are required to isolate it.

GNU Bash-4.2 2010 December 28 35

BASH(1) BASH(1)

mode The mode= form of the$if directive is used to test whether readline is in emacs or vi
mode. Thismay be used in conjunction with theset keymapcommand, for instance, to
set bindings in theemacs−standardandemacs−ctlxkeymaps only if readline is starting
out in emacs mode.

term The term= form may be used to include terminal-specific key bindings, perhaps to bind
the key sequences output by the terminal’s function keys. Theword on the right side of
the = is tested against the both full name of the terminal and the portion of the terminal
name before the first−. This allowssunto match bothsunandsun−cmd, for instance.

application
Theapplication construct is used to include application-specific settings. Each program
using the readline library sets theapplication name, and an initialization file can test for a
particular value. Thiscould be used to bind key sequences to functions useful for a spe-
cific program. For instance, the following command adds a key sequence that quotes the
current or previous word inbash:

$if Bash
Quote the current or previous word
"\C−xq": "\eb\"\ef\""
$endif

$endif This command, as seen in the previous example, terminates an$if command.

$else Commands in this branch of the$if directive are executed if the test fails.

$include
This directive takes a single filename as an argument and reads commands and bindings from that
file. For example, the following directive would read/etc/inputrc:

$include /etc/inputrc

Searching
Readline provides commands for searching through the command history (seeHISTORY below) for lines
containing a specified string. There are two search modes:incrementalandnon-incremental.

Incremental searches begin before the user has finished typing the search string.As each character of the
search string is typed, readline displays the next entry from the history matching the string typed so far. An
incremental search requires only as many characters as needed to find the desired history entry. The char-
acters present in the value of theisearch-terminators variable are used to terminate an incremental search.
If that variable has not been assigned a value the Escape and Control-J characters will terminate an incre-
mental search. Control-G will abort an incremental search and restore the original line.When the search is
terminated, the history entry containing the search string becomes the current line.

To find other matching entries in the history list, type Control-S or Control-R as appropriate.This will
search backward or forward in the history for the next entry matching the search string typed so far. Any
other key sequence bound to a readline command will terminate the search and execute that command.For
instance, anewlinewill terminate the search and accept the line, thereby executing the command from the
history list.

Readline remembers the last incremental search string. If two Control-Rs are typed without any interven-
ing characters defining a new search string, any remembered search string is used.

Non-incremental searches read the entire search string before starting to search for matching history lines.
The search string may be typed by the user or be part of the contents of the current line.

Readline Command Names
The following is a list of the names of the commands and the default key sequences to which they are
bound. Commandnames without an accompanying key sequence are unbound by default. Inthe following
descriptions,point refers to the current cursor position, andmark refers to a cursor position saved by the
set−mark command. Thetext between the point and mark is referred to as theregion.

Commands for Moving
beginning−of−line (C−a)

Move to the start of the current line.

36 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

end−of−line (C−e)
Move to the end of the line.

forward−char (C−f)
Move forward a character.

backward−char (C−b)
Move back a character.

forward−word (M−f)
Move forward to the end of the next word. Words are composed of alphanumeric characters (let-
ters and digits).

backward−word (M−b)
Move back to the start of the current or previous word. Words are composed of alphanumeric
characters (letters and digits).

shell−forward−word
Move forward to the end of the next word. Words are delimited by non-quoted shell metacharac-
ters.

shell−backward−word
Move back to the start of the current or previous word. Words are delimited by non-quoted shell
metacharacters.

clear−screen (C−l)
Clear the screen leaving the current line at the top of the screen.With an argument, refresh the
current line without clearing the screen.

redraw−current−line
Refresh the current line.

Commands for Manipulating the History
accept−line (Newline, Return)

Accept the line regardless of where the cursor is.If this line is non-empty, add it to the history list
according to the state of theHISTCONTROL variable. If the line is a modified history line, then
restore the history line to its original state.

previous−history (C−p)
Fetch the previous command from the history list, moving back in the list.

next−history (C−n)
Fetch the next command from the history list, moving forward in the list.

beginning−of−history (M−<)
Move to the first line in the history.

end−of−history (M−>)
Move to the end of the input history, i.e., the line currently being entered.

re verse−search−history (C−r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.
This is an incremental search.

forward−search−history (C−s)
Search forward starting at the current line and moving ‘down’ through the history as necessary.
This is an incremental search.

non−incremental−rev erse−search−history (M−p)
Search backward through the history starting at the current line using a non-incremental search for
a string supplied by the user.

non−incremental−forward−search−history (M−n)
Search forward through the history using a non-incremental search for a string supplied by the
user.

history−search−forward
Search forward through the history for the string of characters between the start of the current line
and the point. This is a non-incremental search.

history−search−backward
Search backward through the history for the string of characters between the start of the current
line and the point. This is a non-incremental search.

yank−nth−arg (M−C−y)
Insert the first argument to the previous command (usually the second word on the previous line)
at point. With an argumentn, insert thenth word from the previous command (the words in the
previous command begin with word 0). A neg ative argument inserts thenth word from the end of

GNU Bash-4.2 2010 December 28 37

BASH(1) BASH(1)

the previous command. Once the argumentn is computed, the argument is extracted as if the "!n"
history expansion had been specified.

yank−last−arg (M−. , M−_)
Insert the last argument to the previous command (the last word of the previous history entry).
With a numeric argument, behave exactly like yank−nth−arg. Successive calls toyank−last−arg
move back through the history list, inserting the last word (or the word specified by the argument
to the first call) of each line in turn.Any numeric argument supplied to these successive calls
determines the direction to move through the history. A negative argument switches the direction
through the history (back or forward). Thehistory expansion facilities are used to extract the last
argument, as if the "!$" history expansion had been specified.

shell−expand−line (M−C−e)
Expand the line as the shell does.This performs alias and history expansion as well as all of the
shell word expansions. SeeHISTORY EXPANSION below for a description of history expansion.

history−expand−line (M−ˆ)
Perform history expansion on the current line.SeeHISTORY EXPANSION below for a descrip-
tion of history expansion.

magic−space
Perform history expansion on the current line and insert a space.SeeHISTORY EXPANSION
below for a description of history expansion.

alias−expand−line
Perform alias expansion on the current line.SeeALIASES above for a description of alias expan-
sion.

history−and−alias−expand−line
Perform history and alias expansion on the current line.

insert−last−argument (M−., M−_)
A synonym foryank−last−arg.

operate−and−get−next (C−o)
Accept the current line for execution and fetch the next line relative to the current line from the
history for editing. Any argument is ignored.

edit−and−execute−command (C−xC−e)
Invoke an editor on the current command line, and execute the result as shell commands.Bash
attempts to invoke $VISUAL , $EDITOR , andemacsas the editor, in that order.

Commands for Changing Text
delete−char (C−d)

Delete the character at point. If point is at the beginning of the line, there are no characters in the
line, and the last character typed was not bound todelete−char, then returnEOF.

backward−delete−char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text on
the kill ring.

forward−backward−delete−char
Delete the character under the cursor, unless the cursor is at the end of the line, in which case the
character behind the cursor is deleted.

quoted−insert (C−q, C−v)
Add the next character typed to the line verbatim. Thisis how to insert characters like C−q, for
example.

tab−insert (C−v TAB)
Insert a tab character.

self−insert (a, b, A, 1, !, ...)
Insert the character typed.

transpose−chars (C−t)
Drag the character before point forward over the character at point, moving point forward as well.
If point is at the end of the line, then this transposes the two characters before point.Negative
arguments have no effect.

transpose−words (M−t)
Drag the word before point past the word after point, moving point over that word as well. If point
is at the end of the line, this transposes the last two words on the line.

38 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

upcase−word (M−u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous
word, but do not move point.

downcase−word (M−l)
Lowercase the current (or following) word. With a negative argument, lowercase the previous
word, but do not move point.

capitalize−word (M−c)
Capitalize the current (or following) word. With a negative argument, capitalize the previous
word, but do not move point.

overwrite−mode
Toggle overwrite mode. With an explicit positive numeric argument, switches to overwrite mode.
With an explicit non-positive numeric argument, switches to insert mode. This command affects
only emacsmode; vi mode does overwrite differently. Each call toreadline() starts in insert
mode. Inoverwrite mode, characters bound toself−insert replace the text at point rather than
pushing the text to the right.Characters bound tobackward−delete−charreplace the character
before point with a space. By default, this command is unbound.

Killing and Yanking
kill−line (C−k)

Kill the text from point to the end of the line.
backward−kill−line (C−x Rubout)

Kill backward to the beginning of the line.
unix−line−discard (C−u)

Kill backward from point to the beginning of the line. The killed text is saved on the kill-ring.
kill−whole−line

Kill all characters on the current line, no matter where point is.
kill−word (M−d)

Kill from point to the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same as those used byforward−word .

backward−kill−word (M−Rubout)
Kill the word behind point.Word boundaries are the same as those used bybackward−word.

shell−kill−word (M−d)
Kill from point to the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same as those used byshell−forward−word.

shell−backward−kill−word (M−Rubout)
Kill the word behind point. Word boundaries are the same as those used byshell−back-
ward−word .

unix−word−rubout (C−w)
Kill the word behind point, using white space as a word boundary. The killed text is saved on the
kill-ring.

unix−filename−rubout
Kill the word behind point, using white space and the slash character as the word boundaries.The
killed text is saved on the kill-ring.

delete−horizontal−space (M−\)
Delete all spaces and tabs around point.

kill−region
Kill the text in the current region.

copy−region−as−kill
Copy the text in the region to the kill buffer.

copy−backward−word
Copy the word before point to the kill buffer. The word boundaries are the same asback-
ward−word .

copy−forward−word
Copy the word following point to the kill buffer. The word boundaries are the same asfor-
ward−word .

yank (C−y)
Yank the top of the kill ring into the buffer at point.

GNU Bash-4.2 2010 December 28 39

BASH(1) BASH(1)

yank−pop (M−y)
Rotate the kill ring, and yank the new top. Onlyworks followingyank or yank−pop.

Numeric Arguments
digit−argument (M−0, M−1, ..., M−−)

Add this digit to the argument already accumulating, or start a new argument. M−−starts a nega-
tive argument.

universal−argument
This is another way to specify an argument. Ifthis command is followed by one or more digits,
optionally with a leading minus sign, those digits define the argument. If the command is fol-
lowed by digits, executing universal−argument again ends the numeric argument, but is other-
wise ignored.As a special case, if this command is immediately followed by a character that is
neither a digit or minus sign, the argument count for the next command is multiplied by four. The
argument count is initially one, so executing this function the first time makes the argument count
four, a second time makes the argument count sixteen, and so on.

Completing
complete (TAB)

Attempt to perform completion on the text before point.Bash attempts completion treating the
text as a variable (if the text begins with$), username (if the text begins with̃), hostname (if the
text begins with@), or command (including aliases and functions) in turn.If none of these pro-
duces a match, filename completion is attempted.

possible−completions (M−?)
List the possible completions of the text before point.

insert−completions (M−*)
Insert all completions of the text before point that would have been generated bypossible−com-
pletions.

menu−complete
Similar to complete, but replaces the word to be completed with a single match from the list of
possible completions. Repeated execution of menu−completesteps through the list of possible
completions, inserting each match in turn. At the end of the list of completions, the bell is rung
(subject to the setting ofbell−style) and the original text is restored. An argument ofn moves n
positions forward in the list of matches; a negative argument may be used to move backward
through the list. This command is intended to be bound toTAB, but is unbound by default.

menu−complete−backward
Identical tomenu−complete, but moves backward through the list of possible completions, as if
menu−completehad been given a neg ative argument. Thiscommand is unbound by default.

delete−char−or−list
Deletes the character under the cursor if not at the beginning or end of the line (like delete−char).
If at the end of the line, behaves identically topossible−completions. This command is unbound
by default.

complete−filename (M−/)
Attempt filename completion on the text before point.

possible−filename−completions (C−x /)
List the possible completions of the text before point, treating it as a filename.

complete−username (M−˜)
Attempt completion on the text before point, treating it as a username.

possible−username−completions (C−x ˜)
List the possible completions of the text before point, treating it as a username.

complete−variable (M−$)
Attempt completion on the text before point, treating it as a shell variable.

possible−variable−completions (C−x $)
List the possible completions of the text before point, treating it as a shell variable.

complete−hostname (M−@)
Attempt completion on the text before point, treating it as a hostname.

possible−hostname−completions (C−x @)
List the possible completions of the text before point, treating it as a hostname.

complete−command (M−!)
Attempt completion on the text before point, treating it as a command name. Command comple-
tion attempts to match the text against aliases, reserved words, shell functions, shell builtins, and

40 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

finally executable filenames, in that order.
possible−command−completions (C−x !)

List the possible completions of the text before point, treating it as a command name.
dynamic−complete−history (M−TAB)

Attempt completion on the text before point, comparing the text against lines from the history list
for possible completion matches.

dabbrev−expand
Attempt menu completion on the text before point, comparing the text against lines from the his-
tory list for possible completion matches.

complete−into−braces (M−{)
Perform filename completion and insert the list of possible completions enclosed within braces so
the list is available to the shell (seeBrace Expansionabove).

Keyboard Macros
start−kbd−macro (C−x ()

Begin saving the characters typed into the current keyboard macro.
end−kbd−macro (C−x))

Stop saving the characters typed into the current keyboard macro and store the definition.
call−last−kbd−macro (C−x e)

Re-execute the last keyboard macro defined, by making the characters in the macro appear as if
typed at the keyboard.

Miscellaneous
re−read−init−file (C−x C−r)

Read in the contents of theinputrc file, and incorporate any bindings or variable assignments
found there.

abort (C−g)
Abort the current editing command and ring the terminal’s bell (subject to the setting of
bell−style).

do−uppercase−version (M−a, M−b, M−x, ...)
If the metafied characterx is lowercase, run the command that is bound to the corresponding
uppercase character.

prefix−meta (ESC)
Metafy the next character typed.ESC f is equivalent toMeta−f.

undo (C−_, C−x C−u)
Incremental undo, separately remembered for each line.

re vert−line (M−r)
Undo all changes made to this line. This is like executing theundo command enough times to
return the line to its initial state.

tilde−expand (M−&)
Perform tilde expansion on the current word.

set−mark (C−@, M−<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.

exchange−point−and−mark (C−x C−x)
Swap the point with the mark.The current cursor position is set to the saved position, and the old
cursor position is saved as the mark.

character−search (C−])
A character is read and point is moved to the next occurrence of that character. A negative count
searches for previous occurrences.

character−search−backward (M−C−])
A character is read and point is moved to the previous occurrence of that character. A negative
count searches for subsequent occurrences.

skip−csi−sequence
Read enough characters to consume a multi-key sequence such as those defined for keys like
Home and End.Such sequences begin with a Control Sequence Indicator (CSI), usually ESC−[.
If this sequence is bound to "\[", keys producing such sequences will have no effect unless explic-
itly bound to a readline command, instead of inserting stray characters into the editing buffer. This
is unbound by default, but usually bound to ESC−[.

GNU Bash-4.2 2010 December 28 41

BASH(1) BASH(1)

insert−comment (M−#)
Without a numeric argument, the value of the readlinecomment−beginvariable is inserted at the
beginning of the current line.If a numeric argument is supplied, this command acts as a toggle:if
the characters at the beginning of the line do not match the value ofcomment−begin, the value is
inserted, otherwise the characters incomment−beginare deleted from the beginning of the line.
In either case, the line is accepted as if a newline had been typed. The default value ofcom-
ment−begin causes this command to make the current line a shell comment.If a numeric argu-
ment causes the comment character to be removed, the line will be executed by the shell.

glob−complete−word (M−g)
The word before point is treated as a pattern for pathname expansion, with an asterisk implicitly
appended. Thispattern is used to generate a list of matching file names for possible completions.

glob−expand−word (C−x *)
The word before point is treated as a pattern for pathname expansion, and the list of matching file
names is inserted, replacing the word. If a numeric argument is supplied, an asterisk is appended
before pathname expansion.

glob−list−expansions (C−x g)
The list of expansions that would have been generated byglob−expand−word is displayed, and
the line is redrawn. If a numeric argument is supplied, an asterisk is appended before pathname
expansion.

dump−functions
Print all of the functions and their key bindings to the readline output stream. If a numeric argu-
ment is supplied, the output is formatted in such a way that it can be made part of aninputrcfile.

dump−variables
Print all of the settable readline variables and their values to the readline output stream. If a
numeric argument is supplied, the output is formatted in such a way that it can be made part of an
inputrcfile.

dump−macros
Print all of the readline key sequences bound to macros and the strings they output. If a numeric
argument is supplied, the output is formatted in such a way that it can be made part of aninputrc
file.

display−shell−version (C−x C−v)
Display version information about the current instance ofbash.

Programmable Completion
When word completion is attempted for an argument to a command for which a completion specification (a
compspec) has been defined using thecomplete builtin (seeSHELL BUILTIN COMMANDS below), the
programmable completion facilities are invoked.

First, the command name is identified. If the command word is the empty string (completion attempted at
the beginning of an empty line), any compspec defined with the−E option tocompleteis used.If a comp-
spec has been defined for that command, the compspec is used to generate the list of possible completions
for the word. If the command word is a full pathname, a compspec for the full pathname is searched for
first. If no compspec is found for the full pathname, an attempt is made to find a compspec for the portion
following the final slash. If those searches do not result in a compspec, any compspec defined with the−D
option tocompleteis used as the default.

Once a compspec has been found, it is used to generate the list of matching words. If a compspec is not
found, the defaultbashcompletion as described above underCompleting is performed.

First, the actions specified by the compspec are used.Only matches which are prefixed by the word being
completed are returned. When the−f or −d option is used for filename or directory name completion, the
shell variableFIGNORE is used to filter the matches.

Any completions specified by a pathname expansion pattern to the−G option are generated next. The
words generated by the pattern need not match the word being completed.The GLOBIGNORE shell vari-
able is not used to filter the matches, but theFIGNORE variable is used.

Next, the string specified as the argument to the−W option is considered. The string is first split using the
characters in theIFS special variable as delimiters. Shell quoting is honored. Each word is then expanded
using brace expansion, tilde expansion, parameter and variable expansion, command substitution, and arith-
metic expansion, as described above under EXPANSION. The results are split using the rules described
above under Word Splitting . The results of the expansion are prefix-matched against the word being

42 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

completed, and the matching words become the possible completions.

After these matches have been generated, any shell function or command specified with the−F and −C
options is invoked. When the command or function is invoked, the COMP_LINE , COMP_POINT ,
COMP_KEY , andCOMP_TYPE variables are assigned values as described above underShell Variables. If
a shell function is being invoked, theCOMP_WORDS andCOMP_CWORD variables are also set.When
the function or command is invoked, the first argument is the name of the command whose arguments are
being completed, the second argument is the word being completed, and the third argument is the word pre-
ceding the word being completed on the current command line. No filtering of the generated completions
against the word being completed is performed; the function or command has complete freedom in generat-
ing the matches.

Any function specified with−F is invoked first. Thefunction may use any of the shell facilities, including
thecompgenbuiltin described below, to generate the matches.It must put the possible completions in the
COMPREPLY array variable.

Next, any command specified with the−C option is invoked in an environment equivalent to command sub-
stitution. Itshould print a list of completions, one per line, to the standard output. Backslash may be used
to escape a newline, if necessary.

After all of the possible completions are generated, any filter specified with the−X option is applied to the
list. Thefilter is a pattern as used for pathname expansion; a& in the pattern is replaced with the text of
the word being completed.A l iteral & may be escaped with a backslash; the backslash is removed before
attempting a match.Any completion that matches the pattern will be removed from the list. A leading!
negates the pattern; in this case any completion not matching the pattern will be removed.

Finally, any prefix and suffix specified with the−P and−S options are added to each member of the com-
pletion list, and the result is returned to the readline completion code as the list of possible completions.

If the previously-applied actions do not generate any matches, and the−o dirnamesoption was supplied to
completewhen the compspec was defined, directory name completion is attempted.

If the −o plusdirs option was supplied tocompletewhen the compspec was defined, directory name com-
pletion is attempted and any matches are added to the results of the other actions.

By default, if a compspec is found, whatever it generates is returned to the completion code as the full set
of possible completions. The default bash completions are not attempted, and the readline default of file-
name completion is disabled. If the−o bashdefaultoption was supplied tocompletewhen the compspec
was defined, thebash default completions are attempted if the compspec generates no matches. If the−o
default option was supplied tocomplete when the compspec was defined, readline’s default completion
will be performed if the compspec (and, if attempted, the defaultbashcompletions) generate no matches.

When a compspec indicates that directory name completion is desired, the programmable completion func-
tions force readline to append a slash to completed names which are symbolic links to directories, subject
to the value of themark−directories readline variable, regardless of the setting of themark-sym-
linked−directories readline variable.

There is some support for dynamically modifying completions.This is most useful when used in combina-
tion with a default completion specified withcomplete -D. It’s possible for shell functions executed as
completion handlers to indicate that completion should be retried by returning an exit status of 124. If a
shell function returns 124, and changes the compspec associated with the command on which completion is
being attempted (supplied as the first argument when the function is executed), programmable completion
restarts from the beginning, with an attempt to find a new compspec for that command.This allows a set of
completions to be built dynamically as completion is attempted, rather than being loaded all at once.

For instance, assuming that there is a library of compspecs, each kept in a file corresponding to the name of
the command, the following default completion function would load completions dynamically:

_completion_loader()
{

. " /etc/bash_completion.d/$1.sh" >/dev/null 2>&1 && return 124
}
complete -D -F _completion_loader

GNU Bash-4.2 2010 December 28 43

BASH(1) BASH(1)

HISTORY
When the−o history option to thesetbuiltin is enabled, the shell provides access to thecommand history,
the list of commands previously typed. The value of theHISTSIZE variable is used as the number of com-
mands to save in a history list. The text of the lastHISTSIZE commands (default 500) is saved. Theshell
stores each command in the history list prior to parameter and variable expansion (seeEXPANSION above)
but after history expansion is performed, subject to the values of the shell variablesHISTIGNORE and
HISTCONTROL .

On startup, the history is initialized from the file named by the variableHISTFILE (default˜/.bash_history).
The file named by the value ofHISTFILE is truncated, if necessary, to contain no more than the number of
lines specified by the value ofHISTFILESIZE . When the history file is read, lines beginning with the his-
tory comment character followed immediately by a digit are interpreted as timestamps for the preceding
history line. These timestamps are optionally displayed depending on the value of theHISTTIMEFORMAT
variable. Whenan interactive shell exits, the last$HISTSIZE lines are copied from the history list to
$HISTFILE . If the histappendshell option is enabled (see the description ofshopt underSHELL BUILTIN
COMMANDS below), the lines are appended to the history file, otherwise the history file is overwritten. If
HISTFILE is unset, or if the history file is unwritable, the history is not saved. If theHISTTIMEFORMAT
variable is set, time stamps are written to the history file, marked with the history comment character, so
they may be preserved across shell sessions.This uses the history comment character to distinguish time-
stamps from other history lines. After saving the history, the history file is truncated to contain no more
thanHISTFILESIZE lines. If HISTFILESIZE is not set, no truncation is performed.

The builtin commandfc (seeSHELL BUILTIN COMMANDS below) may be used to list or edit and re-exe-
cute a portion of the history list.Thehistory builtin may be used to display or modify the history list and
manipulate the history file. When using command-line editing, search commands are available in each edit-
ing mode that provide access to the history list.

The shell allows control over which commands are saved on the history list. The HISTCONTROL and
HISTIGNORE variables may be set to cause the shell to save only a subset of the commands entered.The
cmdhist shell option, if enabled, causes the shell to attempt to save each line of a multi-line command in
the same history entry, adding semicolons where necessary to preserve syntactic correctness.The lithist
shell option causes the shell to save the command with embedded newlines instead of semicolons. See the
description of theshopt builtin below underSHELL BUILTIN COMMANDS for information on setting and
unsetting shell options.

HISTORY EXPANSION
The shell supports a history expansion feature that is similar to the history expansion incsh. This section
describes what syntax features are available. Thisfeature is enabled by default for interactive shells, and
can be disabled using the+H option to theset builtin command (seeSHELL BUILTIN COMMANDS
below). Non-interactive shells do not perform history expansion by default.

History expansions introduce words from the history list into the input stream, making it easy to repeat
commands, insert the arguments to a previous command into the current input line, or fix errors in previous
commands quickly.

History expansion is performed immediately after a complete line is read, before the shell breaks it into
words. It takes place in two parts. Thefirst is to determine which line from the history list to use during
substitution. Thesecond is to select portions of that line for inclusion into the current one. The line
selected from the history is theevent, and the portions of that line that are acted upon arewords. Various
modifiersare available to manipulate the selected words. Theline is broken into words in the same fashion
as when reading input, so that several metacharacter-separated words surrounded by quotes are considered
one word. Historyexpansions are introduced by the appearance of the history expansion character, which
is ! by default. Onlybackslash (\) and single quotes can quote the history expansion character.

Several characters inhibit history expansion if found immediately following the history expansion character,
ev en if it is unquoted: space, tab, newline, carriage return, and=. If the extglob shell option is enabled,(
will also inhibit expansion.

Several shell options settable with theshopt builtin may be used to tailor the behavior of history expansion.
If the histverify shell option is enabled (see the description of theshopt builtin below), andreadline is
being used, history substitutions are not immediately passed to the shell parser. Instead, the expanded line
is reloaded into thereadline editing buffer for further modification.If readline is being used, and the
histreedit shell option is enabled, a failed history substitution will be reloaded into thereadline editing

44 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

buffer for correction.The −p option to thehistory builtin command may be used to see what a history
expansion will do before using it.The−soption to thehistory builtin may be used to add commands to the
end of the history list without actually executing them, so that they are available for subsequent recall.

The shell allows control of the various characters used by the history expansion mechanism (see the
description ofhistchars above under Shell Variables). The shell uses the history comment character to
mark history timestamps when writing the history file.

Event Designators
An event designator is a reference to a command line entry in the history list.Unless the reference is abso-
lute, events are relative to the current position in the history list.

! Start a history substitution, except when followed by ablank, newline, carriage return, = or (
(when theextglobshell option is enabled using theshoptbuiltin).

!n Refer to command linen.
!−n Refer to the current command minusn.
!! Refer to the previous command. This is a synonym for ‘!−1’.
!string Refer to the most recent command preceding the current position in the history list starting with

string.
!?string[?]

Refer to the most recent command preceding the current postition in the history list containing
string. The trailing? may be omitted ifstring is followed immediately by a newline.

ˆstring1̂ string2̂
Quick substitution. Repeat the previous command, replacingstring1 with string2. Equivalent to
‘‘ !!:s/string1/string2/’’ (seeModifiers below).

!# The entire command line typed so far.

Word Designators
Word designators are used to select desired words from the event. A : separates the event specification
from the word designator. It may be omitted if the word designator begins with aˆ, $, * , −, or % . Words
are numbered from the beginning of the line, with the first word being denoted by 0 (zero).Words are
inserted into the current line separated by single spaces.

0 (zero)
The zeroth word. For the shell, this is the command word.

n Thenth word.
ˆ The first argument. Thatis, word 1.
$ The last argument.
% The word matched by the most recent ‘?string?’ search.
x−y A range of words; ‘−y’ abbreviates ‘0−y’.
* All of the words but the zeroth. This is a synonym for ‘1−$’. It is not an error to use* if there is

just one word in the event; the empty string is returned in that case.
x* Abbreviatesx−$.
x− Abbreviatesx−$ like x* , but omits the last word.

If a word designator is supplied without an event specification, the previous command is used as the event.

Modifiers
After the optional word designator, there may appear a sequence of one or more of the following modifiers,
each preceded by a ‘:’.

h Remove a trailing file name component, leaving only the head.
t Remove all leading file name components, leaving the tail.
r Remove a trailing suffix of the form.xxx, leaving the basename.
e Remove all but the trailing suffix.
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Quote the substituted words as withq, but break into words atblanks and newlines.
s/old/new/

Substitutenewfor the first occurrence ofold in the event line. Any delimiter can be used in place
of /. The final delimiter is optional if it is the last character of the event line. The delimiter may
be quoted inold andnewwith a single backslash. If & appears innew, it is replaced byold. A
single backslash will quote the &.If old is null, it is set to the lastold substituted, or, if no

GNU Bash-4.2 2010 December 28 45

BASH(1) BASH(1)

previous history substitutions took place, the laststring in a !?string[?] search.
& Repeat the previous substitution.
g Cause changes to be applied over the entire event line. This is used in conjunction with ‘:s’ (e.g.,

‘ :gs/old/new/’) or ‘ :& ’. If used with ‘:s’, any delimiter can be used in place of /, and the final
delimiter is optional if it is the last character of the event line. An a may be used as a synonym for
g.

G Apply the following ‘s’ modifier once to each word in the event line.

SHELL BUILTIN COMMANDS
Unless otherwise noted, each builtin command documented in this section as accepting options preceded by
− accepts−− to signify the end of the options.The :, true, false, and test builtins do not accept options and
do not treat−− specially. Theexit, logout, break, continue, let, and shift builtins accept and process argu-
ments beginning with− without requiring−−. Other builtins that accept arguments but are not specified as
accepting options interpret arguments beginning with− as invalid options and require−− to prevent this
interpretation.

: [arguments]
No effect; the command does nothing beyond expandingargumentsand performing any specified
redirections. Azero exit code is returned.

. filename[arguments]
sourcefilename[arguments]

Read and execute commands fromfilenamein the current shell environment and return the exit
status of the last command executed fromfilename. If filenamedoes not contain a slash, file
names inPATH are used to find the directory containingfilename. The file searched for inPATH
need not be executable. Whenbash is not inposix mode, the current directory is searched if no
file is found inPATH . If the sourcepathoption to theshopt builtin command is turned off, the
PATH is not searched. If any argumentsare supplied, they become the positional parameters when
filenameis executed. Otherwisethe positional parameters are unchanged.The return status is the
status of the last command exited within the script (0 if no commands are executed), and false if
filenameis not found or cannot be read.

alias [−p] [name[=value] ...]
Alias with no arguments or with the−p option prints the list of aliases in the formalias
name=valueon standard output. When arguments are supplied, an alias is defined for eachname
whosevalueis given. A trailing space invaluecauses the next word to be checked for alias sub-
stitution when the alias is expanded. For eachnamein the argument list for which novalueis sup-
plied, the name and value of the alias is printed.Alias returns true unless anameis given for
which no alias has been defined.

bg [jobspec...]
Resume each suspended jobjobspecin the background, as if it had been started with& . If job-
specis not present, the shell’s notion of thecurrent jobis used.bg jobspecreturns 0 unless run
when job control is disabled or, when run with job control enabled, any specifiedjobspecwas not
found or was started without job control.

bind [−m keymap] [−lpsvPSV]
bind [−m keymap] [−q function] [−u function] [−r keyseq]
bind [−m keymap] −f filename
bind [−m keymap] −x keyseq:shell−command
bind [−m keymap] keyseq:function−name
bind readline−command

Display currentreadline key and function bindings, bind a key sequence to areadline function or
macro, or set areadline variable. Eachnon-option argument is a command as it would appear in
.inputrc, but each binding or command must be passed as a separate argument; e.g., ’"\C−x\C−r":
re−read−init−file’. Options,if supplied, have the following meanings:
−m keymap

Use keymap as the keymap to be affected by the subsequent bindings.Acceptable
keymap names areemacs, emacs−standard, emacs−meta, emacs−ctlx, vi, vi−move,
vi−command, and vi−insert. vi is equivalent to vi−command; emacsis equivalent to
emacs−standard.

46 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

−l List the names of allreadline functions.
−p Displayreadline function names and bindings in such a way that they can be re-read.
−P List currentreadline function names and bindings.
−s Display readline key sequences bound to macros and the strings they output in such a

way that they can be re-read.
−S Displayreadline key sequences bound to macros and the strings they output.
−v Displayreadline variable names and values in such a way that they can be re-read.
−V List currentreadline variable names and values.
−f filename

Read key bindings fromfilename.
−q function

Query about which keys inv oke the namedfunction.
−u function

Unbind all keys bound to the namedfunction.
−r keyseq

Remove any current binding forkeyseq.
−x keyseq:shell−command

Causeshell−commandto be executed whenever keyseq is entered.When shell−com-
mand is executed, the shell sets theREADLINE_LINE variable to the contents of the
readline line buffer and theREADLINE_POINT variable to the current location of the
insertion point. If the executed command changes the value ofREADLINE_LINE or
READLINE_POINT , those new values will be reflected in the editing state.

The return value is 0 unless an unrecognized option is given or an error occurred.

break [n]
Exit from within afor , while, until , or selectloop. If n is specified, breakn levels. n must be≥ 1.
If n is greater than the number of enclosing loops, all enclosing loops are exited. Thereturn value
is 0 unlessn is not greater than or equal to 1.

builtin shell−builtin [arguments]
Execute the specified shell builtin, passing itarguments, and return its exit status. This is useful
when defining a function whose name is the same as a shell builtin, retaining the functionality of
the builtin within the function.Thecd builtin is commonly redefined this way. The return status
is false ifshell−builtin is not a shell builtin command.

caller [expr]
Returns the context of any active subroutine call (a shell function or a script executed with the. or
sourcebuiltins). Without expr, caller displays the line number and source filename of the current
subroutine call. If a non-negative integer is supplied asexpr, caller displays the line number, sub-
routine name, and source file corresponding to that position in the current execution call stack.
This extra information may be used, for example, to print a stack trace.The current frame is frame
0. Thereturn value is 0 unless the shell is not executing a subroutine call orexpr does not corre-
spond to a valid position in the call stack.

cd [−L |[−P [−e]]] [dir]
Change the current directory todir. The variableHOME is the default dir . The variableCDPATH
defines the search path for the directory containingdir . Alternative directory names inCDPATH
are separated by a colon (:).A null directory name inCDPATH is the same as the current direc-
tory, i.e., ‘‘ .’’ . If dir begins with a slash (/), thenCDPATH is not used. The−P option says to use
the physical directory structure instead of following symbolic links (see also the−P option to the
setbuiltin command); the−L option forces symbolic links to be followed. If the−e option is sup-
plied with −P, and the current working directory cannot be successfully determined after a suc-
cessful directory change,cd will return an unsuccessful status. An argument of− is equivalent to
$OLDPWD. If a non-empty directory name fromCDPATH is used, or if− is the first argument,
and the directory change is successful, the absolute pathname of the new working directory is writ-
ten to the standard output. The return value is true if the directory was successfully changed; false
otherwise.

command[−pVv] command[arg ...]
Runcommandwith argssuppressing the normal shell function lookup. Only builtin commands or
commands found in thePATH are executed. Ifthe−p option is given, the search forcommandis

GNU Bash-4.2 2010 December 28 47

BASH(1) BASH(1)

performed using a default value forPATH that is guaranteed to find all of the standard utilities.If
either the−V or −v option is supplied, a description ofcommandis printed. The−v option causes
a single word indicating the command or file name used to invoke commandto be displayed; the
−V option produces a more verbose description.If the −V or −v option is supplied, the exit status
is 0 if commandwas found, and 1 if not. If neither option is supplied and an error occurred or
commandcannot be found, the exit status is 127. Otherwise, the exit status of thecommand
builtin is the exit status ofcommand.

compgen[option] [word]
Generate possible completion matches forword according to theoptions, which may be any option
accepted by thecompletebuiltin with the exception of−p and−r , and write the matches to the
standard output. When using the−F or −C options, the various shell variables set by the program-
mable completion facilities, while available, will not have useful values.

The matches will be generated in the same way as if the programmable completion code had gen-
erated them directly from a completion specification with the same flags.If word is specified, only
those completions matchingwordwill be displayed.

The return value is true unless an invalid option is supplied, or no matches were generated.

complete [−abcdefgjksuv] [−o comp-option] [−DE] [−A action] [−G globpat] [−W wordlist] [−F func-
tion] [−C command]

[−X filterpat] [−P prefix] [−Ssuffix] name[name ...]
complete −pr [−DE] [name...]

Specify how arguments to eachnameshould be completed.If the −p option is supplied, or if no
options are supplied, existing completion specifications are printed in a way that allows them to be
reused as input.The−r option removes a completion specification for eachname, or, if no names
are supplied, all completion specifications.The −D option indicates that the remaining options
and actions should apply to the ‘‘default’’ command completion; that is, completion attempted on
a command for which no completion has previously been defined.The −E option indicates that
the remaining options and actions should apply to ‘‘empty’’ command completion; that is, comple-
tion attempted on a blank line.

The process of applying these completion specifications when word completion is attempted is
described above underProgrammable Completion.

Other options, if specified, have the following meanings. The arguments to the−G, −W, and −X
options (and, if necessary, the −P and−S options) should be quoted to protect them from expan-
sion before thecompletebuiltin is invoked.
−o comp-option

Thecomp-optioncontrols several aspects of the compspec’s behavior beyond the simple
generation of completions.comp-optionmay be one of:
bashdefault

Perform the rest of the default bashcompletions if the compspec generates no
matches.

default Use readline’s default filename completion if the compspec generates no
matches.

dirnames
Perform directory name completion if the compspec generates no matches.

filenames
Tell readline that the compspec generates filenames, so it can perform any file-
name−specific processing (like adding a slash to directory names, quoting spe-
cial characters, or suppressing trailing spaces). Intended to be used with shell
functions.

nospace Tell readline not to append a space (the default) to words completed at the end
of the line.

plusdirs After any matches defined by the compspec are generated, directory name
completion is attempted and any matches are added to the results of the other
actions.

48 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

−A action
Theactionmay be one of the following to generate a list of possible completions:
alias Alias names. May also be specified as−a.
arrayvar

Array variable names.
binding Readlinekey binding names.
builtin Names of shell builtin commands. May also be specified as−b.
command

Command names. May also be specified as−c.
directory

Directory names. May also be specified as−d.
disabled

Names of disabled shell builtins.
enabled Names of enabled shell builtins.
export Names of exported shell variables. Mayalso be specified as−e.
file File names. May also be specified as−f.
function

Names of shell functions.
group Group names. May also be specified as−g.
helptopic

Help topics as accepted by thehelp builtin.
hostname

Hostnames, as taken from the file specified by theHOSTFILE shell variable.
job Job names, if job control is active. May also be specified as−j .
keyword

Shell reserved words. Mayalso be specified as−k.
running Names of running jobs, if job control is active.
service Service names. May also be specified as−s.
setopt Valid arguments for the−o option to thesetbuiltin.
shopt Shell option names as accepted by theshoptbuiltin.
signal Signal names.
stopped Names of stopped jobs, if job control is active.
user User names. May also be specified as−u.
variable Names of all shell variables. Mayalso be specified as−v.

−C command
commandis executed in a subshell environment, and its output is used as the possible
completions.

−F function
The shell functionfunction is executed in the current shell environment. Whenit fin-
ishes, the possible completions are retrieved from the value of theCOMPREPLY array
variable.

−G globpat
The pathname expansion patternglobpat is expanded to generate the possible comple-
tions.

−P prefix
prefix is added at the beginning of each possible completion after all other options have
been applied.

−Ssuffix suffixis appended to each possible completion after all other options have been applied.
−W wordlist

The wordlist is split using the characters in theIFS special variable as delimiters, and
each resultant word is expanded. Thepossible completions are the members of the
resultant list which match the word being completed.

−X filterpat
filterpat is a pattern as used for pathname expansion. Itis applied to the list of possible
completions generated by the preceding options and arguments, and each completion
matchingfilterpat is removed from the list. A leading! in filterpat negates the pattern;
in this case, any completion not matchingfilterpat is removed.

The return value is true unless an invalid option is supplied, an option other than−p or −r is

GNU Bash-4.2 2010 December 28 49

BASH(1) BASH(1)

supplied without anameargument, an attempt is made to remove a completion specification for a
namefor which no specification exists, or an error occurs adding a completion specification.

compopt [−o option] [−DE] [+o option] [name]
Modify completion options for eachnameaccording to theoptions, or for the currently-executing
completion if nonames are supplied. If nooptions are given, display the completion options for
eachnameor the current completion. The possible values ofoption are those valid for thecom-
plete builtin described above. The−D option indicates that the remaining options should apply to
the ‘‘default’’ command completion; that is, completion attempted on a command for which no
completion has previously been defined.The −E option indicates that the remaining options
should apply to ‘‘empty’’ command completion; that is, completion attempted on a blank line.

The return value is true unless an invalid option is supplied, an attempt is made to modify the
options for anamefor which no completion specification exists, or an output error occurs.

continue [n]
Resume the next iteration of the enclosingfor , while, until , or select loop. If n is specified,
resume at thenth enclosing loop.n must be≥ 1. If n is greater than the number of enclosing
loops, the last enclosing loop (the ‘‘top-level’ ’ l oop) is resumed.The return value is 0 unlessn is
not greater than or equal to 1.

declare[−aAfFgilrtux] [−p] [name[=value] ...]
typeset[−aAfFgilrtux] [−p] [name[=value] ...]

Declare variables and/or give them attributes. If no names are given then display the values of
variables. The−p option will display the attributes and values of eachname. When−p is used
with namearguments, additional options are ignored.When−p is supplied withoutnameargu-
ments, it will display the attributes and values of all variables having the attributes specified by the
additional options. If no other options are supplied with−p, declarewill display the attributes and
values of all shell variables. The−f option will restrict the display to shell functions.The −F
option inhibits the display of function definitions; only the function name and attributes are
printed. If theextdebugshell option is enabled usingshopt, the source file name and line number
where the function is defined are displayed as well.The −F option implies−f. The −g option
forces variables to be created or modified at the global scope, even whendeclare is executed in a
shell function. It is ignored in all other cases. The following options can be used to restrict output
to variables with the specified attribute or to give variables attributes:
−a Eachnameis an indexed array variable (seeArrays above).
−A Eachnameis an associative array variable (seeArrays above).
−f Use function names only.
−i The variable is treated as an integer; arithmetic evaluation (seeARITHMETIC EV ALUA-

TION above) is performed when the variable is assigned a value.
−l When the variable is assigned a value, all upper-case characters are converted to lower-

case. Theupper-case attribute is disabled.
−r Make names readonly. These names cannot then be assigned values by subsequent

assignment statements or unset.
−t Give eachnamethe traceattribute. Traced functions inherit theDEBUG andRETURN

traps from the calling shell. The trace attribute has no special meaning for variables.
−u When the variable is assigned a value, all lower-case characters are converted to upper-

case. Thelower-case attribute is disabled.
−x Mark names for export to subsequent commands via the environment.

Using ‘+’ instead of ‘−’ turns off the attribute instead, with the exceptions that+a may not be used
to destroy an array variable and+r will not remove the readonly attribute. Whenused in a func-
tion, makes eachnamelocal, as with thelocal command, unless the−g option is supplied, If a
variable name is followed by =value, the value of the variable is set tovalue. The return value is 0
unless an invalid option is encountered, an attempt is made to define a function using−f
foo=bar , an attempt is made to assign a value to a readonly variable, an attempt is made to
assign a value to an array variable without using the compound assignment syntax (seeArrays
above), one of thenamesis not a valid shell variable name, an attempt is made to turn off readonly
status for a readonly variable, an attempt is made to turn off array status for an array variable, or
an attempt is made to display a non-existent function with−f.

50 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

dirs [+n] [−n] [−clpv]
Without options, displays the list of currently remembered directories.The default display is on a
single line with directory names separated by spaces. Directories are added to the list with the
pushdcommand; thepopd command removes entries from the list.
+n Displays thenth entry counting from the left of the list shown bydirs when invoked

without options, starting with zero.
−n Displays thenth entry counting from the right of the list shown bydirs when invoked

without options, starting with zero.
−c Clears the directory stack by deleting all of the entries.
−l Produces a longer listing; the default listing format uses a tilde to denote the home direc-

tory.
−p Print the directory stack with one entry per line.
−v Print the directory stack with one entry per line, prefixing each entry with its index in the

stack.

The return value is 0 unless an invalid option is supplied orn indexes beyond the end of the direc-
tory stack.

disown [−ar] [−h] [jobspec...]
Without options, eachjobspecis removed from the table of active jobs. If jobspecis not present,
and neither−a nor −r is supplied, the shell’s notion of thecurrent jobis used. If the−h option is
given, eachjobspecis not removed from the table, but is marked so thatSIGHUP is not sent to the
job if the shell receives aSIGHUP. If no jobspecis present, and neither the−a nor the−r option is
supplied, thecurrent job is used. If no jobspecis supplied, the−a option means to remove or
mark all jobs; the−r option without ajobspecargument restricts operation to running jobs.The
return value is 0 unless ajobspecdoes not specify a valid job.

echo[−neE] [arg ...]
Output theargs, separated by spaces, followed by a newline. Thereturn status is always 0. If −n
is specified, the trailing newline is suppressed. If the−e option is given, interpretation of the fol-
lowing backslash-escaped characters is enabled.The−E option disables the interpretation of these
escape characters, even on systems where they are interpreted by default. Thexpg_echoshell
option may be used to dynamically determine whether or notechoexpands these escape characters
by default. echodoes not interpret−− to mean the end of options.echo interprets the following
escape sequences:
\a alert (bell)
\b backspace
\c suppress further output
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\0nnn the eight-bit character whose value is the octal valuennn(zero to three octal digits)
\xHH the eight-bit character whose value is the hexadecimal valueHH (one or two hex digits)
\uHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHH
(one to four hex digits)

\UHHHHHHHH
the Unicode (ISO/IEC 10646) character whose value is the hexadecimal valueHHHHH-
HHH (one to eight hex digits)

enable[−a] [−dnps] [−f filename] [name...]
Enable and disable builtin shell commands. Disabling a builtin allows a disk command which has
the same name as a shell builtin to be executed without specifying a full pathname, even though
the shell normally searches for builtins before disk commands.If −n is used, eachnameis dis-
abled; otherwise,namesare enabled.For example, to use thetest binary found via thePATH
instead of the shell builtin version, runenable -n test . The−f option means to load the new

GNU Bash-4.2 2010 December 28 51

BASH(1) BASH(1)

builtin commandname from shared objectfilename, on systems that support dynamic loading.
The−d option will delete a builtin previously loaded with−f. If no namearguments are given, or
if the −p option is supplied, a list of shell builtins is printed.With no other option arguments, the
list consists of all enabled shell builtins. If −n is supplied, only disabled builtins are printed.If −a
is supplied, the list printed includes all builtins, with an indication of whether or not each is
enabled. If−s is supplied, the output is restricted to the POSIXspecialbuiltins. Thereturn value
is 0 unless anameis not a shell builtin or there is an error loading a new builtin from a shared
object.

ev al [arg ...]
The args are read and concatenated together into a single command.This command is then read
and executed by the shell, and its exit status is returned as the value ofev al. If there are noargs,
or only null arguments,ev al returns 0.

exec[−cl] [−a name] [command[arguments]]
If commandis specified, it replaces the shell.No new process is created.The argumentsbecome
the arguments tocommand. If the−l option is supplied, the shell places a dash at the beginning of
the zeroth argument passed tocommand. This is whatlogin(1) does.The−c option causescom-
mand to be executed with an empty environment. If−a is supplied, the shell passesnameas the
zeroth argument to the executed command.If commandcannot be executed for some reason, a
non-interactive shell exits, unless the shell optionexecfail is enabled, in which case it returns fail-
ure. Aninteractive shell returns failure if the file cannot be executed. Ifcommandis not specified,
any redirections take effect in the current shell, and the return status is 0. If there is a redirection
error, the return status is 1.

exit [n] Cause the shell to exit with a status ofn. If n is omitted, the exit status is that of the last command
executed. Atrap onEXIT is executed before the shell terminates.

export [−fn] [name[=word]] ...
export −p

The suppliednamesare marked for automatic export to the environment of subsequently executed
commands. Ifthe−f option is given, thenamesrefer to functions. If nonamesare given, or if the
−p option is supplied, a list of all names that are exported in this shell is printed.The −n option
causes the export property to be removed from eachname. If a variable name is followed by
=word, the value of the variable is set toword. export returns an exit status of 0 unless an invalid
option is encountered, one of thenamesis not a valid shell variable name, or−f is supplied with a
namethat is not a function.

fc [−eename] [−lnr] [first] [last]
fc −s [pat=rep] [cmd]

Fix Command.In the first form, a range of commands fromfirst to last is selected from the his-
tory list. First and last may be specified as a string (to locate the last command beginning with
that string) or as a number (an index into the history list, where a negative number is used as an
offset from the current command number).If last is not specified it is set to the current command
for listing (so thatfc −l −10 prints the last 10 commands) and tofirst otherwise. Iffirst is not
specified it is set to the previous command for editing and −16 for listing.

The−n option suppresses the command numbers when listing.The−r option reverses the order of
the commands. If the−l option is given, the commands are listed on standard output.Otherwise,
the editor given by enameis invoked on a file containing those commands.If enameis not given,
the value of theFCEDIT variable is used, and the value ofEDITOR if FCEDIT is not set. If nei-
ther variable is set,vi is used. When editing is complete, the edited commands are echoed and
executed.

In the second form,commandis re-executed after each instance ofpat is replaced byrep. A useful
alias to use with this isr=’fc −s’ , so that typingr c c runs the last command beginning with
cc and typingr re-executes the last command.

If the first form is used, the return value is 0 unless an invalid option is encountered orfirst or last
specify history lines out of range.If the −e option is supplied, the return value is the value of the
last command executed or failure if an error occurs with the temporary file of commands. If the
second form is used, the return status is that of the command re-executed, unlesscmd does not

52 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

specify a valid history line, in which casefc returns failure.

fg [jobspec]
Resumejobspecin the foreground, and make it the current job. If jobspecis not present, the
shell’s notion of thecurrent jobis used. The return value is that of the command placed into the
foreground, or failure if run when job control is disabled or, when run with job control enabled, if
jobspecdoes not specify a valid job orjobspecspecifies a job that was started without job control.

getoptsoptstring name[args]
getopts is used by shell procedures to parse positional parameters.optstringcontains the option
characters to be recognized; if a character is followed by a colon, the option is expected to have an
argument, which should be separated from it by white space.The colon and question mark char-
acters may not be used as option characters. Each time it is invoked, getopts places the next
option in the shell variablename, initializing nameif it does not exist, and the index of the next
argument to be processed into the variableOPTIND . OPTIND is initialized to 1 each time the shell
or a shell script is invoked. Whenan option requires an argument,getoptsplaces that argument
into the variableOPTARG. The shell does not resetOPTIND automatically; it must be manually
reset between multiple calls togetoptswithin the same shell invocation if a new set of parameters
is to be used.

When the end of options is encountered,getopts exits with a return value greater than zero.
OPTIND is set to the index of the first non-option argument, andnameis set to ?.

getopts normally parses the positional parameters, but if more arguments are given in args,
getoptsparses those instead.

getopts can report errors in two ways. If the first character ofoptstring is a colon,silent error
reporting is used.In normal operation diagnostic messages are printed when invalid options or
missing option arguments are encountered.If the variableOPTERR is set to 0, no error messages
will be displayed, even if the first character ofoptstringis not a colon.

If an invalid option is seen,getoptsplaces ? intonameand, if not silent, prints an error message
and unsetsOPTARG. If getoptsis silent, the option character found is placed inOPTARG and no
diagnostic message is printed.

If a required argument is not found, andgetopts is not silent, a question mark (?) is placed in
name, OPTARG is unset, and a diagnostic message is printed.If getoptsis silent, then a colon (:)
is placed innameandOPTARG is set to the option character found.

getopts returns true if an option, specified or unspecified, is found. It returns false if the end of
options is encountered or an error occurs.

hash[−lr] [−p filename] [−dt] [name]
Each timehash is invoked, the full pathname of the commandnameis determined by searching
the directories in$PATH and remembered.Any previously-remembered pathname is discarded.
If the −p option is supplied, no path search is performed, andfilenameis used as the full file name
of the command.The −r option causes the shell to forget all remembered locations.The −d
option causes the shell to forget the remembered location of eachname. If the −t option is sup-
plied, the full pathname to which eachnamecorresponds is printed. If multiplenamearguments
are supplied with−t, the nameis printed before the hashed full pathname.The −l option causes
output to be displayed in a format that may be reused as input. If no arguments are given, or if
only −l is supplied, information about remembered commands is printed.The return status is true
unless anameis not found or an invalid option is supplied.

help [−dms] [pattern]
Display helpful information about builtin commands.If pattern is specified,help gives detailed
help on all commands matchingpattern; otherwise help for all the builtins and shell control struc-
tures is printed.
−d Display a short description of eachpattern
−m Display the description of eachpatternin a manpage-like format

GNU Bash-4.2 2010 December 28 53

BASH(1) BASH(1)

−s Display only a short usage synopsis for eachpattern

The return status is 0 unless no command matchespattern.

history [n]
history −c
history −d offset
history −anrw [filename]
history −p arg [arg ...]
history −s arg [arg ...]

With no options, display the command history list with line numbers. Lines listed with a* have
been modified. An argument ofn lists only the lastn lines. If the shell variableHISTTIMEFOR-
MAT is set and not null, it is used as a format string forstrftime(3) to display the time stamp asso-
ciated with each displayed history entry. No intervening blank is printed between the formatted
time stamp and the history line.If filenameis supplied, it is used as the name of the history file; if
not, the value ofHISTFILE is used. Options, if supplied, have the following meanings:
−c Clear the history list by deleting all the entries.
−d offset

Delete the history entry at positionoffset.
−a Append the ‘‘new’’ history lines (history lines entered since the beginning of the current

bashsession) to the history file.
−n Read the history lines not already read from the history file into the current history list.

These are lines appended to the history file since the beginning of the currentbash ses-
sion.

−r Read the contents of the history file and use them as the current history.
−w Write the current history to the history file, overwriting the history file’s contents.
−p Perform history substitution on the following args and display the result on the standard

output. Doesnot store the results in the history list.Eacharg must be quoted to disable
normal history expansion.

−s Store theargs in the history list as a single entry. The last command in the history list is
removed before theargsare added.

If the HISTTIMEFORMAT variable is set, the time stamp information associated with each history
entry is written to the history file, marked with the history comment character. When the history
file is read, lines beginning with the history comment character followed immediately by a digit
are interpreted as timestamps for the previous history line. The return value is 0 unless an invalid
option is encountered, an error occurs while reading or writing the history file, an invalid offsetis
supplied as an argument to−d, or the history expansion supplied as an argument to−p fails.

jobs [−lnprs] [jobspec...]
jobs −x command[args...]

The first form lists the active jobs. Theoptions have the following meanings:
−l List process IDs in addition to the normal information.
−n Display information only about jobs that have changed status since the user was last noti-

fied of their status.
−p List only the process ID of the job’s process group leader.
−r Restrict output to running jobs.
−s Restrict output to stopped jobs.

If jobspecis given, output is restricted to information about that job. The return status is 0 unless
an invalid option is encountered or an invalid jobspecis supplied.

If the −x option is supplied,jobs replaces any jobspecfound incommandor args with the corre-
sponding process group ID, and executescommandpassing itargs, returning its exit status.

kill [−ssigspec| −n signum| −sigspec] [pid | jobspec] ...
kill −l [sigspec| exit_status]

Send the signal named bysigspecor signumto the processes named bypid or jobspec. sigspecis
either a case-insensitive signal name such asSIGKILL (with or without theSIG prefix) or a signal
number;signum is a signal number. If sigspecis not present, thenSIGTERM is assumed.An
argument of−l lists the signal names. If any arguments are supplied when−l is given, the names
of the signals corresponding to the arguments are listed, and the return status is 0.Theexit_status
argument to−l is a number specifying either a signal number or the exit status of a process

54 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

terminated by a signal.kill returns true if at least one signal was successfully sent, or false if an
error occurs or an invalid option is encountered.

let arg [arg ...]
Eacharg is an arithmetic expression to be evaluated (seeARITHMETIC EV ALUATION above). If
the lastarg evaluates to 0,let returns 1; 0 is returned otherwise.

local [option] [name[=value] ...]
For each argument, a local variable namednameis created, and assignedvalue. Theoptioncan be
any of the options accepted bydeclare. When local is used within a function, it causes the vari-
able nameto have a visible scope restricted to that function and its children.With no operands,
local writes a list of local variables to the standard output. It is an error to uselocal when not
within a function. The return status is 0 unlesslocal is used outside a function, an invalid nameis
supplied, ornameis a readonly variable.

logout Exit a login shell.

mapfile [−n count] [−O origin] [−scount] [−t] [−u fd] [−C callback] [−c quantum] [array]
readarray [−n count] [−O origin] [−scount] [−t] [−u fd] [−C callback] [−c quantum] [array]

Read lines from the standard input into the indexed array variablearray, or from file descriptorfd
if the −u option is supplied.The variableMAPFILE is the default array. Options, if supplied,
have the following meanings:
−n Copy at mostcount lines. Ifcountis 0, all lines are copied.
−O Begin assigning toarray at indexorigin. The default index is 0.
−s Discard the firstcountlines read.
−t Remove a trailing newline from each line read.
−u Read lines from file descriptorfd instead of the standard input.
−C Evaluatecallbackeach timequantumlines are read. The−c option specifiesquantum.
−c Specify the number of lines read between each call tocallback.

If −C is specified without−c, the default quantum is 5000.Whencallback is evaluated, it is sup-
plied the index of the next array element to be assigned and the line to be assigned to that element
as additional arguments.callbackis evaluated after the line is read but before the array element is
assigned.

If not supplied with an explicit origin,mapfile will clear array before assigning to it.

mapfile returns successfully unless an invalid option or option argument is supplied,array is
invalid or unassignable, or ifarray is not an indexed array.

popd [−n] [+n] [−n]
Removes entries from the directory stack.With no arguments, removes the top directory from the
stack, and performs acd to the new top directory. Arguments, if supplied, have the following
meanings:
−n Suppresses the normal change of directory when removing directories from the stack, so

that only the stack is manipulated.
+n Removes thenth entry counting from the left of the list shown bydirs, starting with zero.

For example:popd +0 removes the first directory,popd +1 the second.
−n Removes the nth entry counting from the right of the list shown bydirs, starting with

zero. For example:popd -0 removes the last directory,popd -1 the next to last.

If the popd command is successful, adirs is performed as well, and the return status is 0.popd
returns false if an invalid option is encountered, the directory stack is empty, a non-existent direc-
tory stack entry is specified, or the directory change fails.

printf [−v var] format[arguments]
Write the formattedargumentsto the standard output under the control of theformat. The −v
option causes the output to be assigned to the variablevar rather than being printed to the standard
output.

The format is a character string which contains three types of objects: plain characters, which are
simply copied to standard output, character escape sequences, which are converted and copied to
the standard output, and format specifications, each of which causes printing of the next successive
argument. In addition to the standardprintf(1) format specifications,printf interprets the follow-
ing extensions:

GNU Bash-4.2 2010 December 28 55

BASH(1) BASH(1)

%b causesprintf to expand backslash escape sequences in the correspondingargument
(except that\c terminates output, backslashes in\' , \" , and \? are not removed, and octal
escapes beginning with\0 may contain up to four digits).

%q causesprintf to output the correspondingargumentin a format that can be reused as shell
input.

%(datefmt)T
causesprintf to output the date-time string resulting from usingdatefmtas a format
string forstrftime(3). Thecorrespondingargumentis an integer representing the number
of seconds since the epoch.Tw o special argument values may be used: -1 represents the
current time, and -2 represents the time the shell was invoked.

Arguments to non-string format specifiers are treated as C constants, except that a leading plus or
minus sign is allowed, and if the leading character is a single or double quote, the value is the
ASCII value of the following character.

The format is reused as necessary to consume all of thearguments. If the format requires more
argumentsthan are supplied, the extra format specifications behave as if a zero value or null string,
as appropriate, had been supplied. The return value is zero on success, non-zero on failure.

pushd [−n] [+n] [−n]
pushd [−n] [dir]

Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the
stack the current working directory. With no arguments, exchanges the top two directories and
returns 0, unless the directory stack is empty. Arguments, if supplied, have the following mean-
ings:
−n Suppresses the normal change of directory when adding directories to the stack, so that

only the stack is manipulated.
+n Rotates the stack so that thenth directory (counting from the left of the list shown by

dirs, starting with zero) is at the top.
−n Rotates the stack so that thenth directory (counting from the right of the list shown by

dirs, starting with zero) is at the top.
dir Addsdir to the directory stack at the top, making it the new current working directory.

If the pushd command is successful, adirs is performed as well.If the first form is used,pushd
returns 0 unless the cd todir fails. With the second form,pushd returns 0 unless the directory
stack is empty, a non-existent directory stack element is specified, or the directory change to the
specified new current directory fails.

pwd [−LP]
Print the absolute pathname of the current working directory. The pathname printed contains no
symbolic links if the−P option is supplied or the−o physical option to thesetbuiltin command is
enabled. Ifthe −L option is used, the pathname printed may contain symbolic links. The return
status is 0 unless an error occurs while reading the name of the current directory or an invalid
option is supplied.

read [−ers] [−a aname] [−d delim] [−i text] [−n nchars] [−N nchars] [−p prompt] [−t timeout] [−u fd]
[name...]

One line is read from the standard input, or from the file descriptorfd supplied as an argument to
the−u option, and the first word is assigned to the firstname, the second word to the secondname,
and so on, with leftover words and their intervening separators assigned to the lastname. If there
are fewer words read from the input stream than names, the remaining names are assigned empty
values. Thecharacters inIFS are used to split the line into words. Thebackslash character (\) may
be used to remove any special meaning for the next character read and for line continuation.
Options, if supplied, have the following meanings:
−a aname

The words are assigned to sequential indices of the array variableaname, starting at 0.
anameis unset before any new values are assigned. Othernamearguments are ignored.

−d delim
The first character ofdelim is used to terminate the input line, rather than newline.

−e If the standard input is coming from a terminal,readline (seeREADLINE above) is used
to obtain the line. Readline uses the current (or default, if line editing was not previously
active) editing settings.

56 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

−i text If readline is being used to read the line,text is placed into the editing buffer before edit-
ing begins.

−n nchars
read returns after readingncharscharacters rather than waiting for a complete line of
input, but honor a delimiter if fewer thanncharscharacters are read before the delimiter.

−N nchars
read returns after reading exactly ncharscharacters rather than waiting for a complete
line of input, unless EOF is encountered orread times out. Delimiter characters encoun-
tered in the input are not treated specially and do not causeread to return untilnchars
characters are read.

−p prompt
Display prompt on standard error, without a trailing newline, before attempting to read
any input. Theprompt is displayed only if input is coming from a terminal.

−r Backslash does not act as an escape character. The backslash is considered to be part of
the line. In particular, a backslash-newline pair may not be used as a line continuation.

−s Silent mode. If input is coming from a terminal, characters are not echoed.
−t timeout

Causeread to time out and return failure if a complete line of input is not read within
timeoutseconds.timeoutmay be a decimal number with a fractional portion following
the decimal point. This option is only effective if read is reading input from a terminal,
pipe, or other special file; it has no effect when reading from regular files.If timeoutis 0,
read returns success if input is available on the specified file descriptor, failure otherwise.
The exit status is greater than 128 if the timeout is exceeded.

−u fd Read input from file descriptorfd.

If no namesare supplied, the line read is assigned to the variableREPLY . The return code is zero,
unless end-of-file is encountered,read times out (in which case the return code is greater than
128), or an invalid file descriptor is supplied as the argument to−u.

readonly [−aAf] [−p] [name[=word] ...]
The given namesare marked readonly; the values of thesenamesmay not be changed by subse-
quent assignment. If the−f option is supplied, the functions corresponding to thenamesare so
marked. The−a option restricts the variables to indexed arrays; the−A option restricts the vari-
ables to associative arrays. If both options are supplied,−A takes precedence. If nonameargu-
ments are given, or if the−p option is supplied, a list of all readonly names is printed. The other
options may be used to restrict the output to a subset of the set of readonly names.The−p option
causes output to be displayed in a format that may be reused as input. If a variable name is fol-
lowed by =word, the value of the variable is set toword. The return status is 0 unless an invalid
option is encountered, one of thenamesis not a valid shell variable name, or−f is supplied with a
namethat is not a function.

return [n]
Causes a function to exit with the return value specified byn. If n is omitted, the return status is
that of the last command executed in the function body. If used outside a function, but during exe-
cution of a script by the. (source) command, it causes the shell to stop executing that script and
return eithern or the exit status of the last command executed within the script as the exit status of
the script. If used outside a function and not during execution of a script by., the return status is
false. Any command associated with theRETURN trap is executed before execution resumes
after the function or script.

set[−−abefhkmnptuvxBCEHPT] [−o option−name] [arg ...]
set[+abefhkmnptuvxBCEHPT] [+o option−name] [arg ...]

Without options, the name and value of each shell variable are displayed in a format that can be
reused as input for setting or resetting the currently-set variables. Read-onlyvariables cannot be
reset. Inposix mode, only shell variables are listed. The output is sorted according to the current
locale. Whenoptions are specified, they set or unset shell attributes. Any arguments remaining
after option processing are treated as values for the positional parameters and are assigned, in
order, to $1, $2, ... $n. Options, if specified, have the following meanings:
−a Automatically mark variables and functions which are modified or created for export to

the environment of subsequent commands.

GNU Bash-4.2 2010 December 28 57

BASH(1) BASH(1)

−b Report the status of terminated background jobs immediately, rather than before the next
primary prompt. This is effective only when job control is enabled.

−e Exit immediately if apipeline(which may consist of a singlesimple command), asub-
shell command enclosed in parentheses, or one of the commands executed as part of a
command list enclosed by braces (seeSHELL GRAMMAR above) exits with a non-zero
status. Theshell does not exit if the command that fails is part of the command list
immediately following awhile or until keyword, part of the test following theif or elif
reserved words, part of any command executed in a&& or || list except the command
following the final&& or ||, any command in a pipeline but the last, or if the command’s
return value is being inverted with !. A trap onERR, if set, is executed before the shell
exits. Thisoption applies to the shell environment and each subshell environment sepa-
rately (seeCOMMAND EXECUTION ENVIR ONMENT above), and may cause subshells
to exit before executing all the commands in the subshell.

−f Disable pathname expansion.
−h Remember the location of commands as they are looked up for execution. This is

enabled by default.
−k All arguments in the form of assignment statements are placed in the environment for a

command, not just those that precede the command name.
−m Monitor mode. Job control is enabled.This option is on by default for interactive shells

on systems that support it (seeJOB CONTROL above). Backgroundprocesses run in a
separate process group and a line containing their exit status is printed upon their com-
pletion.

−n Read commands but do not execute them.This may be used to check a shell script for
syntax errors. This is ignored by interactive shells.

−o option−name
Theoption−namecan be one of the following:
allexport

Same as−a.
braceexpand

Same as−B.
emacs Use an emacs-style command line editing interface. Thisis enabled by default

when the shell is interactive, unless the shell is started with the−−noediting
option. Thisalso affects the editing interface used forread −e.

errexit Same as−e.
errtrace Same as−E.
functrace

Same as−T.
hashall Same as−h.
histexpand

Same as−H.
history Enable command history, as described above underHISTORY . This option is

on by default in interactive shells.
ignoreeof

The effect is as if the shell commandIGNOREEOF=10had been executed
(seeShell Variablesabove).

keyword
Same as−k.

monitor Same as−m.
noclobber

Same as−C.
noexec Same as−n.
noglob Same as−f.
nolog Currently ignored.
notify Same as−b.
nounset Same as−u.
onecmd Same as−t.
physical Same as−P.
pipefail If set, the return value of a pipeline is the value of the last (rightmost) com-

mand to exit with a non-zero status, or zero if all commands in the pipeline

58 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

exit successfully. This option is disabled by default.
posix Change the behavior ofbash where the default operation differs from the

POSIX standard to match the standard (posix mode).
privileged

Same as−p.
verbose Same as−v.
vi Use a vi-style command line editing interface. Thisalso affects the editing

interface used forread −e.
xtrace Same as−x.

If −o is supplied with nooption−name, the values of the current options are printed.If
+o is supplied with nooption−name, a series ofset commands to recreate the current
option settings is displayed on the standard output.

−p Turn on privileged mode. Inthis mode, the$ENV and $BASH_ENV files are not pro-
cessed, shell functions are not inherited from the environment, and theSHELLOPTS,
BASHOPTS, CDPATH, andGLOBIGNORE variables, if they appear in the environment,
are ignored. If the shell is started with the effective user (group) id not equal to the real
user (group) id, and the−p option is not supplied, these actions are taken and the effec-
tive user id is set to the real user id.If the −p option is supplied at startup, the effective
user id is not reset.Turning this option off causes the effective user and group ids to be
set to the real user and group ids.

−t Exit after reading and executing one command.
−u Treat unset variables and parameters other than the special parameters "@" and "*" as an

error when performing parameter expansion. Ifexpansion is attempted on an unset vari-
able or parameter, the shell prints an error message, and, if not interactive, exits with a
non-zero status.

−v Print shell input lines as they are read.
−x After expanding eachsimple command, for command,casecommand,selectcommand,

or arithmeticfor command, display the expanded value ofPS4, followed by the com-
mand and its expanded arguments or associated word list.

−B The shell performs brace expansion (seeBrace Expansion above). This is on by
default.

−C If set,bashdoes not overwrite an existing file with the>, >& , and <> redirection opera-
tors. Thismay be overridden when creating output files by using the redirection opera-
tor >| instead of>.

−E If set, any trap onERR is inherited by shell functions, command substitutions, and com-
mands executed in a subshell environment. TheERR trap is normally not inherited in
such cases.

−H Enable! style history substitution. This option is on by default when the shell is inter-
active.

−P If set, the shell does not follow symbolic links when executing commands such ascd
that change the current working directory. It uses the physical directory structure
instead. Bydefault,bash follows the logical chain of directories when performing com-
mands which change the current directory.

−T If set, any traps onDEBUG andRETURN are inherited by shell functions, command
substitutions, and commands executed in a subshell environment. TheDEBUG and
RETURN traps are normally not inherited in such cases.

−− If no arguments follow this option, then the positional parameters are unset.Otherwise,
the positional parameters are set to theargs, even if some of them begin with a−.

− Signal the end of options, cause all remainingargs to be assigned to the positional
parameters. The−x and−v options are turned off. If there are noargs, the positional
parameters remain unchanged.

The options are off by default unless otherwise noted. Using + rather than − causes these options
to be turned off. Theoptions can also be specified as arguments to an invocation of the shell.The
current set of options may be found in$−. The return status is always true unless an invalid option
is encountered.

GNU Bash-4.2 2010 December 28 59

BASH(1) BASH(1)

shift [n]
The positional parameters fromn+1 ... are renamed to$1 Parameters represented by the num-
bers$# down to$#−n+1 are unset.n must be a non-negative number less than or equal to$#. If n
is 0, no parameters are changed.If n is not given, it is assumed to be 1.If n is greater than$#, the
positional parameters are not changed. The return status is greater than zero ifn is greater than$#
or less than zero; otherwise 0.

shopt [−pqsu] [−o] [optname...]
Toggle the values of variables controlling optional shell behavior. With no options, or with the−p
option, a list of all settable options is displayed, with an indication of whether or not each is set.
The−p option causes output to be displayed in a form that may be reused as input.Other options
have the following meanings:
−s Enable (set) eachoptname.
−u Disable (unset) eachoptname.
−q Suppresses normal output (quiet mode); the return status indicates whether theoptnameis

set or unset. If multipleoptnamearguments are given with −q, the return status is zero if
all optnamesare enabled; non-zero otherwise.

−o Restricts the values ofoptnameto be those defined for the−o option to thesetbuiltin.

If either−sor −u is used with nooptnamearguments, the display is limited to those options which
are set or unset, respectively. Unless otherwise noted, theshopt options are disabled (unset) by
default.

The return status when listing options is zero if alloptnamesare enabled, non-zero otherwise.
When setting or unsetting options, the return status is zero unless anoptnameis not a valid shell
option.

The list ofshoptoptions is:

autocd If set, a command name that is the name of a directory is executed as if it were the argu-
ment to thecd command. Thisoption is only used by interactive shells.

cdable_vars
If set, an argument to thecd builtin command that is not a directory is assumed to be the
name of a variable whose value is the directory to change to.

cdspell If set, minor errors in the spelling of a directory component in acd command will be
corrected. Theerrors checked for are transposed characters, a missing character, and
one character too many. If a correction is found, the corrected file name is printed, and
the command proceeds. This option is only used by interactive shells.

checkhash
If set, bash checks that a command found in the hash table exists before trying to exe-
cute it. If a hashed command no longer exists, a normal path search is performed.

checkjobs
If set,bash lists the status of any stopped and running jobs before exiting an interactive
shell. If any jobs are running, this causes the exit to be deferred until a second exit is
attempted without an intervening command (seeJOB CONTROL above). The shell
always postpones exiting if any jobs are stopped.

checkwinsize
If set, bash checks the window size after each command and, if necessary, updates the
values ofLINES andCOLUMNS .

cmdhist If set, bash attempts to save all lines of a multiple-line command in the same history
entry. This allows easy re-editing of multi-line commands.

compat31
If set,bashchanges its behavior to that of version 3.1 with respect to quoted arguments
to the[[conditional command’s=˜ operator.

compat32
If set, bash changes its behavior to that of version 3.2 with respect to locale-specific
string comparison when using the[[conditional command’s < and > operators. Bash
versions prior to bash-4.1 use ASCII collation andstrcmp(3); bash-4.1 and later use the
current locale’s collation sequence andstrcoll(3).

compat40
If set, bash changes its behavior to that of version 4.0 with respect to locale-specific
string comparison when using the[[conditional command’s < and > operators (see

60 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

previous item) and the effect of interrupting a command list.
compat41

If set, bash, when in posix mode, treats a single quote in a double-quoted parameter
expansion as a special character. The single quotes must match (an even number) and
the characters between the single quotes are considered quoted. This is the behavior of
posix mode through version 4.1. The default bash behavior remains as in previous ver-
sions.

dirspell If set, bash attempts spelling correction on directory names during word completion if
the directory name initially supplied does not exist.

dotglob If set,bash includes filenames beginning with a ‘.’ in the results of pathname expansion.
execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as an

argument to theexecbuiltin command. An interactive shell does not exit ifexecfails.
expand_aliases

If set, aliases are expanded as described above underALIASES . This option is enabled
by default for interactive shells.

extdebug
If set, behavior intended for use by debuggers is enabled:
1. The −F option to thedeclare builtin displays the source file name and line

number corresponding to each function name supplied as an argument.
2. If the command run by theDEBUG trap returns a non-zero value, the next

command is skipped and not executed.
3. If the command run by theDEBUG trap returns a value of 2, and the shell is

executing in a subroutine (a shell function or a shell script executed by the. or
sourcebuiltins), a call toreturn is simulated.

4. BASH_ARGC andBASH_ARGV are updated as described in their descriptions
above.

5. Function tracing is enabled: command substitution, shell functions, and sub-
shells invoked with (command) inherit theDEBUG andRETURN traps.

6. Error tracing is enabled:command substitution, shell functions, and subshells
invoked with (command) inherit theERR trap.

extglob If set, the extended pattern matching features described above underPathname Expan-
sionare enabled.

extquote
If set, $'string' and $"string" quoting is performed within${parameter} expansions
enclosed in double quotes. This option is enabled by default.

failglob If set, patterns which fail to match filenames during pathname expansion result in an
expansion error.

force_fignore
If set, the suffixes specified by theFIGNORE shell variable cause words to be ignored
when performing word completion even if the ignored words are the only possible com-
pletions. SeeSHELL VARIABLES above for a description ofFIGNORE . This option is
enabled by default.

globstar If set, the pattern** used in a pathname expansion context will match all files and zero
or more directories and subdirectories.If the pattern is followed by a/, only directories
and subdirectories match.

gnu_errfmt
If set, shell error messages are written in the standard GNU error message format.

histappend
If set, the history list is appended to the file named by the value of theHISTFILE vari-
able when the shell exits, rather than overwriting the file.

histreedit
If set, andreadline is being used, a user is given the opportunity to re-edit a failed his-
tory substitution.

histverify
If set, andreadline is being used, the results of history substitution are not immediately
passed to the shell parser. Instead, the resulting line is loaded into thereadline editing
buffer, allowing further modification.

GNU Bash-4.2 2010 December 28 61

BASH(1) BASH(1)

hostcomplete
If set, andreadline is being used,bash will attempt to perform hostname completion
when a word containing a@ is being completed (seeCompleting underREADLINE
above). Thisis enabled by default.

huponexit
If set,bashwill sendSIGHUP to all jobs when an interactive login shell exits.

interactive_comments
If set, allow a word beginning with# to cause that word and all remaining characters on
that line to be ignored in an interactive shell (seeCOMMENTS above). This option is
enabled by default.

lastpipe If set, and job control is not active, the shell runs the last command of a pipeline not exe-
cuted in the background in the current shell environment.

lithist If set, and thecmdhist option is enabled, multi-line commands are saved to the history
with embedded newlines rather than using semicolon separators where possible.

login_shell
The shell sets this option if it is started as a login shell (seeINVOCATION above). The
value may not be changed.

mailwarn
If set, and a file thatbash is checking for mail has been accessed since the last time it
was checked, the message ‘‘The mail inmailfilehas been read’’ is displayed.

no_empty_cmd_completion
If set, andreadline is being used,bashwill not attempt to search thePATH for possible
completions when completion is attempted on an empty line.

nocaseglob
If set,bashmatches filenames in a case−insensitive fashion when performing pathname
expansion (seePathname Expansionabove).

nocasematch
If set, bash matches patterns in a case−insensitive fashion when performing matching
while executingcaseor [[conditional commands.

nullglob
If set, bash allows patterns which match no files (seePathname Expansionabove) to
expand to a null string, rather than themselves.

progcomp
If set, the programmable completion facilities (seeProgrammable Completionabove)
are enabled. This option is enabled by default.

promptvars
If set, prompt strings undergo parameter expansion, command substitution, arithmetic
expansion, and quote removal after being expanded as described inPROMPTING above.
This option is enabled by default.

restricted_shell
The shell sets this option if it is started in restricted mode (seeRESTRICTED SHELL
below). Thevalue may not be changed. This is not reset when the startup files are exe-
cuted, allowing the startup files to discover whether or not a shell is restricted.

shift_verbose
If set, theshift builtin prints an error message when the shift count exceeds the number
of positional parameters.

sourcepath
If set, thesource (.) builtin uses the value ofPATH to find the directory containing the
file supplied as an argument. Thisoption is enabled by default.

xpg_echo
If set, theechobuiltin expands backslash-escape sequences by default.

suspend[−f]
Suspend the execution of this shell until it receives aSIGCONT signal. A login shell cannot be
suspended; the−f option can be used to override this and force the suspension.The return status is
0 unless the shell is a login shell and−f is not supplied, or if job control is not enabled.

testexpr
[expr] Return a status of 0 or 1 depending on the evaluation of the conditional expressionexpr. Each

operator and operand must be a separate argument. Expressionsare composed of the primaries

62 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

described above under CONDITION AL EXPRESSIONS. test does not accept any options, nor
does it accept and ignore an argument of−− as signifying the end of options.

Expressions may be combined using the following operators, listed in decreasing order of prece-
dence. Theevaluation depends on the number of arguments; see below. Operator precedence is
used when there are five or more arguments.
! expr True if expr is false.
(expr) Returns the value ofexpr. This may be used to override the normal precedence of opera-

tors.
expr1 −a expr2

True if bothexpr1 andexpr2 are true.
expr1 −o expr2

True if eitherexpr1 or expr2 is true.

testand[evaluate conditional expressions using a set of rules based on the number of arguments.

0 arguments
The expression is false.

1 argument
The expression is true if and only if the argument is not null.

2 arguments
If the first argument is!, the expression is true if and only if the second argument is null.
If the first argument is one of the unary conditional operators listed above underCONDI-
TION AL EXPRESSIONS, the expression is true if the unary test is true. If the first argu-
ment is not a valid unary conditional operator, the expression is false.

3 arguments
The following conditions are applied in the order listed. If the second argument is one of
the binary conditional operators listed above underCONDITION AL EXPRESSIONS, the
result of the expression is the result of the binary test using the first and third arguments
as operands.The −a and −o operators are considered binary operators when there are
three arguments. Ifthe first argument is!, the value is the negation of the two-argument
test using the second and third arguments. Ifthe first argument is exactly (and the third
argument is exactly), the result is the one-argument test of the second argument. Other-
wise, the expression is false.

4 arguments
If the first argument is!, the result is the negation of the three-argument expression com-
posed of the remaining arguments. Otherwise,the expression is parsed and evaluated
according to precedence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence using the rules listed
above.

When used withtestor [, the< and> operators sort lexicographically using ASCII ordering.

times Print the accumulated user and system times for the shell and for processes run from the shell.
The return status is 0.

trap [−lp] [[arg] sigspec...]
The commandarg is to be read and executed when the shell receives signal(s)sigspec. If arg is
absent (and there is a singlesigspec) or −, each specified signal is reset to its original disposition
(the value it had upon entrance to the shell).If arg is the null string the signal specified by each
sigspecis ignored by the shell and by the commands it invokes. If arg is not present and−p has
been supplied, then the trap commands associated with eachsigspecare displayed. If no argu-
ments are supplied or if only−p is given, trap prints the list of commands associated with each
signal. The−l option causes the shell to print a list of signal names and their corresponding num-
bers. Eachsigspecis either a signal name defined in <signal.h>, or a signal number. Signal
names are case insensitive and theSIG prefix is optional.

If a sigspecis EXIT (0) the commandarg is executed on exit from the shell. If asigspecis
DEBUG, the commandarg is executed before every simple command, for command,casecom-
mand,selectcommand, every arithmeticfor command, and before the first command executes in a
shell function (seeSHELL GRAMMAR above). Referto the description of theextdebugoption to

GNU Bash-4.2 2010 December 28 63

BASH(1) BASH(1)

the shopt builtin for details of its effect on theDEBUG trap. If a sigspecis RETURN, the com-
mandarg is executed each time a shell function or a script executed with the. or sourcebuiltins
finishes executing.

If a sigspecis ERR, the commandarg is executed whenever a simple command has a non−zero
exit status, subject to the following conditions. The ERR trap is not executed if the failed com-
mand is part of the command list immediately following awhile or until keyword, part of the test
in an if statement, part of a command executed in a&& or || list, or if the command’s return value
is being inverted via!. These are the same conditions obeyed by theerrexit option.

Signals ignored upon entry to the shell cannot be trapped or reset.Trapped signals that are not
being ignored are reset to their original values in a subshell or subshell environment when one is
created. Thereturn status is false if anysigspecis invalid; otherwisetrap returns true.

type [−aftpP] name[name...]
With no options, indicate how eachnamewould be interpreted if used as a command name. If the
−t option is used,type prints a string which is one ofalias, keyword, function, builtin , or file if
nameis an alias, shell reserved word, function, builtin, or disk file, respectively. If thenameis not
found, then nothing is printed, and an exit status of false is returned.If the −p option is used,type
either returns the name of the disk file that would be executed if namewere specified as a com-
mand name, or nothing iftype -t name would not returnfile. The −P option forces aPATH
search for eachname, even if type -t name would not returnfile. If a command is hashed,−p
and−P print the hashed value, not necessarily the file that appears first inPATH . If the −a option
is used,type prints all of the places that contain an executable namedname. This includes aliases
and functions, if and only if the−p option is not also used.The table of hashed commands is not
consulted when using−a. The−f option suppresses shell function lookup, as with thecommand
builtin. type returns true if all of the arguments are found, false if any are not found.

ulimit [−HSTabcdefilmnpqrstuvx [limit]]
Provides control over the resources available to the shell and to processes started by it, on systems
that allow such control. The −H and−S options specify that the hard or soft limit is set for the
given resource. Ahard limit cannot be increased by a non-root user once it is set; a soft limit may
be increased up to the value of the hard limit.If neither−H nor −S is specified, both the soft and
hard limits are set. The value oflimit can be a number in the unit specified for the resource or one
of the special valueshard, soft, or unlimited , which stand for the current hard limit, the current
soft limit, and no limit, respectively. If limit is omitted, the current value of the soft limit of the
resource is printed, unless the−H option is given. Whenmore than one resource is specified, the
limit name and unit are printed before the value. Otheroptions are interpreted as follows:
−a All current limits are reported
−b The maximum socket buffer size
−c The maximum size of core files created
−d The maximum size of a process’s data segment
−e The maximum scheduling priority ("nice")
−f The maximum size of files written by the shell and its children
−i The maximum number of pending signals
−l The maximum size that may be locked into memory
−m The maximum resident set size (many systems do not honor this limit)
−n The maximum number of open file descriptors (most systems do not allow this value to

be set)
−p The pipe size in 512-byte blocks (this may not be set)
−q The maximum number of bytes in POSIX message queues
−r The maximum real-time scheduling priority
−s The maximum stack size
−t The maximum amount of cpu time in seconds
−u The maximum number of processes available to a single user
−v The maximum amount of virtual memory available to the shell and, on some systems, to

its children
−x The maximum number of file locks
−T The maximum number of threads

If limit is given, it is the new value of the specified resource (the−a option is display only). If no

64 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

option is given, then−f is assumed.Values are in 1024-byte increments, except for−t, which is in
seconds,−p, which is in units of 512-byte blocks, and−T, −b, −n, and −u, which are unscaled val-
ues. Thereturn status is 0 unless an invalid option or argument is supplied, or an error occurs
while setting a new limit.

umask [−p] [−S] [mode]
The user file-creation mask is set tomode. If modebegins with a digit, it is interpreted as an octal
number; otherwise it is interpreted as a symbolic mode mask similar to that accepted bychmod(1).
If modeis omitted, the current value of the mask is printed.The−S option causes the mask to be
printed in symbolic form; the default output is an octal number. If the−p option is supplied, and
modeis omitted, the output is in a form that may be reused as input.The return status is 0 if the
mode was successfully changed or if nomodeargument was supplied, and false otherwise.

unalias [−a] [name...]
Remove each namefrom the list of defined aliases.If −a is supplied, all alias definitions are
removed. Thereturn value is true unless a suppliednameis not a defined alias.

unset[−fv] [name...]
For eachname, remove the corresponding variable or function. If no options are supplied, or the
−v option is given, eachnamerefers to a shell variable. Read-onlyvariables may not be unset.If
−f is specified, eachnamerefers to a shell function, and the function definition is removed. Each
unset variable or function is removed from the environment passed to subsequent commands.If
any of COMP_WORDBREAKS , RANDOM , SECONDS, LINENO , HISTCMD , FUNCNAME ,
GROUPS, or DIRSTACK are unset, they lose their special properties, even if they are subsequently
reset. Theexit status is true unless anameis readonly.

wait [n ...]
Wait for each specified process and return its termination status.Eachn may be a process ID or a
job specification; if a job spec is given, all processes in that job’s pipeline are waited for. If n is
not given, all currently active child processes are waited for, and the return status is zero.If n
specifies a non-existent process or job, the return status is 127. Otherwise, the return status is the
exit status of the last process or job waited for.

RESTRICTED SHELL
If bash is started with the namerbash, or the −r option is supplied at invocation, the shell becomes
restricted. Arestricted shell is used to set up an environment more controlled than the standard shell.It
behaves identically tobashwith the exception that the following are disallowed or not performed:

• changing directories withcd

• setting or unsetting the values ofSHELL , PATH , ENV, or BASH_ENV

• specifying command names containing/

• specifying a file name containing a/ as an argument to the. builtin command

• specifying a filename containing a slash as an argument to the−p option to thehashbuiltin com-
mand

• importing function definitions from the shell environment at startup

• parsing the value ofSHELLOPTS from the shell environment at startup

• redirecting output using the >, >|, <>, >&, &>, and >> redirection operators

• using theexecbuiltin command to replace the shell with another command

• adding or deleting builtin commands with the−f and−d options to theenablebuiltin command

• using theenablebuiltin command to enable disabled shell builtins

• specifying the−p option to thecommandbuiltin command

• turning off restricted mode withset +r or set +o restricted.

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (seeCOMMAND EXECUTION above),
rbash turns off any restrictions in the shell spawned to execute the script.

GNU Bash-4.2 2010 December 28 65

BASH(1) BASH(1)

SEE ALSO
Bash Reference Manual, Brian Fox and Chet Ramey
The Gnu Readline Library, Brian Fox and Chet Ramey
The Gnu History Library, Brian Fox and Chet Ramey
Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE
sh(1), ksh(1), csh(1)
emacs(1), vi(1)
readline(3)

FILES
/bin/bash

Thebashexecutable
/etc/profile

The systemwide initialization file, executed for login shells
˜/.bash_profile

The personal initialization file, executed for login shells
˜/.bashrc

The individual per-interactive-shell startup file
˜/.bash_logout

The individual login shell cleanup file, executed when a login shell exits
˜/.inputrc

Individual readline initialization file

AUTHORS
Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet.ramey@case.edu

BUG REPORTS
If you find a bug in bash,you should report it. But first, you should make sure that it really is a bug, and
that it appears in the latest version of bash. The latest version is always available from
ftp://ftp.gnu.org/pub/gnu/bash/.

Once you have determined that a bug actually exists, use thebashbugcommand to submit a bug report.If
you have a fix, you are encouraged to mail that as well!Suggestions and ‘philosophical’ bug reports may
be mailed tobug-bash@gnu.orgor posted to the Usenet newsgroupgnu.bash.bug.

ALL bug reports should include:

The version number ofbash
The hardware and operating system
The compiler used to compile
A description of the bug behaviour
A short script or ‘recipe’ which exercises the bug

bashbuginserts the first three items automatically into the template it provides for filing a bug report.

Comments and bug reports concerning this manual page should be directed tochet.ramey@case.edu.

BUGS
It’s too big and too slow.

There are some subtle differences betweenbash and traditional versions ofsh, mostly because of the
POSIX specification.

Aliases are confusing in some uses.

Shell builtin commands and functions are not stoppable/restartable.

Compound commands and command sequences of the form ‘a ; b ; c’ are not handled gracefully when
process suspension is attempted. When a process is stopped, the shell immediately executes the next com-
mand in the sequence.It suffices to place the sequence of commands between parentheses to force it into a
subshell, which may be stopped as a unit.

Array variables may not (yet) be exported.

66 2010December 28 GNU Bash-4.2

BASH(1) BASH(1)

There may be only one active coprocess at a time.

GNU Bash-4.2 2010 December 28 67

