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Learning Guide

These notes and slides are designed to accompany eight lectures on type systems for Part II

of the Cambridge University Computer Science Tripos. The aim of this course is to show by

example how type systems for programming languages can be defined and their properties

developed, using techniques that were introduced in the Part IB course on Semantics of

Programming Languages. We apply these techniques to a few selected topics centred mainly

around the notion of “polymorphism” (or “generics” as it is known in the Java and C#

communities).

Formal systems and mathematical proof play an important role in this subject—a fact

which is reflected in the nature of the material presented here and in the kind of questions set

on it in the Tripos. As well as learning some specific facts about the ML type system and the

polymorphic lambda calculus, at the end of the course you should:

• appreciate how type systems can be used to constrain or describe the dynamic

behaviour of programs;

• be able to use a rule-based specification of a type system to infer typings and to

establish type soundness results;

• appreciate the expressive power of the polymorphic lambda calculus.

Tripos questions and exercises

There is an exercise sheet at the end of these notes. A list of past Tripos questions back to

1993 that are relevant to the current course is available from the course web page.

Recommended reading

The recent graduate-level text by Pierce (2002) covers much of the material presented in

these notes (although not always in the same way), plus much else besides. It is highly

recommended. The following addition material may be useful:

Sections 2–3 (Cardelli 1987) introduces the ideas behind ML polymorphism and type-

checking. One could also take a look in (Milner, Tofte, Harper, and MacQueen

1997) at the chapter defining the static semantics for the core language, although it

does not make light reading! If you want more help understanding the material in

Section 3 (Polymorphic Reference Types), try Section 1.1.2.1 (Value Polymorphism)

of the SML’97 Conversion Guide provided by the SML/NJ implementation of ML.

(See the web page for this lecture course for a URL for this document.)

Section 4 Read (Girard 1989) for an account by one of its creators of the polymorphic

lambda calculus (Système F), its relation to proof theory and much else besides.
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Note!

The material in these notes has been drawn from several different sources, including those

mentioned above and previous versions of this course by the author and by others. Any

errors are of course all my own work. Please let me know if you find typos or possible

errors: a list of corrections will be available from the course web page (follow links from

〈www.cl.cam.ac.uk/teaching/〉), which also contains pointers to some other useful

material.

Andrew Pitts

Andrew.Pitts@cl.cam.ac.uk
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1 Introduction

‘One of the most helpful concepts in the whole of programming is the notion of

type, used to classify the kinds of object which are manipulated. A significant

proportion of programming mistakes are detected by an implementation which

does type-checking before it runs any program. Types provide a taxonomy which

helps people to think and to communicate about programs.’

R. Milner, ‘Computing Tomorrow’ (CUP, 1996), p264

This short course is about the use of types in programming languages. Types also play an

important role in specification languages and in formal logics. Indeed types first arose (in the

work of Bertrand Russell (Russell 1903) around 1900) as a way of avoiding certain paradoxes

in the logical foundations of mathematics. We will return to the interplay between types in

programming languages and types in logic at the end of the course.

Many programming languages permit, or even require, the use of certain kinds of

phrases—types, structures, classes, interfaces, etc—for classifying expressions according

to their structure (e.g. ‘this expression is an array of character strings’) and/or behaviour

(e.g. ‘this function takes an integer argument and returns a list of booleans’). As indicated

on Slide 1, a type system for a particular language is a formal specification of how such a

classification of expressions into types is to be carried out.

The full title of this course is

Type Systems for Programming Languages

What are ‘type systems’ and what are they good for?

‘A type system is a tractable syntactic method for proving the absence

of certain program behaviours by classifying phrases according to the

kinds of values they compute’

B. Pierce, ‘Types and Programming Languages’ (MIT, 2002), p1

Type systems are one of the most important channels by which

developments in theoretical computer science get applied in

programming language design and software verification.

Slide 1

Here are some ways (summarised on Slide 2) in which type systems for programming

languages get used:

1



2 1 INTRODUCTION

Uses of type systems

• Detecting errors via type-checking, either statically (decidable errors

detected before programs are executed) or dynamically (typing errors

detected during program execution).

• Abstraction and support for structuring large systems.

• Documentation.

• Efficiency.

• Whole-language safety.

Slide 2

Detecting errors Experience shows that a significant proportion of programming mistakes

(such as trying to multiply an integer by a string) can be detected by an implementation which

does static type-checking, i.e. which checks for typing errors before it runs any program.

Type systems used to implement such checks at compile-time necessarily involve decidable

properties of program phrases, since otherwise the process of compilation is not guaranteed

to terminate. (Recall the notion of (algorithmic) decidability from the CST IB ‘Computation

Theory’ course.) For example, in a Turing-powerful language (one that can code all partial

recursive functions), it is undecidable whether an arbitrary arithmetic expression evaluates to

0 or not; hence static type-checking will not be able to eliminate all ‘division by zero’ errors.

Of course the more properties of program phrases a type systems can express the better and

the development of the subject is partly a search for greater expressivity; but expressivity

is constrained in theory by this decidability requirement, and is constrained in practice by

questions of computational feasibility.

Abstraction and support for structuring large systems Type information is a crucial part

of interfaces for modules and classes, allowing the whole to be to be designed independently

of particular implementations of its parts. Type systems form the backbone of various

module languages in which modules (‘structures’) are assigned types which are interfaces

(‘signatures’).
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Documentation Type information in procedure/function declarations and in module/class

interfaces are a form of documentation, giving useful hints about intended use and behaviour.

Static type-checking ensures that this kind of ‘formal documentation’ keeps in step with

changes to the program.

Efficiency Typing information can be used by compilers to produce more efficient code.

For example the first use of types in computer science (in the 1950s) was to improve the

efficiency of numerical calculations in Fortran by distinguishing between integer and real-

value expressions. Many static analyses carried out by optimising compilers make use of

specialised type systems: an example is the ‘region inference’ used in the ML Kit Compiler

to replace much garbage collection in the heap by stack-based memory management (Tofte

and Talpin 1997).

Safety

Informal definitions from the literature.

‘A safe language is one that protects its own high-level abstractions [no

matter what legal program we write in it]’.

‘A safe language is completely defined by its programmer’s manual

[rather than which compiler we are using]’.

‘A safe language may have trapped errors [one that can be handled

gracefully], but can’t have untrapped errors [ones that cause

unpredictable crashes]’.

Slide 3

Whole-language safety Slide 3 gives some informal definitions from the literature of

what constitutes a ‘safe language’. Type systems are an important tool for designing safe

languages, but in principle, an untyped language could be safe by virtue of performing certain

checks at run-time. Since such checks generally hamper efficiency, in practice very few

untyped languages are safe; Cardelli (1997) cites LISP as an example of an untyped, safe

language (and assembly language as the quintessential untyped, unsafe language). Although

typed languages may use a combination of run- and compile-time checks to ensure safety, they

usually emphasise the latter. In other words the ideal is to have a type system implementing
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algorithmically decidable checks used at compile-time to rule out all untrapped run-time

errors (and some kinds of trapped ones as well). Of course some languages (such as C)

employ types without any pretensions to safety.

Formal type systems

• Constitute the precise, mathematical characterisation of informal type

systems (such as occur in the manuals of most typed languages.)

• Basis for type soundness theorems: ‘any well-typed program cannot

produce run-time errors (of some specified kind)’.

• Can decouple specification of typing aspects of a language from

algorithmic concerns: the formal type system can define typing

independently of particular implementations of type-checking

algorithms.

Slide 4

Some languages are designed to be safe by virtue of a type system, but turn out not to be—

because of unforeseen or unintended uses of certain combinations of their features (object-

oriented languages seem particularly prone to this problem). We will see an example of this in

Section 3, where we consider the combination of ML polymorphism with mutable references.

Such difficulties have been a great spur to the development of the formal mathematics and

logic of type systems: one can only prove that a language is safe after its syntax and

operational semantics have been formally specified. The main point of this course is to

introduce a little of this formalism and illustrate its uses. Standard ML (Milner, Tofte, Harper,

and MacQueen 1997) is the shining example of a full-scale language possessing a complete

such specification and whose type soundness (cf. Slide 4) has been subject to proof.
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Typical type system ‘judgement’

is a relation between typing environments (Γ), program phrases (M ) and

type expressions (τ ) that we write as

Γ ⊢M : τ

and read as ‘given the assignment of types to free identifiers of M
specified by type environment Γ, then M has type τ ’.

E.g.

f : int list → int , b : bool ⊢ (if b then f nil else 3) : int

is a valid typing judgement about ML.

Slide 5

The study of formal type systems is part of structural operational semantics: to specify

a formal type system one gives a number of axioms and rules for inductively generating the

kind of assertion, or ‘judgement’, shown on Slide 5. Ideally the rules follow the structure

of the phrase M , explaining how to type it in terms of how its subphrases can be types—

one speaks of syntax-directed sets of rules. It is worth pointing out that different language

families use widely differing notations for typing—see Slide 6.

Once we have formalised a particular type system, we are in a position to prove results

about type soundness (Slide 4) and the notions of type checking, typeability and type inference

described on Slide 7. You have already seen some examples in the CST IB Semantics of

Programming Languages course of formal type systems defined using inductive definitions

generated by syntax-directed axioms and rules. In this course we look at more involved

examples revolving around the notion of ‘parametric polymorphism’, to which we turn next.
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Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar

Haskell-style:

foo :: bar

C/Java-style:

bar foo

Slide 6

Type checking, typeability, and type inference

Suppose given a type system for a programming language with

judgements of the form Γ ⊢M : τ .

Type-checking problem: given Γ, M , and τ , is Γ ⊢M : τ derivable in

the type system?

Typeability problem: given Γ and M , is there any τ for which

Γ ⊢M : τ is derivable in the type system?

Second problem is usually harder than the first. Solving it usually

involves devising a type inference algorithm computing a τ for each Γ
and M (or failing, if there is none).

Slide 7



2 ML Polymorphism

As indicated in the Introduction, static type-checking is regarded by many as an important

aid to building large, well-structured, and reliable software systems. On the other hand,

early forms of static typing, for example as found in Pascal, tended to hamper the ability to

write generic code. For example, a procedure for sorting lists of one type of data could

not be applied to lists of a different type of data. It is natural to want a polymorphic

sorting procedure—one which operates (uniformly) on lists of several different types. The

potential significance for programming languages of this phenomenon of polymorphism was

first emphasised by Strachey (1967), who identified several different varieties: see Slide 8.

Here we will concentrate on parametric polymorphism, also known as ‘generics’. One way to

get it is to make the type parameterisation an explicit part of the language syntax: we will see

an example of this in Section 4. In this section we look at the implicit version of parametric

polymorphism first implemented in the ML family of languages and subsequently adopted

elsewhere, for example in Haskell, Java and C#. ML phrases need contain little explicit type

information: the type inference algorithm infers a ‘most general’ type (scheme) for each well-

formed phrase, from which all the other types of the phrase can be obtained by specialising

type variables. These ideas should be familiar to you from your previous experience of

Standard ML. The point of this section is to see how one gives a precise formalisation of a

type system and its associated type inference algorithm for a small fragment of ML, called

Mini-ML.

Polymorphism = ‘has many types’

Overloading (or ‘ad hoc’ polymorphism): same symbol denotes

operations with unrelated implementations. (E.g. + might mean both

integer addition and string concatenation.)

Subsumption τ1 <: τ2: any M1 : τ1 can be used as M1 : τ2 without

violating safety.

Parametric polymorphism (‘generics’): same expression belongs to a

family of structurally related types. (E.g. in SML, length function

fun length nil = 0

| length (x :: xs) = 1+ (length xs)

has type τ list → int for all types τ .)

Slide 8

7



8 2 ML POLYMORPHISM

Type variables and type schemes in Mini-ML

To formalise statements like

‘ length has type τ list → int , for all types τ ’

it is natural to introduce type variables α (i.e. variables for which types

may be substituted) and write

length : ∀α (α list → int).

∀α (α list → int) is an example of a type scheme.

Slide 9

2.1 An ML type system

As indicated on Slide 9, to formalise parametric polymorphism, we have to introduce type

variables. An interactive ML system will just display α list → int as the type of the length

function (cf. Slide 8), leaving the universal quantification over α implicit. However, when it

comes to formalising the ML type system (as is done in the definition of the Standard ML

‘static semantics’ in Milner, Tofte, Harper, and MacQueen 1997, chapter 4) it is necessary to

make this universal quantification over types explicit in some way. The reason for this has

to do with the typing of local declarations. Consider the example given on Slide 10. The

expression (f true) :: (f nil) has type bool list , given some assumption about the type of

the variable f . Two possible such assumptions are shown on Slide 11. Here we are interested

in the second possibility since it leads to a type system with very useful properties. The

particular grammar of ML types and type schemes that we will use is shown on Slide 12.
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Polymorphism of let-bound variables in ML

For example in

let f = λx(x) in (f true) :: (f nil)

λx(x) has type τ → τ for any type τ , and the variable f to which it is

bound is used polymorphically:

- in (f true), f has type bool → bool

- in (f nil), f has type bool list → bool list

Overall, the expression has type bool list .

Slide 10

‘Ad hoc’ polymorphism:

if f : bool → bool

and f : bool list → bool list ,

then (f true) :: (f nil) : bool list .

‘Parametric’ polymorphism:

if f : ∀α (α→ α),
then (f true) :: (f nil) : bool list .

Slide 11
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Mini-ML types and type schemes

Types
τ ::= α type variable

| bool type of booleans

| τ → τ function type

| τ list list type

where α ranges over a fixed, countably infinite set TyVar.

Type Schemes
σ ::= ∀A (τ)

where A ranges over finite subsets of the set TyVar.

When A = {α1, . . . , αn}, we write ∀A (τ) as

∀α1, . . . , αn (τ).

Slide 12

The following points about type schemes ∀A (τ) should be noted.

(i) The case when A is empty, A = { }, is allowed: ∀ { } (τ) is a well-formed type

scheme. We will often regard the set of types as a subset of the set of type schemes

by identifying the type τ with the type scheme ∀ { } (τ).

(ii) Any occurrences in τ of a type variable α ∈ A become bound in ∀A (τ). Thus by

definition, the free type variables of a type scheme ∀A (τ) are all those type variables

which occur in τ , but which are not in the finite set A. (For example the set of free

type variables of ∀α (α→ α′) is {α′}.) We call a type scheme ∀A (τ) closed if it

has no free type variables, that is, if A contains all the type variables occurring in

τ . As usual for variable-binding constructs, we are not interested in the particular

names of ∀-bound type variables (since we may have to change them to avoid variable

capture during substitution of types for free type variables). Therefore we will identify

type schemes up to alpha-conversion of ∀-bound type variables. For example,

∀α (α→α′) and ∀α′′ (α′′→α′) determine the same alpha-equivalence class and will

be used interchangeably. Of course the finite set

ftv(∀A (τ))

of free type variables of a type scheme is well-defined up to alpha-conversion of bound

type variables. Just as in (i) we identified Mini-ML types τ with trivial type schemes

∀ { } (τ), so we will sometimes write

ftv(τ)
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for the finite set of type variables occurring in τ (of course all such occurrences are

free, because Mini-ML types do not involve binding operations).

(iii) ML type schemes are not ML types! So for example, α→∀α′ (α′) is neither a well-

formed Mini-ML type nor a well-formed Mini-ML type scheme.1 Rather, Mini-ML

type schemes are a notation for families of types, parameterised by type variables. We

get types from type schemes by substituting types for type variables, as we explain

next.

The ‘generalises’ relation between type schemes and types

We say a type scheme σ = ∀α1, . . . , αn (τ
′) generalises a type τ ,

and write σ ≻ τ if τ can be obtained from the type τ ′ by

simultaneously substituting some types τi for the type variables αi

(i = 1, . . . , n):

τ = τ ′[τ1/α1, . . . , τn/αn].

(N.B. The relation is unaffected by the particular choice of names of bound type

variables in σ.)

The converse relation is called specialisation: a type τ is a specialisation

of a type scheme σ if σ ≻ τ .

Slide 13

Slide 13 gives some terminology and notation to do with substituting types for the bound

type variables of a type scheme. The notion of a type scheme generalising a type will feature

in the way variables are assigned types in the Mini-ML type system that we are going to

define in this section.

Example 2.1.1. Some simple examples of generalisation:

∀α (α→ α) ≻ bool → bool

∀α (α→ α) ≻ α′ list → α′ list

∀α (α→ α) ≻ (α′→ α′)→ (α′→ α′).

However

∀α (α→ α) ⊁ (α′→ α′)→ α′.

1The step of making type schemes first class types will be taken in Section 4.
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This is because in a substitution τ [τ ′/α], by definition we have to replace all occurrences in

τ of the type variable α by τ ′. Thus when τ = α→ α, there is no type τ ′ for which τ [τ ′/α]
is the type (α→ α)→ α. (Simply because in the syntax tree of τ [τ ′/α] = τ ′→ τ ′, the two

subtrees below the outermost constructor ‘→’ are equal (namely to τ ′), whereas this is false

of (α→ α)→ α.) Another example:

∀α1, α2 (α1→ α2) ≻ α list → bool .

However

∀α1 (α1→ α2) ⊁ α list → bool

because α2 is a free type variable in the type scheme ∀α1 (α1 → α2) and so cannot be

substituted for during specialisation.

Mini-ML typing judgement

takes the form Γ ⊢M : τ where

• the typing environment Γ is a finite function from variables to type

schemes.

(We write Γ = {x1 : σ1, . . . , xn : σn} to indicate that Γ has

domain of definition dom(Γ) = {x1, . . . , xn} and maps each xi
to the type scheme σi for i = 1..n.)

• M is a Mini-ML expression

• τ is a Mini-ML type.

Slide 14
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Mini-ML expressions, M

::= x variable

| true boolean values

| false

| ifM thenM elseM conditional

| λx(M) function abstraction

| M M function application

| let x = M inM local declaration

| nil nil list

| M ::M list cons

| caseM of nil=>M |x :: x=>M case expression

Slide 15

Slide 14 gives the form of typing judgement we will use to illustrate ML polymorphism

and type inference. Just as we only consider a small subset of ML types, we restrict attention

to typings for a small subset of ML expressions, M , generated by the grammar on Slide 15.

We use a non-standard syntax compared with the definition in (Milner, Tofte, Harper, and

MacQueen 1997). For example we write λx(M) for fn x => M and letx = M1 inM2 for

let val x = M1 in M2 end. (Furthermore we will call the symbol ‘x’ occurring in these

expressions a variable rather than a ‘(value) identifier’.) The axioms and rules inductively

generating the Mini-ML typing relation for these expressions are given on Slides 16–17.

Note the following points about the type system defined on Slides 16–19.

(i) As usual, any free occurrences of x in M become bound in λx(M). In

the expression letx = M1 inM2, any free occurrences of the variable x
in M2 become bound in the let-expression. Similarly, in the expression

caseM1 of nil=>M2 |x1 :: x2 =>M3, any free occurrences of the variables

x1 and x2 in M3 become bound in the case-expression. We identify expressions up

to alpha-conversion of bound variables. For example, let x = λx(x) inx x and

let f = λx(x) in f f determine the same alpha-equivalence class and will be used

interchangeably.

(ii) Given a type environment Γ we write Γ, x : σ to indicate a typing environment with

domain dom(Γ) ∪ {x}, mapping x to σ and otherwise mapping like Γ. When we use

this notation it will almost always be the case that x /∈ dom(Γ): cf. rules (fn), (let)
and (case). Note also that side conditions such as x /∈ dom(Γ) in these rules can
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often be satisfied by suitably renaming bound variables to be fresh (relying upon the

previous point).

(iii) In rule (fn) we use Γ, x : τ1 as an abbreviation for Γ, x : ∀ { } (τ1). Similarly, in

rule (case), Γ, x1 : τ1, x2 : τ1 list really means Γ, x1 : ∀ { } (τ1), x2 : ∀ { } (τ1 list).
(Recall that by definition, a typing environment has to map variables to type schemes,

rather than to types.)

(iv) In rule (let) the notation ftv(Γ) means the set of all type variables occurring free in

some type scheme assigned in Γ. (For example, if Γ = {x1 : σ1, . . . , xn : σn}, then

ftv(Γ) = ftv(σ1)∪ · · · ∪ ftv(σn).) Thus the set A = ftv(τ)− ftv(Γ) used in that rule

consists of all type variables in τ that do not occur freely in any type scheme assigned

in Γ.

Mini-ML type system, I

Γ ⊢ x : τ if (x : σ) ∈ Γ and σ ≻ τ(var ≻)

Γ ⊢ B : bool if B ∈ {true, false}(bool)

Γ ⊢M1 : bool Γ ⊢M2 : τ Γ ⊢M3 : τ

Γ ⊢ ifM1 thenM2 elseM3 : τ
(if)

Slide 16
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Mini-ML type system, II

Γ ⊢ nil : τ list(nil)

Γ ⊢M1 : τ Γ ⊢M2 : τ list

Γ ⊢M1 ::M2 : τ list
(cons)

Γ ⊢M1 : τ1 list Γ ⊢M2 : τ2

Γ, x1 : τ1, x2 : τ1 list ⊢M3 : τ2

Γ ⊢ caseM1 of nil=>M2

|x1 :: x2 =>M3 : τ2

if x1, x2 /∈
dom(Γ)

and x1 6= x2

(case)

Slide 17

Mini-ML type system, III

Γ, x : τ1 ⊢M : τ2

Γ ⊢ λx(M) : τ1→ τ2
if x /∈ dom(Γ)(fn)

Γ ⊢M1 : τ1→ τ2 Γ ⊢M2 : τ1

Γ ⊢M1M2 : τ2
(app)

Slide 18
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Mini-ML type system, IV

Γ ⊢M1 : τ

Γ, x : ∀A (τ) ⊢M2 : τ
′

Γ ⊢ let x = M1 inM2 : τ
′

if x /∈ dom(Γ) and

A = ftv (τ)− ftv (Γ)
(let)

Slide 19

Assigning type schemes to Mini-ML expressions

Given a type scheme σ = ∀A (τ), write

Γ ⊢M : σ

if A = ftv (τ)− ftv (Γ) and Γ ⊢M : τ is derivable from the axiom

and rules on Slides 16–19.

When Γ = { } we just write ⊢M : σ for { } ⊢M : σ and say that

the (necessarily closed—see Exercise 2) expression M is typeable in

Mini-ML with type scheme σ.

Slide 20
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As usual, the axioms and rules on Slides 16–19 are schematic: Γ, M , and τ stand for

any well-formed type environment, expression, and type. The axiom and rules are used to

inductively generate the typing relation—a subset of all possible triples Γ ⊢ M : τ . We say

that a particular triple Γ ⊢ M : τ is derivable (or provable, or valid) in the type system if

there is a proof of it using the axioms and rules. Thus the typing relation consists of exactly

those triples for which there is such a proof.

In fact we often use the typing relation to assign not just types, but also type schemes to

Mini-ML expressions, as described on Slide 20.

Example 2.1.2. We verify that the example of polymorphism of let-bound variables given

on Slide 10 has the type claimed there, i.e. that

⊢ let f = λx(x) in (f true) :: (f nil) : bool list .

holds.

Proof. First note that ⊢ λx(x) : ∀α (α→ α), as witnessed by the following proof:

(1) x : α ⊢ x : α
(var ≻) using ∀ { } (α) ≻ α

{ } ⊢ λx(x) : α→ α
(fn)

Next note that since ∀α (α→ α) ≻ bool → bool , by (var ≻) we have

f : ∀α (α→ α) ⊢ f : bool → bool .

By (bool) we also have

f : ∀α (α→ α) ⊢ true : bool

and applying the rule (app) to these two judgements we get

(2) f : ∀α (α→ α) ⊢ f true : bool .

Similarly, using (app) on (var ≻) and (nil), we have

(3) f : ∀α (α→ α) ⊢ f nil : bool list .

Applying rule (cons) to (2) and (3) we get

f : ∀α (α→ α) ⊢ (f true) :: (f nil) : bool list .

Finally we can apply rule (let) to this and (1) to conclude

{ } ⊢ let f = λx(x) in (f true) :: (f nil) : bool list

as required.
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2.2 Examples of type inference, by hand

As for the full ML type system, for the type system we have just introduced the typeability

problem (Slide 7) turns out to be decidable. Moreover, among all the possible type schemes a

given closed Mini-ML expression may possess, there is a most general one—one from which

all the others can be obtained by substitution. Before showing why this is the case, we give

some specific examples of type inference in this type system.

Two examples involving self-application

M
def
= let f = λx1(λx2(x1)) in f f

M ′ def= (λf(f f)) λx1(λx2(x1))

Are M and M ′ typeable in the Mini-ML type system?

Slide 21

Given a typing environment Γ and an expression M , how can we decide whether or not

there is a type scheme σ for which Γ ⊢M : σ holds? We are aided in this task by the syntax-

directed (or ‘structural’) nature of the axioms and rules: if Γ ⊢ M : ∀A (τ) is derivable,

i.e. if A = ftv(τ)− ftv(Γ) and Γ ⊢M : τ is derivable from Slides 16–19, then the outermost

form of the expression M dictates which must be the last axiom or rule used in the proof of

Γ ⊢ M : τ . Consequently, as we try to build a proof of a typing judgement Γ ⊢ M : τ from

the bottom up, the structure of the expression M determines the shape of the tree together

with which rules are used at its nodes and which axioms at its leaves. For example, for the

particular expression M given on Slide 21, any proof of {} ⊢ M : τ1 from the axioms and

rules, has to look like the tree given in Figure 1. Node (C0) is supposed to be an instance

of the (let) rule; nodes (C1) and (C2) instances of the (fn) rule; leaves (C3), (C5), and (C6)

instances of the (var ≻) axiom; and node (C4) an instance of the (app) rule. For these to be

valid instances the constraints (C0)–(C6) listed on Slide 22 have to be satisfied.
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x1 : τ3, x2 : τ5 ⊢ x1 : τ6
(C3)

x1 : τ3 ⊢ λx2(x1) : τ4
(C2)

{ } ⊢ λx1(λx2(x1)) : τ2
(C1)

f : ∀A (τ2) ⊢ f : τ7
(C5)

f : ∀A (τ2) ⊢ f : τ8
(C6)

f : ∀A (τ2) ⊢ f f : τ1
(C4)

{ } ⊢ let f = λx1(λx2(x1)) in f f : τ1
(C0)

Figure 1: Skeleton proof tree for let f = λx1(λx2(x1)) in f f

Constraints generated while inferring a type for

let f = λx1(λx2(x1)) in f f

A = ftv (τ2)(C0)

τ2 = τ3→ τ4(C1)

τ4 = τ5→ τ6(C2)

∀ { } (τ3) ≻ τ6, i.e. τ3 = τ6(C3)

τ7 = τ8→ τ1(C4)

∀A (τ2) ≻ τ7(C5)

∀A (τ2) ≻ τ8(C6)

Slide 22

Thus M is typeable if and only if we can find types τ1, . . . , τ8 satisfying the constraints

on Slide 22. First note that they imply

τ2
(C1)
= τ3→ τ4

(C2)
= τ3→ (τ5→ τ6)

(C3)
= τ6→ (τ5→ τ6).

So let us take τ5, τ6 to be type variables, say α2, α1 respectively. Hence by (C0), A =
ftv(τ2) = ftv(α1→ (α2→ α1)) = {α1, α2}. Then (C4), (C5) and (C6) require that

∀α1, α2 (α1→ (α2→ α1)) ≻ τ8→ τ1 and ∀α1, α2 (α1→ (α2→ α1)) ≻ τ8.
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In other words there have to be some types τ9, . . . , τ12 such that

τ9→ (τ10→ τ9) = τ8→ τ1(C7)

τ11→ (τ12→ τ11) = τ8.(C8)

Now (C7) can only hold if

τ9 = τ8 and τ10→ τ9 = τ1

and hence

τ1 = τ10→ τ9 = τ10→ τ8
(C8)
= τ10→ (τ11→ (τ12→ τ11)).

with τ10, τ11, τ12 otherwise unconstrained. So if we take them to be type variables α3, α4, α5

respectively, all in all, we can satisfy all the constraints on Slide 22 by defining

A = {α1, α2}
τ1 = α3→ (α4→ (α5→ α4))

τ2 = α1→ (α2→ α1)

τ3 = α1

τ4 = α2→ α1

τ5 = α2

τ6 = α1

τ7 = (α4→ (α5→ α4))→ (α3→ (α4→ (α5→ α4)))

τ8 = α4→ (α5→ α4).

With these choices, Figure 1 becomes a valid proof of

{ } ⊢ let f = λx1(λx2(x1)) in f f : α3→ (α4→ (α5→ α4))

from the typing axioms and rules on Slides 16–19, i.e. we do have

(4) ⊢ let f = λx1(λx2(x1)) in f f : ∀α3, α4, α5 (α3→ (α4→ (α5→ α4)))

If we go through the same type inference process for the expression M ′ on Slide 21 we

generate a tree and set of constraints as in Figure 2. These imply in particular that

τ7
(C13)
= τ4

(C12)
= τ6

(C11)
= τ7→ τ5.

But there are no types τ5, τ7 satisfying τ7 = τ7→ τ5, because τ7→ τ5 contains at least one

more ‘→’ symbol than does τ7. So we conclude that (λf(f f)) λx1(λx2(x1)) is not typeable

within the ML type system.
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f : τ4 ⊢ f : τ6
(C12)

f : τ4 ⊢ f : τ7
(C13)

f : τ4 ⊢ f f : τ5
(C11)

{ } ⊢ λf(f f) : τ2
(C10)

x1 : τ8, x2 : τ10 ⊢ x1 : τ11
(C16)

x1 : τ8 ⊢ λx2(x1) : τ9
(C15)

{ } ⊢: λx1(λx2(x1)) : τ3
(C14)

{ } ⊢ (λf(f f)) λx1(λx2(x1)) : τ1
(C9)

Constraints:

τ2 = τ3→ τ1(C9)

τ2 = τ4→ τ5(C10)

τ6 = τ7→ τ5(C11)

∀ { } (τ4) ≻ τ6, i.e. τ4 = τ6(C12)

∀ { } (τ4) ≻ τ7, i.e. τ4 = τ7(C13)

τ3 = τ8→ τ9(C14)

τ9 = τ10→ τ11(C15)

∀ { } (τ11) ≻ τ8, i.e. τ11 = τ8(C16)

Figure 2: Skeleton proof tree and constraints for (λf(f f)) λx1(λx2(x1))
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2.3 Principal type schemes

The type scheme ∀α3, α4, α5 (α3 → (α4 → (α5→ α4))) not only satisfies (4), it is in fact

the most general, or principal type scheme for let f = λx1(λx2(x1)) in f f , as defined

on Slide 23. It is worth pointing out that in the presence of (a), the converse of condition

(b) on Slide 23 holds: if ⊢ M : ∀A (τ) and ∀A (τ) ≻ τ ′, then ⊢ M : ∀A′ (τ ′) (where

A′ = ftv(τ ′)). This is a consequence of the substitution property of valid Mini-ML typing

judgements given in Exercise 6.

Slide 24 gives the main result about the Mini-ML typeability problem. It was first

proved for a simple type system without polymorphic let-expressions by Hindley (1969)

and extended to the full system by Damas and Milner (1982).

Principal type schemes for closed expressions

A closed type scheme ∀A (τ) is the principal type scheme of a closed

Mini-ML expression M if

(a) ⊢M : ∀A (τ)

(b) for any other closed type scheme ∀A′ (τ ′),
if ⊢M : ∀A′ (τ ′), then ∀A (τ) ≻ τ ′

Slide 23

Remark 2.3.1 (Complexity of the type checking algorithm). Although typeability is decid-

able, it is known to be exponential-time complete. Furthermore, the principal type scheme of

an expression can be exponentially larger than the expression itself, even if the type involved

is represented efficiently as a directed acyclic graph. More precisely, the time taken to de-

cide typeability and the space needed to display the principal type are both exponential in

the number of nested let’s in the expression. For example the expression on Slide 25 (taken

from Mairson 1990) has a principal type scheme which would take hundreds of pages to print

out. It seems that such pathology does not arise naturally, and that the type checking phase

of an ML compiler is not a bottle neck in practice. For more details about the complexity of

ML type inference see (Mitchell 1996, Section 11.3.5).
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Theorem (Hindley; Damas-Milner)

If the closed Mini-ML expression M is typeable (i.e. ⊢M : σ holds for

some type scheme σ), then there is a principal type scheme for M .

Indeed, there is an algorithm which, given any M as input, decides

whether or not it is typeable and returns a principal type scheme if it is.

Slide 24

An ML expression with a principal type scheme

hundreds of pages long

let pair = λx(λy(λz(z x y))) in

let x1 = λy(pair y y) in

let x2 = λy(x1(x1 y)) in

let x3 = λy(x2(x2 y)) in

let x4 = λy(x3(x3 y)) in

let x5 = λy(x4(x4 y)) in

x5(λy(y))

(Taken from Mairson 1990.)

Slide 25
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2.4 A type inference algorithm

The aim of this subsection is to sketch the proof of the Hindley-Damas-Milner theorem stated

on Slide 24, by describing an algorithm, pt , for deciding typeability and returning a most

general type scheme. pt is defined recursively, following structure of expressions (and its

termination is proved by induction on the structure of expressions). As the examples in

Section 2.2 should suggest, the algorithm depends crucially upon unification—the fact that

the solvability of a finite set of equations between algebraic terms is decidable and that a

most general solution exists, if any does. This fact was discovered by Robinson (1965)

and has been a key ingredient in several logic-related areas of computer science (automated

theorem proving, logic programming, and of course type systems, to name three). The form of

unification algorithm, mgu , we need here is specified on Slide 26. Although we won’t bother

to give an implementation of mgu here (see for example (Rydeheard and Burstall 1988,

Chapter 8), (Mitchell 1996, Section 11.2.2), or (Aho, Sethi, and Ullman 1986, Section 6.7)

for more details), we do need to explain the notation for type substitutions introduced on

Slide 26.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types τ1 and

τ2 decides whether τ1 and τ2 are unifiable, i.e. whether there exists a

type-substitution S ∈ Sub with

(a) S(τ1) = S(τ2).

Moreover, if they are unifiable, mgu(τ1, τ2) returns the most general

unifier—an S satisfying both (a) and

(b) for all S′ ∈ Sub, if S′(τ1) = S′(τ2), then S′ = TS for some

T ∈ Sub.

By convention mgu(τ1, τ2) = FAIL if (and only if) τ1 and τ2 are not unifiable.

Slide 26

Definition 2.4.1 (Type substitutions). A type substitution S is a (totally defined) function

from type variables to Mini-ML types with the property that S(α) = α for all but finitely

many α. We write Sub for the set of all such functions. The domain of S ∈ Sub is the finite

set of variables

dom(S)
def
= {α ∈ TyVar | S(α) 6= α}

Given a type substitution S, the effect of applying the substitution to a type is written
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S τ ; thus if dom(S) = {α1, . . . , αn} and S(αi) is the type τi for each i = 1..n, then S(τ) is

the type resulting from simultaneously replacing each occurrence of αi in τ with τi (for all

i = 1..n), i.e.

S τ = τ [τ1/α1, . . . , τn/αn]

using the notation for substitution from Slide 13. Notwithstanding the notation on the right

hand side of the above equation, we prefer to write the application of a type substitution

functionS on the left of the type to which it is being applied.1 As a result, the compositionTS
of two type substitutions S, T ∈ Sub means first apply S and then T . Thus by definition TS
is the function mapping each type variable α to the type T (S(α)) (apply the type substitution

T to the type S(α)). Note that the function TS does satisfy the finiteness condition required

of a substitution and we do have TS ∈ Sub; indeed, dom(TS) ⊆ dom(T ) ∪ dom(S).

More generally, if dom(S) = {α1, . . . , αn} and σ is a Mini-ML type scheme, then S σ
will denote the result of the (capture-avoiding2) substitution of S(αi) for each free occurrence

of αi in σ (for i = 1..n).

Even though we are ultimately interested in the typeability of closed expressions, since

the algorithm pt descends recursively through the subexpressions of the input expression,

inevitably it has to generate typings for expressions with free variables. Hence we have

to define the notions of typeability and principal type scheme for open expressions in the

presence of a non-empty typing environment. This is done on Slide 27. For the definitions

on that slide to be reasonable, we need some properties of the typing relation with respect

to type substitutions and specialisation. These are stated on Slide 28; we leave the proofs

as exercises (see Exercise 6). To compute principal type schemes it suffices to compute

‘principal solutions’ in the sense of Slide 27: for if M is in fact closed, then any principal

solution (S, σ) for the typing problem { } ⊢M : ? has the property that σ is a principal type

scheme for M in the sense of Slide 23 (see Exercise 5).

1i.e. we write S τ rather than τ S as in the Part IB Logic and Proof course.
2Since we identify type schemes up to renaming their ∀-bound type variables, we always assume

the bound type variables in σ are different from any type variables in the types S(αi).
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Principal type schemes for open expressions

A solution for the typing problem Γ ⊢M : ? is a pair (S, σ) consisting

of a type substitution S and a type scheme σ satisfying

S Γ ⊢M : σ

(where S Γ = {x1 : S σ1, . . . , xn : S σn}, if Γ = {x1 : σ1, . . . , xn : σn}).
Such a solution is principal if given any other, (S′, σ′), there is some

T ∈ Sub with TS = S′ and T (σ) ≻ σ′.

[For type schemes σ and σ′, with σ′ = ∀A′ (τ ′) say, we define

σ ≻ σ′ to mean A′ ∩ ftv (σ) = {} and σ ≻ τ ′.]

Slide 27

Properties of the Mini-ML typing relation

• If Γ ⊢M : σ, then for any type substitution S ∈ Sub
SΓ ⊢M : Sσ.

• If Γ ⊢M : σ and σ ≻ σ′, then Γ ⊢M : σ′.

Slide 28
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Specification for the principal typing algorithm, pt

pt operates on typing problems Γ ⊢M : ? (consisting of a typing

environment Γ and a Mini-ML expression M ). It returns either a pair

(S, τ) consisting of a type substitution S ∈ Sub and a Mini-ML type τ ,

or the exception FAIL.

• If Γ ⊢M : ? has a solution (cf. Slide 27), then pt(Γ ⊢M : ?)
returns (S, τ) for some S and τ ;

moreover, setting A = (ftv (τ)− ftv(S Γ)), then (S,∀A (τ)) is a

principal solution for the problem Γ ⊢M : ?.

• If Γ ⊢M : ? has no solution, then pt(Γ ⊢M : ?) returns FAIL.

Slide 29

Slide 29 sets out in more detail what is required of the principal typing algorithm, pt .

One possible algorithm in somewhat informal pseudocode (and leaving out the cases for nil,

cons, and case-expressions) is sketched on Slide 30 and in Figure 3.1 Note the following

points about the definitions on Slide 30 and in Figure 3:

(i) We implicitly assume that all bound variables in expressions and bound type variables

in type schemes are distinct from each other and from any other variables in context.

So, for example, the clause for function abstractions tacitly assumes that x /∈ dom(Γ);
and the clause for variables assumes that A ∩ ftv(Γ) = { }.

(ii) The type substitution Id occurring in the clauses for variables and booleans is the

identity substitution which maps each type variable α to itself.

(iii) We have not given the clauses of the definition for nil, cons, and case-expressions

(Exercise 4).

(iv) We do not give the proof that the definition in Figure 3 is correct (i.e. meets

the specification on Slide 29). The correctness of the algorithm depends upon an

1An implementation in Fresh O’Caml (www.cl.cam.ac.uk/users/amp12/fresh-ocaml/) can

be found on the course web page. The Fresh O’Caml code is remarkably close to the informal

pseudocode given here, because of Fresh O’Caml’s facilities for dealing with binding operations and

fresh names.



28 2 ML POLYMORPHISM

important property of Mini-ML typing, namely that it is respected by the operation of

substituting types for type variables: see Exercise 6.

Some of the clauses in a definition of pt

Function abstractions: pt(Γ ⊢ λx(M) : ?)
def
=

let α = fresh in

let (S, τ) = pt(Γ, x : α ⊢M : ?) in (S, S(α)→ τ)

Function applications: pt(Γ ⊢M1 M2 : ?)
def
=

let (S1, τ1) = pt(Γ ⊢M1 : ?) in

let (S2, τ2) = pt(S1 Γ ⊢M2 : ?) in

let α = fresh in

let S3 = mgu(S2 τ1, τ2→ α) in (S3S2S1, S3(α))

Slide 30

More efficient algorithms make use of a different approach to substitution and unifi-

cation, based on equivalence relations on directed acylic graphs and union-find algorithms:

see (Rémy 2002, Sect. 2.4.2), for example. In that reference, and also in Pierce’s book (Pierce

2002, Section 22.3), you will see an approach to type inference algorithms that views them as

part of the more general problem of generating and solving constraint problems. This seems

to be a fruitful viewpoint, because it accommodates a wide range of different type inference

problems.
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• Variables: pt(Γ ⊢ x : ?)
def
= let ∀A (τ) = Γ(x) in (Id , τ)

• let-Expressions: pt(Γ ⊢ let x = M1 inM2 : ?)
def
=

let (S1, τ1) = pt(Γ ⊢M1 : ?) in
let A = ftv(τ1)− ftv(S1 Γ) in
let (S2, τ2) = pt(S1Γ, x : ∀A (τ1) ⊢M2 : ?) in (S2S1, τ2)

• Booleans (B = true, false): pt(Γ ⊢ B : ?)
def
= (Id , bool)

• Conditionals: pt(Γ ⊢ ifM1 thenM2 elseM3 : ?)
def
=

let (S1, τ1) = pt(Γ ⊢M1 : ?) in
let S2 = mgu(τ1, bool) in
let (S3, τ3) = pt(S2S1 Γ ⊢M2 : ?) in
let (S4, τ4) = pt(S3S2S1 Γ ⊢M3 : ?) in
let S5 = mgu(S4 τ3, τ4) in (S5S4S3S2S1, S5 τ4)

Figure 3: Some of the clauses in a definition of pt
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3 Polymorphic Reference Types

3.1 The problem

Recall from the Introduction that an important purpose of type systems is to provide safety

(Slide 3) via type soundness results (Slide 4). Even if a programming language is intended

to be safe by virtue of its type system, it can happen that separate features of the language,

each desirable in themselves, can combine in unexpected ways to produce an unsound type

system. In this section we look at an example of this which occurred in the development of

the ML family of languages. The two features which combine in a nasty way are:

• ML’s style of implicitly typed let-bound polymorphism, and

• reference types.

We have already treated the first topic in Section 2. The second concerns ML’s imperative

features, which are based upon the ability to dynamically create locally scoped storage

locations which can be written to and read from. We begin by giving the syntax and typing

rules for this. We augment the grammar for Mini-ML types (Slide 12) with a unit type (a

type with a single value) and reference types; and correspondingly, we augment the grammar

for Mini-ML expressions (Slide 15) with a unit value, and operations for reference creation,

dereferencing and assignment. These additions are shown on Slide 31. We call the resulting

language Midi-ML. The typing rules for these new forms of expression are given on Slide 32.

ML types and expressions for mutable references

τ ::= . . .

| unit unit type

| τ ref reference type.

M ::= . . .

| () unit value

| refM reference creation

| !M dereference

| M :=M assignment

Slide 31
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Midi-ML’s extra typing rules

Γ ⊢ () : unit(unit)

Γ ⊢M : τ

Γ ⊢ refM : τ ref
(ref)

Γ ⊢M : τ ref

Γ ⊢ !M : τ
(get)

Γ ⊢M1 : τ ref Γ ⊢M2 : τ

Γ ⊢M1 :=M2 : unit
(set)

Slide 32

Example 3.1.1

The expression

let r = ref λx(x) in

let u = (r := λx′(ref !x′)) in

(!r)()

has type unit .

Slide 33
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Example 3.1.1. Here is an example of the typing rules on Slide 32 in use. The expression

given on Slide 33 has type unit .

Proof. This can be deduced by applying the (let) rule (Slide 19) to the judgements

{ } ⊢ ref λx(x) : (α→ α) ref

r : ∀α ((α→ α) ref ) ⊢ let u = (r := λx′(ref !x′)) in (!r)() : unit .

The first of these judgements has the following proof:

x : α ⊢ x : α
(var ≻)

{ } ⊢ λx(x) : α→ α
(fn)

{ } ⊢ ref λx(x) : (α→ α) ref
(ref)

The second judgement can be proved by applying the (let) rule to

r : ∀α ((α→ α) ref ) ⊢ r := λx′(ref !x′) : unit(5)

r : ∀α ((α→ α) ref ), u : unit ⊢ (!r)() : unit(6)

Writing Γ for the typing environment {r : ∀α ((α→ α) ref )}, the proof of (5) is

Γ ⊢ r : (α ref → α ref ) ref
(var ≻)

Γ, x′ : α ref ⊢ x′ : α ref
(var ≻)

Γ, x′ : α ref ⊢ !x′ : α
(get)

Γ, x′ : α ref ⊢ ref !x′ : α ref
(ref)

Γ ⊢ λx′(ref !x′) : α ref → α ref
(fn)

Γ ⊢ r := λx′(ref !x′) : unit
(set)

while the proof of (6) is

Γ, u : unit ⊢ r : (unit → unit) ref
(var ≻)

Γ, u : unit ⊢ !r : unit → unit
(get)

Γ, u : unit ⊢ () : unit
(unit)

Γ, u : unit ⊢ (!r)() : unit
(app)

Although the typing rules for references seem fairly innocuous, they combine with the

previous typing rules, and with the (let) rule in particular, to produce a type system for which

type soundness fails with respect to ML’s operational semantics. For consider what happens

when the expression on Slide 33, call it M , is evaluated.

Evaluation of the outermost let-binding in M creates a fresh storage location bound

to r and containing the value λx(x). Evaluation of the second let-binding updates the
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contents of r to the value λx′(ref !x′) and binds the unit value to u. (Since the variable u
does not occur in its body, M ’s innermost let-expression is just a way of expressing the

sequence (r := λx′(ref !x′)); (!r)() in the fragment of ML that we are using for illustrative

purposes.) Next (!r)() is evaluated. This involves applying the current contents of r, which is

λx′(ref !x′), to the unit value (). This results in an attempt to evaluate !(), i.e. to dereference

something which is not a storage location, an unsafe operation which should be trapped. Put

more formally, we have

〈M, { }〉 → FAIL

in the transition system defined in Figure 4 and Slide 34 (using the rather terse ‘evaluation

contexts’ style of Wright and Felleisen (1994)). The configurations of the transition system

are of two kinds:

• A pair 〈M, s〉, where M is an ML expression and s is a state—a finite function

mapping variables, x, (here being used as the names of storage locations) to syntactic

values, V . (The possible forms of V for this fragment of ML are defined in

Figure 4.) Furthermore, we require a well-formedness condition for such a pair to

be a configuration: the free variables of M and of each value s(x) (as x ranges over

dom(s)) should be contained in the finite set dom(s).

• The symbol FAIL, representing a run-time error.

(The notation s[x 7→ V ] used on Slide 34 means the state with domain of definition

dom(s) ∪ {x} mapping x to V and otherwise acting like s.)

Midi-ML transitions involving references

〈!x, s〉 → 〈s(x), s〉 if x ∈ dom(s)

〈!V, s〉 → FAIL if V not a variable

〈x := V ′, s〉 → 〈(), s[x 7→ V ′]〉

〈V := V ′, s〉 → FAIL if V not a variable

〈refV, s〉 → 〈x, s[x 7→ V ]〉 if x /∈ dom(s)

where V ranges over values:

V ::= x | λx(M) | () | true | false | nil | V :: V

Slide 34
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The axioms and rules inductively defining the transition system for Midi-ML are those on
Slide 34 together with the following ones:

• 〈if true thenM1 elseM2, s〉 → 〈M1, s〉
• 〈if false thenM1 elseM2, s〉 → 〈M2, s〉
• 〈ifV thenM1 elseM2, s〉 → FAIL, if V /∈ {true, false}
• 〈(λx(M))V ′, s〉 → 〈M [V ′/x], s〉
• 〈V V ′, s〉 → FAIL, if V not a function abstraction

• 〈letx = V inM, s〉 → 〈M [V/x], s〉
• 〈case nil of nil=>M |x1 :: x2 =>M ′, s〉 → 〈M, s〉
• 〈caseV1 :: V2 of nil=>M |x1 :: x2 =>M ′, s〉 → 〈M ′[V1/x1, V2/x2], s〉
• 〈caseV of nil=>M |x1 :: x2 =>M ′, s〉 → FAIL, if V is neither nil nor a cons-

value

•
〈M, s〉 → 〈M ′, s′〉

〈E [M ], s〉 → 〈E [M ′], s′〉

•
〈M, s〉 → FAIL

〈E [M ], s〉 → FAIL

where V ranges over values:

V ::= x | λx(M) | () | true | false | nil | V :: V

E ranges over evaluation contexts:

E ::= − | if E thenM elseM | EM | V E | let x = E inM | E ::M | V :: E
| case E of nil=>M |x :: x=>M | ref E | !E | E :=M | V := E

and E [M ] denotes the Midi-ML expression that results from replacing all occurrences of
‘−’ by M in E .

Figure 4: Transition system for Midi-ML
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3.2 Restoring type soundness

The root of the problem described in the previous section lies in the fact that typing

expressions like let r = refM1 inM2 with the (let) rule allows the storage location (bound

to) r to have a type scheme σ generalising the reference type of the type of M1. Occurrences

of r in M2 refer to the same, shared location and evaluation of M2 may cause assignments to

this shared location which restrict the possible type of subsequent occurrences of r. But the

typing rule allows all these occurrences of r to have any type which is a specialisation of σ,

and this can lead to unsafe expressions being assigned types, as we have seen.

We can avoid this problem by devising a type system that prevents generalisation of type

variables occurring in the types of shared storage locations. A number of ways of doing this

have been proposed in the literature: see (Wright 1995) for a survey of them. The one adopted

in the original, 1990, definition of Standard ML (Milner, Tofte, and Harper 1990) was that

proposed by Tofte (1990). It involves partitioning the set of type variables into two (countably

infinite) halves, the ‘applicative type variables’ (ranged over by α) and the ‘imperative type

variables’ (ranged over by α). The rule (ref) is restricted by insisting that τ only involve

imperative type variables; in other words the principal type scheme of λx(refx) becomes

∀ α ( α→ α ref ), rather than ∀α (α→ α ref ). Furthermore, and crucially, the (let) rule

(Slide 19) is restricted by requiring that when the type scheme σ = ∀A (τ) assigned to M1

is such that A contains imperative type variables, then M1 must be a value (and hence in

particular its evaluation does not create any fresh storage locations).

This solution has the advantage that in the new system the typeability of expressions not

involving references is just the same as in the old system. However, it has the disadvantage

that the type system makes distinctions between expressions which are behaviourly equivalent

(i.e. which should be contextually equivalent). For example there are many list-processing

functions that can be defined in the pure functional fragment of ML by recursive definitions,

but which have more efficient definitions using local references. Unfortunately, if the type

scheme of the former is something like ∀α (α list → α list), the type scheme of the latter

may well be the different type scheme ∀ α ( α list → α list). So we will not be able to use

the two versions of such a function interchangeably.

The authors of the revised, 1996, definition of Standard ML (Milner, Tofte, Harper, and

MacQueen 1997) adopt a simpler solution, proposed independently by Wright (1995). This

removes the distinction between applicative and imperative type variables (in effect, all type

variables are imperative, but the usual symbols α, α′ . . . are used) while retaining a value-

restricted form of the (let) rule, as shown on Slide 35.1 Thus our version of this type system

is based upon exactly the same form of type, type scheme and typing judgement as before,

with the typing relation being generated inductively by the axioms and rules on Slides 16–19

and 32, except that the applicability of the (let) rule is restricted as on Slide 35.

1N.B. what we call a value, (Milner, Tofte, Harper, and MacQueen 1997) calls a non-expansive

expression.
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Value-restricted typing rule for let-expressions

Γ ⊢M1 : τ1

Γ, x : ∀A (τ1) ⊢M2 : τ2

Γ ⊢ let x = M1 inM2 : τ2
(†)(letv)

(†) provided x /∈ dom(Γ) and

A =

{

{ } if M1 is not a value

ftv(τ1)− ftv(Γ) if M1 is a value

(Recall that values are given by

V ::= x | λx(M) | () | true | false | nil | V :: V .)

Slide 35

Example 3.2.1. The expression on Slide 33 is not typeable in the type system for Midi-ML

resulting from replacing rule (let) by the value-restricted rule (letv) on Slide 35 (keeping all

the other axioms and rules the same).

Proof. Because of the form of the expression, the last rule used in any proof of its typeability

must end with (letv). Because of the side condition on that rule and since ref λx(x) is not

a value, the rule has to be applied with A = { }. This entails trying to type

(7) let u = (r := λx′(ref !x′)) in (!r)()

in the typing environment Γ = {r : (α→ α) ref }. But this is impossible, because the type

variable α is not universally quantified in this environment, whereas the two instances of r in

(7) are of different implicit types (namely (α ref → α ref ) ref and (unit → unit) ref ).

The above example is all very well, but how do we know that we have achieved safety

with this type system for Midi-ML? The answer lies in a formal proof of the type soundness

property stated on Slide 36. To prove this result, one first has to formulate a definition of

typing for general configurations 〈M, s〉 when the state s is non-empty and then show

• typing is preserved under steps of transition,→;

• if a configuration can be typed, it cannot posses a transition to FAIL.
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Thus a sequence of transitions from such a well-typed configuration can never lead to the

FAIL configuration. We do not have the time to give the details in this course: the interested

reader is referred to (Wright and Felleisen 1994; Harper 1994) for examples of similar type

soundness results.

Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M , if there is some type scheme σ
for which

⊢M : σ

is provable in the value-restricted type system (axioms and rules on

Slides 16–18, 32 and 35), then evaluation of M does not fail , i.e. there is

no sequence of transitions of the form

〈M, { }〉 → · · · → FAIL

for the transition system→ defined in Figure 4

(where { } denotes the empty state).

Slide 36

Although the typing rule (letv) does allow one to achieve type soundness for polymorphic

references in a pleasingly straightforward way, it does mean that some expressions not

involving references that are typeable in the original ML type system are no longer typeable

(Exercise 8.) Wright (1995, Sections 3.2 and 3.3) analyses the consequences of this and

presents evidence that it is not a hindrance to the use of Standard ML in practice.



4 Polymorphic Lambda Calculus

In this section we take a look at a type system for explicitly typed parametric polymorphism,

variously called the polymorphic lambda calculus, the second order typed lambda calculus,

or system F. It was invented by the logician Girard (1972) and, independently and for different

purposes, by the computer scientist Reynolds (1974). It has turned out to play a foundational

role in the development of type systems somewhat similar to that played by Church’s untyped

lambda calculus in the development of functional programming. Although it is syntactically

very simple, it turns out that a wide range of types and type constructions can be represented

in the polymorphic lambda calculus.

4.1 From type schemes to polymorphic types

We have seen examples (Example 2.1.2 and the first example on Slide 21) of the fact that the

ML type system permits let-bound variables to be used polymorphically within the body of

a let-expression. As Slide 37 points out, the same is not true of λ-bound variables within

the body of a function abstraction. This is a consequence of the fact that ML types and type

schemes are separate syntactic categories and the function type constructor,→, operates on

the former, but not on the latter. Recall that an important purpose of type systems is to provide

safety (Slide 3) via type soundness (Slide 4). Use of expressions such as those mentioned on

Slide 37 does not seem intrinsically unsafe (although use of the second one may cause non-

termination—cf. the definition of the fixed point combinator in untyped lambda calculus). So

it is not unreasonable to seek type systems more powerful than the ML type system, in the

sense that more expressions become typeable.

One apparently attractive way of achieving this is just to merge types and type schemes

together: this results in the so-called polymorphic types shown on Slide 38. So let us consider

extending the ML type system to assign polymorphic types to expressions. So we consider

judgements of the form Γ ⊢M : π where:

• π is a polymorphic type;

• Γ is a finite function from variables to polymorphic types.

In order to make full use of the mixing of → and ∀ present in polymorphic types we

have to replace the axiom (var ≻) of Slide 16 by the axiom and two rules shown on Slide 39.

(These are in fact versions for polymorphic types of ‘admissible rules’ in the original ML type

system.) In rule (spec), π[π′/α] indicates the polymorphic type resulting from substituting

π′ for all free occurrences of α in π.

39
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λ-bound variables in ML cannot be used

polymorphically within a function abstraction

E.g. λf((f true) :: (f nil)) and λf(f f) are not typeable in the ML type

system.

Syntactically, because in rule

(fn)
Γ, x : τ1 ⊢M : τ2

Γ ⊢ λx(M) : τ1→ τ2

the abstracted variable has to be assigned a trivial type scheme (recall

x : τ1 stands for x : ∀ { } (τ1)).
Semantically, because ∀A (τ1)→ τ2 is not semantically equivalent to

an ML type when A 6= { }.

Slide 37

Monomorphic types . . .

τ ::= α | bool | τ → τ | τ list

. . . and type schemes

σ ::= τ | ∀α (σ)

Polymorphic types

π ::= α | bool | π→ π | π list | ∀α (π)

E.g. α→ α′ is a type, ∀α (α→ α′) is a type scheme and a polymorphic type

(but not a monomorphic type), ∀α (α)→ α′ is a polymorphic type, but not a

type scheme.

Slide 38
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Identity, Generalisation and Specialisation

Γ ⊢ x : π if (x : π) ∈ Γ(id)

Γ ⊢M : π

Γ ⊢M : ∀α (π)
if α /∈ ftv(Γ)(gen)

Γ ⊢M : ∀α (π)

Γ ⊢M : π[π′/α]
(spec)

Slide 39

Example 4.1.1. In the modified ML type system (with polymorphic types and (var ≻)

replaced by (id), (gen), and (spec)) one can prove the following typings for expressions

which are untypeable in ML:

{ } ⊢ λf((f true) :: (f nil)) : ∀α (α→ α)→ bool list(8)

{ } ⊢ λf(f f) : ∀α (α)→∀α (α).(9)

Proof. The proof of (8) is rather easy to find and is left as an exercise. Here is a proof for

(9):

f : ∀α1 (α1) ⊢ f : ∀α1 (α1)
(id)

f : ∀α1 (α1) ⊢ f : α2→ α2

(1)
f : ∀α1 (α1) ⊢ f : ∀α1 (α1)

(id)

f : ∀α1 (α1) ⊢ f : α2

(2)

f : ∀α1 (α1) ⊢ f f : α2

(app)

f : ∀α1 (α1) ⊢ f f : ∀α2 (α2)
(gen)

{ } ⊢ λf(f f) : ∀α1 (α1)→∀α2 (α2)
(fn).

Nodes (1) and (2) are both instances of the (spec) rule: the first uses the substitution

(α2→ α2)/α1, whilst the second uses α2/α1.
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Fact (see Wells 1994):

For the modified ML type system with polymorphic types and (var ≻)

replaced by the axiom and rules on Slide 39, the type checking and

typeability problems (cf. Slide 7) are equivalent and undecidable.

Slide 40

So why does the ML programming language not use this extended type system with

polymorphic types? The answer lies in the result stated on Slide 40: there is no algorithm

to decide typeability for this type system (Wells 1994). The difficulty with automatic type

inference for this type system lies in the fact that the generalisation and specialisation rules

are not syntax-directed: since an application of either (gen) or (spec) does not change the

expression M being checked, it is hard to know when to try to apply them in the bottom-up

construction of proof inference trees. By contrast, in an ML type system based on (id), (gen)

and (spec), but retaining the two-level stratification of types into monomorphic types and

type schemes, this difficulty can be overcome. For in that case one can in fact push uses of

(spec) right up to the leaves of a proof tree (where they merge with (id) axioms to become

(var ≻) axioms) and push uses of (gen) right down to the root of the tree (and leave them

implicit, as we did on Slide 19).

4.2 The PLC type system

The negative result on Slide 40 does not rule out the use of the polymorphic types of Slide 38

in programming languages, since one may consider explicitly typed languages (Slide 41)

where the tagging of expressions with type information renders the typeability problem

essentially trivial. We consider such a language in this subsection, the polymorphic lambda

calculus (PLC).
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Explicitly versus implicitly typed languages

Implicit : little or no type information is included in program phrases and

typings have to be inferred (ideally, entirely at compile-time). (E.g.

Standard ML.)

Explicit : most, if not all, types for phrases are explicitly part of the syntax.

(E.g. Java.)

E.g. self application function of type ∀α (α)→∀α (α)
(cf. Example 4.1.1)

Implicitly typed version: λ f (f f)

Explicitly type version: λ f : ∀α1 (α1) (Λα2 (f(α2→ α2)(f α2)))

Slide 41

Remark 4.2.1 (Explicitly typed languages). One often hears the view that programming

languages which enforce a large amount of explicit type information in programs are

inconveniently verbose and/or force the programmer to make algorithmically irrelevant

decisions about typings. But of course it really depends upon the intended applications.

At one extreme, in a scripting language (interpreted interactively, used by a single person to

develop utilities in a rapid edit-run-debug cycle) implicit typing may be desirable. Whereas at

the opposite extreme, a language used to develop large software systems (involving separate

compilation of modules by different teams of programmers) may benefit greatly from explicit

typing (not least as a form of documentation of programmer’s intentions, but also of course

to enforce interfaces between separate program parts). Apart from these issues, explicitly

typed languages are useful as intermediate languages in optimising compilers, since certain

optimising transformations depend upon the type information they contain. See (Harper and

Stone 1997), for example.
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PLC syntax

Types τ ::= α type variable

| τ → τ function type

| ∀α (τ) ∀-type

Expressions

M ::= x variable

| λx : τ (M) function abstraction

| M M function application

| Λα (M) type generalisation

| M τ type specialisation

(α and x range over fixed, countably infinite sets TyVar and Var respectively.)

Slide 42

Functions on types

In PLC, Λα (M) is an anonymous notation for the function F

mapping each type τ to the value of M [τ/α] (of some particular type).

F τ denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on types

(Λα (M)) τ →M [τ/α]

as well as the usual form of beta-reduction from λ-calculus

(λx : τ (M1))M2 →M1[M2/x]

Slide 43
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The explicit type information we need to add to expressions to get syntax-directed

versions of the (gen) and (spec) rules (Slide 39) concerns the operations of type gener-

alisation and type specialisation. These are forms of function abstraction and application

respectively—for functions defined on the collection of all types (and taking values in one par-

ticular type), rather than on the values of one particular type. See Slide 43. The polymorphic

lambda calculus, PLC, provides rather sparse means for defining such functions—for exam-

ple there is no ‘typecase’ construct that allows branching according to which type expression

is input. As a result, PLC is really a calculus of parametrically polymorphic functions (cf.

Slide 8). The PLC syntax is given on Slide 42. Its types, τ , are like the polymorphic types,

π, given on Slide 38, except that we have omitted bool and ( ) list—because in fact these and

many other forms of datatype are representable in PLC (see Section 4.4 below). We have also

omitted let-expressions, because (unlike the ML type system presented in Section 2.1) they

are definable from function abstraction and application with the correct typing properties: see

Exercise 11.

Remark 4.2.2 (Operator association and scoping). As in the ordinary lambda calculus, one

often writes a series of PLC applications without parentheses, using the convention that

application associates to the left. ThusM1 M2 M3 means (M1 M2)M3, and M1 M2 τ3 means

(M1 M2)τ3. Note that an expression like M1 τ2 M3 can only associate as (M1 τ2)M3, since

association the other way involves an ill-formed expression (τ2M3). Similarly M1 τ2 τ3 can

only be associated as (M1 τ2)τ3 (since τ1 τ2 is an ill-formed type). On the other hand it is

conventional to associate a series of function types to the right. Thus τ1→ τ2→ τ3 means

τ1→ (τ2→ τ3).
We delimit the scope of ∀-, λ-, and Λ-binders with parentheses. Another common way

of writing these binders employs ‘dot’ notation

∀α .τ λx : τ .M Λα .M

with the convention that the scope extends as far to the right as possible. For example

∀α1 . (∀α2 . τ → α1)→ α1 means ∀α1 (∀α2 (τ → α1)→ α1). One often writes iterated

binders using lists of bound (type) variables:

∀α1, α2 (τ)
def
= ∀α1 (∀α2 (τ))

λx1 : τ1, x2 : τ2 (M)
def
= λx1 : τ1 (λx2 : τ2 (M))

Λα1, α2 (M)
def
= Λα1 (Λα2 (M)) .

It is also common to write a type specialisation by subscripting the type: Mτ
def
= M τ .

Remark 4.2.3 (Free and bound (type) variables). Any occurrences in τ of a type variable α
become bound in ∀α (τ). Thus by definition, the finite set, ftv(τ), of free type variables of a

type τ , is given by

ftv(α)
def
= {α}

ftv(τ1→ τ2)
def
= ftv(τ1) ∪ ftv(τ2)

ftv(∀α (τ))
def
= ftv(τ)− {α}.
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Any occurrences in M of a variable x become bound in λx : τ (M). Thus by definition, the

finite set, fv(M), of free variables of an expression M , is given by

fv(x)
def
= {x}

fv(λx : τ (M))
def
= fv(M)− {x}

fv(M1M2)
def
= fv(M1) ∪ fv(M2)

fv(Λα (M))
def
= fv(M)

fv(M τ)
def
= fv(M).

Moreover, since types occur in expressions, we have to consider the free type variables

of an expression. The only type variable binding construct at the level of expressions is

generalisation: any occurrences in M of a type variable α become bound in Λα (M). Thus

ftv(x)
def
= { }

ftv(λx : τ (M))
def
= ftv(τ) ∪ ftv(M)

ftv(M1 M2)
def
= ftv(M1) ∪ ftv(M2)

ftv(Λα (M))
def
= ftv(M)− {α}

ftv(M τ)
def
= ftv(M) ∪ ftv(τ).

As usual, we implicitly identify PLC types and expressions up to alpha-conversion of bound

type variables and bound variables. For example

(λx : α (Λα (xα))) x and (λx′ : α (Λα′ (x′ α′))) x

are alpha-convertible. We will always choose names of bound variables as in the second

expression rather than the first, i.e. distinct from any free variables (and from each other).

Remark 4.2.4 (Substitution). For PLC, there are three forms of (capture-avoiding) substitu-

tion, well-defined up to alpha-conversion:

• τ [τ ′/α] denotes the type resulting from substituting a type τ ′ for all free occurrences of the

type variable α in a type τ .

• M [M ′/x] denotes the expression resulting from substituting an expression M ′ for all free

occurrences of the variable x in the expression M .

• M [τ/α] denotes the expression resulting from substituting a type τ for all free occurrences

of the type variable α in an expression M .

The PLC type system uses typing judgements of the form shown on Slide 44. Its typing

relation is the collection of such judgements inductively defined by the axiom and rules on

Slide 45.
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PLC typing judgement

takes the form Γ ⊢M : τ where

• the typing environment Γ is a finite function from variables to PLC

types.

(We write Γ = {x1 : τ1, . . . , xn : τn} to indicate that Γ has

domain of definition dom(Γ) = {x1, . . . , xn} and maps each xi
to the PLC type τi for i = 1..n.)

• M is a PLC expression

• τ is a PLC type.

Slide 44

PLC type system

Γ ⊢ x : τ if (x : τ) ∈ Γ(var)

Γ, x : τ1 ⊢M : τ2

Γ ⊢ λx : τ1 (M) : τ1→ τ2
if x /∈ dom(Γ)(fn)

Γ ⊢M1 : τ1→ τ2 Γ ⊢M2 : τ1

Γ ⊢M1 M2 : τ2
(app)

Γ ⊢M : τ

Γ ⊢ Λα (M) : ∀α (τ)
if α /∈ ftv (Γ)(gen)

Γ ⊢M : ∀α (τ1)

Γ ⊢M τ2 : τ1[τ2/α]
(spec)

Slide 45
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An incorrect ‘proof’

x1 : α, x2 : α ⊢ x2 : α
(var)

x1 : α ⊢ λx2 : α (x2) : α→ α
(fn)

x1 : α ⊢ Λα (λx2 : α (x2)) : ∀α (α→ α)
(wrong!)

Slide 46

Remark 4.2.5 (Side-condition on rule (gen)). To illustrate the force of the side-condition on

rule (gen) on Slide 45, consider the last step of the ‘proof’ on Slide 46. It is not a correct

instance of the (gen) rule, because the concluding judgement, whose typing environment

Γ = {x1 : α}, does not satisfy α /∈ ftv(Γ) (since ftv(Γ) = {α} in this case). On the

other hand, the expression Λα (λx2 : α (x2)) does have type ∀α (α→ α) given the typing

environment {x1 : α}. Here is a correct proof of that fact:

x1 : α, x2 : α′ ⊢ x2 : α′

(var)

x1 : α ⊢ λx2 : α′ (x2) : α
′→ α′

(fn)

x1 : α ⊢ Λα′ (λx2 : α′ (x2)) : ∀α′ (α′→ α′)
(gen)

where we have used the freedom afforded by alpha-conversion to rename the bound type

variable to make it distinct from the free type variables of the typing environment: since we

identify types and expressions up to alpha-conversion, the judgement

x1 : α ⊢ Λα (λx2 : α (x2)) : ∀α (α→ α)

is the same as

x1 : α ⊢ Λα′ (λx2 : α′ (x2)) : ∀α′ (α′→ α′)
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and indeed, is the same as

x1 : α ⊢ Λα′ (λx2 : α′ (x2)) : ∀α′′ (α′′→ α′′).

Example 4.2.6. On Slide 41 we claimed that λ f : ∀α1 (α1) (Λα2 (f(α2 → α2)(f α2)))
has type ∀α (α)→∀α (α). Here is a proof of that in the PLC type system:

f : ∀α1 (α1) ⊢ f : ∀α1 (α1)
(var)

f : ∀α1 (α1) ⊢ f(α2→ α2) : α2→ α2

(spec)
f : ∀α1 (α1) ⊢ f : ∀α1 (α1)

(var)

f : ∀α1 (α1) ⊢ f α2 : α2

(spec)

f : ∀α1 (α1) ⊢ f(α2→ α2)(f α2) : α2

(app)

f : ∀α1 (α1) ⊢ Λα2 (f(α2→ α2)(f α2)) : ∀α2 (α2)
(gen)

{ } ⊢ λ f : ∀α1 (α1) (Λα2 (f(α2→ α2)(f α2))) : (∀α1 (α1))→∀α2 (α2)
(fn).

Example 4.2.7. There is no PLC type τ for which

(10) { } ⊢ Λα ((λx : α (x))α) : τ

is provable within the PLC type system.

Proof. Because of the syntax-directed nature of the axiom and rules of the PLC type system,

any proof of (10) would have to look like

x : α ⊢ x : α
(var)

{ } ⊢ λx : α (x) : τ ′′
(fn)

{ } ⊢ (λx : α (x))α : τ ′
(spec)

{ } ⊢ Λα ((λx : α (x))α) : τ
(gen)

for some types τ , τ ′ and τ ′′. For the application of rule (fn) to be correct, it must be that

τ ′′ = α→ α. But then the application of rule (spec) is impossible, because α→ α is not a

∀-type. So no such proof can exist.
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Decidability of the PLC typeability

and type-checking problems

Theorem.

For each PLC typing problem, Γ ⊢M : ?, there is at most one PLC type

τ for which Γ ⊢M : τ is provable. Moreover there is an algorithm, typ,

which when given any Γ ⊢M : ? as input, returns such a τ if it exists

and FAILs otherwise.

Corollary.

The PLC type checking problem is decidable: we can decide whether or

not Γ ⊢M : τ is provable by checking whether typ(Γ ⊢M : ?) = τ .

(N.B. equality of PLC types up to alpha-conversion is decidable.)

Slide 47

4.3 PLC type inference

As Examples 4.2.6 and 4.2.7 suggest, the type checking and typeability problems (Slide 7)

are very easy to solve for the PLC type system, compared with the ML type system. This

is because of the explicit type information contained in PLC expressions together with the

syntax-directed nature of the typing rules. The situation is summarised on Slide 47. The

‘uniqueness of types’ property stated on the slide is easy to prove by induction on the structure

of the expression M , exploiting the syntax-directed nature of the axiom and rules of the PLC

type system. Moreover, the type inference algorithm typ emerges naturally from this proof,

defined recursively according to the structure of PLC expressions. The clauses of its definition

are given on Slides 48 and 49.1 The definition relies upon the easily verified fact that equality

of PLC types up to alpha-conversion is decidable. It also assumes that the various implicit

choices of names of bound variables and bound type variables are made so as to keep them

distinct from the relevant free variables and free type variables. For example, in the clause

for type generalisations Λα (M), we assume the bound type variable α is chosen so that

α /∈ ftv(Γ).

1An implementation of this algorithm in Fresh O’Caml can be found on the course web page.
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PLC type-checking algorithm, I

Variables:

typ(Γ, x : τ ⊢ x : ?)
def
= τ

Function abstractions:

typ(Γ ⊢ λx : τ1 (M) : ?)
def
=

let τ2 = typ(Γ, x : τ1 ⊢M : ?) in τ1→ τ2

Function applications:

typ(Γ ⊢M1 M2 : ?)
def
=

let τ1 = typ(Γ ⊢M1 : ?) in

let τ2 = typ(Γ ⊢M2 : ?) in

case τ1 of τ → τ ′ 7→ if τ = τ2 then τ ′ else FAIL

| 7→ FAIL

Slide 48

PLC type-checking algorithm, II

Type generalisations:

typ(Γ ⊢ Λα (M) : ?)
def
=

let τ = typ(Γ ⊢M : ?) in ∀α (τ)

Type specialisations:

typ(Γ ⊢M τ2 : ?)
def
=

let τ = typ(Γ ⊢M : ?) in

case τ of ∀α (τ1) 7→ τ1[τ2/α]

| 7→ FAIL

Slide 49



52 4 POLYMORPHIC LAMBDA CALCULUS

4.4 Datatypes in PLC

The aim of this subsection is to give some impression of just how expressive is the PLC type

system. Many kinds of datatype, including both concrete data (booleans, natural numbers,

lists, various kinds of tree, . . . ) and also abstract datatypes involving information hiding, can

be represented in PLC. Such representations involve

• defining a suitable PLC type for the data,

• defining some PLC expressions for the various operations associated with the data,

• demonstrating that these expressions have both the correct typings and the expected

computational behaviour.

In order to deal with the last point, we first have to consider some operational semantics

for PLC. Most studies of the computational properties of polymorphic lambda calculus have

been based on the PLC analogue of the notion of beta-reduction from untyped lambda

calculus. This is defined on Slide 50.

Beta-reduction of PLC expressions

M beta-reduces to M ′ in one step, M →M ′ , means

M ′ can be obtained from M (up to alpha-conversion, of course) by

replacing a subexpression which is a redex by its corresponding reduct .

The redex-reduct pairs are of two forms:

(λx : τ (M1))M2 →M1[M2/x]

(Λα (M)) τ →M [τ/α].

M →∗ M ′ indicates a chain of finitely† many beta-reductions.

(
†

possibly zero—which just means M and M
′

are alpha-convertible).

M is in beta-normal form if it contains no redexes.

Slide 50

Example 4.4.1. Here are some examples of beta-reductions. The various redexes are shown
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boxed. Clearly, the final expression y is in beta-normal form.

(λx : α1→ α1 (x y)) (Λα2 (λ z : α2 (z)))(α1→ α1)

(Λα2 (λ z : α2 (z)))(α1→ α1) y (λx : α1→ α1 (x y)) (λ z : α1→ α1 (z))

(λ z : α1→ α1 (z))y

y

Properties of PLC beta-reduction on typeable expressions

Suppose Γ ⊢M : τ is provable in the PLC type system. Then the

following properties hold:

Subject Reduction. If M →M ′, then Γ ⊢M ′ : τ is also a provable

typing.

Church Rosser Property. If M →∗ M1 and M →∗ M2, then there is

M ′ with M1 →∗ M ′ and M2 →∗ M ′.

Strong Normalisation Property. There is no infinite chain

M →M1 →M2 → . . . of beta-reductions starting from M .

Slide 51

Slide 51 lists some important properties of typeable PLC expressions that we state

without proof. The first is a weak form of type soundness result (Slide 4) and its proof is

straightforward. The proof of the Church Rosser property is also quite easy whereas the

proof of Strong Normalisations is difficult.1 It was first proved by (Girard 1972) using a

1Since it in fact implies the consistency of second order arithmetic, it furnishes a concrete example

of Gödel’s famous incompleteness theorem: the strong normalisation property of PLC is a statement
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clever technique called ‘reducibility candidates’; if you are interested in seeing the details,

look at (Girard 1989, Chapter 14) for an accessible account of the proof.

PLC beta-conversion, =β

By definition, M =β M ′ holds if there is a finite chain

M − · − · · · − · −M ′

where each− is either→ or←, i.e. a beta-reduction in one direction or

the other. (A chain of length zero is allowed—in which case M and M ′

are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for typeable

PLC expressions, M =β M ′ holds if and only if there is some

beta-normal form N with

M →∗ N ∗←M ′

Slide 52

Theorem 4.4.2. The properties listed on Slide 51 have the following consequences.

(i) Each typeable PLC expression, M , possesses a beta-normal form, i.e. an N such that

M →∗ N 9 , which is unique (up to alpha-conversion).

(ii) The equivalence relation of beta-conversion (Slide 52) between typeable PLC expressions

is decidable, i.e. there is an algorithm which, when given two typeable PLC expressions,

decides whether or not they are beta-convertible.

Proof. For (i), first note that such a beta-normal form exists because if we start reducing re-

dexes in M (in any order) the chain of reductions cannot be infinite (by Strong Normalisation)

and hence terminates in a beta-normal form. Uniqueness of the beta-normal form follows by

the Church Rosser property: if M →∗ N1 and M →∗ N2, then N1 →∗ M ′ ∗← N2 holds

for some M ′; so if N1 and N2 are beta-normal forms, then it must be that N1 →∗ M ′ and

N2 →∗ M ′ are chains of beta-reductions of zero length and hence N1 = M ′ = N2 (equality

up to alpha-conversion).

For (ii), we can use an algorithm which reduces the beta-redexes of each expression in

any order until beta-normal forms are reached (in finitely many steps, by Strong Normal-

isation); these normal forms are equal (up to alpha-conversion) if and only if the original

expressions are beta-convertible. (And of course, the relation of alpha-convertibility is de-

cidable.)

that can be formalised within second order arithmetic, is true (as witnessed by a proof that goes outside

second order arithmetic), but cannot be proved within that system.
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Remark 4.4.3. In fact, the Church Rosser property holds for all PLC expressions, whether

or not they are typeable. However, the Strong Normalisation property definitely fails for

untypeable expressions. For example, consider

Ω
def
= (λ f : α (f f))(λ f : α (f f))

from which there is an infinite chain of beta-reductions, namelyΩ→ Ω→ Ω→ · · · . As with

the untyped lambda calculus, one can regard polymorphic lambda calculus as a rather pure

kind of typed functional programming language in which computation consists of reducing

typeable expressions to beta-normal form. From this viewpoint, the properties on Slide 51

tell us that (unlike the case of untyped lambda calculus) PLC cannot be ‘Turing powerful’,

i.e. not all partial recursive functions can be programmed in it (using a suitable encoding of

numbers). This is simply because, by virtue of Strong Normalisation, computation always

terminates on well-typed programs.

Now that we have explained PLC dynamics, we return to the question of representing

datatypes as PLC types. We consider first the simple example of booleans and then the more

complicated example of polymorphic lists.

Polymorphic booleans

bool
def
= ∀α (α→ (α→ α))

True
def
= Λα (λx1 : α, x2 : α (x1))

False
def
= Λα (λx1 : α, x2 : α (x2))

if
def
= Λα (λ b : bool , x1 : α, x2 : α (b α x1 x2))

Slide 53

Example 4.4.4 (Booleans). The PLC type corresponding to the ML datatype

datatype bool = True | False
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is shown on Slide 53. The idea behind this representation is that the ‘algorithmic essence’

of a boolean, b, is the operation λx1 : α, x2 : α(if b thenx1 elsex2) of type α→ α→ α,1

taking a pair of expressions of the same type and returning one or other of them. Clearly,

this operation is parametrically polymorphic in the type α, so in PLC we can take the step of

identifying booleans with expressions of the corresponding ∀-type, ∀α (α→ α→ α). Note

that for the PLC expressions True and False defined on Slide 53 the typings

{ } ⊢ True : ∀α (α→ α→ α) and { } ⊢ False : ∀α (α→ α→ α)

are both provable. The if then else construct, given for the above ML datatype by a case-

expression

caseM1 ofTrue =>M2 | False =>M3

has an explicitly typed analogue in PLC, viz. if τ M1 M2 M3, where τ is supposed to be the

common type of M2 and M3 and if is the PLC expression given on Slide 53. It is not hard

to see that

{ } ⊢ if : ∀α (bool → (α→ (α→ α))).

Thus if Γ ⊢ M1 : bool , Γ ⊢ M2 : τ and Γ ⊢ M3 : τ , then Γ ⊢ if τ M1 M2 M3 : τ (cf. the

typing rule (if) on Slide 16). Furthermore, the expressions True , False , and if have the

expected dynamic behaviour:

• if M1 →∗ True and M2 →∗ N , then if τ M1 M2M3 →∗ N ;

• if M1 →∗ False and M3 →∗ N , then if τ M1 M2 M3 →∗ N .

It is in fact the case that True and False are the only closed beta-normal forms in PLC of

type bool (up to alpha-conversion, of course), but it is beyond the scope of this course to

prove it.

1Recall our notational conventions: α→ α→ α means α→ (α→ α).
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Polymorphic lists

α list
def
= ∀α′ (α′→ (α→ α′→ α′)→ α′)

Nil
def
= Λα,α′ (λx′ : α′, f : α→ α′→ α′ (x′))

Cons
def
= Λα(λx : α, ℓ : α list(Λα′(

λx′ : α′, f : α→ α′→ α′(

f x (ℓ α′ x′ f)))))

Slide 54

Iteratively defined functions on finite lists

A∗ def
= finite lists of elements of the set A

Given a set A′, an element x′ ∈ A′, and a function f : A→A′→A′,
the iteratively defined function listIter x′ f is the unique function

g : A∗→A′ satisfying:

gNil = x′

g (x :: ℓ) = f x (g ℓ).

for all x ∈ A and ℓ ∈ A∗.

Slide 55
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Example 4.4.5 (Lists). The polymorphic type corresponding to the ML datatype

datatype α list = Nil | Cons of α ∗ (α list)

is shown on Slide 54. Undoubtedly it looks rather mysterious at first sight. The idea behind

this representation has to do with the operation of iteration over a list shown on Slide 55.

The existence of such functions listIter x′ f does in fact characterise the set A∗ of finite lists

over a set A uniquely up to bijection. We can take the operation

(11) λx′ : α′, f : α→ α′→ α′(listIter x′ f ℓ)

(of type α′ → (α → α′ → α′) → α′) as the ‘algorithmic essence’ of the list ℓ : α list .

Clearly this operation is parametrically polymorphic in α′ and so we are led to the ∀-type

given on Slide 54 as the polymorphic type of lists represented via the iterator operations they

determine. Note that from the perspective of this representation, the nil list is characterised

as that list which when any listIter x′ f is applied to it yields x′. This motivates the definition

of the PLC expression Nil on Slide 54. Similarly for the constructor Cons for adding an

element to the head of a list. It is not hard to prove the typings:

{ } ⊢ Nil : ∀α (α list)

{ } ⊢ Cons : ∀α (α→ α list → α list).

As shown on Slide 56, an explicitly typed version of the operation of list iteration can

be defined in PLC: iter αα′ x′ f satisfies the defining equations for an iteratively defined

function (11) up to beta-conversion.

List iteration in PLC

iter
def
= Λα,α′(λx′ : α′, f : α→ α′→ α′(

λ ℓ : α list (ℓ α′ x′ f)))

satisfies:

• ⊢ iter : ∀α,α′ (α′→ (α→ α′→ α′)→ α list → α′)

• iter αα′ x′ f (Nil α) =β x′

• iter αα′ x′ f (Cons αx ℓ) =β f x (iter αα′ x′ f ℓ)

Slide 56
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ML PLC

datatype null = ; null
def
= ∀α (α)

datatype unit = Unit ; unit
def
= ∀α (α→ α)

α1 ∗ α2 α1 ∗ α2
def
= ∀α ((α1→ α2→ α)→ α)

datatype (α1, α2)sum = (α1, α2)sum
def
=

Inl of α1 | Inr of α2; ∀α ((α1→ α)→ (α2→ α)→ α)

datatype nat = nat
def
=

Zero | Succ of nat ; ∀α (α→ (α→ α)→ α)

datatype binTree = binTree
def
=

Leaf | Node of binTree ∗ binTree; ∀α (α→ (α→ α→ α)→ α)

Figure 5: Some more algebraic datatypes

Booleans and lists are examples of ‘algebraic’ datatypes, i.e. ones which can be specified

(usually recursively) using products, sums and previously defined algebraic datatypes. Thus

in Standard ML such a datatype (called alg , with constructors C1, . . . , Cm) might be declared

by

datatype (α1, . . . , αn)alg = C1 of τ1 | · · · | Cm of τm

where the types τ1, . . . , τm are built up from the type variables α1, . . . , αn and the type

(α1, . . . , αn)alg itself, just using products and previously defined algebraic datatype con-

structors, but not, for example, using function types. Figure 5 gives some other algebraic

datatypes and their representations as polymorphic types. In fact all algebraic datatypes can

be represented in PLC: see (Girard 1989, Sections 11.3–5) for more details.
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5 Further Topics

The study of types forms a very vigorous area of computer science research, both for

computing theory and in the application of theory to practice. This course has aimed

at reasonably detailed coverage of a few selected topics, centred around the notion of

polymorphism in programming languages. To finish, I briefly survey a couple of other general

topics which are of importance in the development of the theory and application of type

systems in computer science. The book (Pierce 2005) is still a good source for essays on

further topics in type systems for programming languages.

5.1 Dependent types

A tautology checker

fun taut x f = ifx = 0 then f else

(taut(x− 1)(f true))

andalso (taut(x− 1)(f false))

Defining types nAryBoolOp for each natural number n ∈ N

{

0AryBoolOp
def
= bool

(n+ 1)AryBoolOp
def
= bool → (nAryBoolOp)

then taut n has type (nAryBoolOp)→ bool , i.e. the result type of

the function taut depends upon the value of its argument.

Slide 57

Consider programming a function taut that takes in n-ary boolean operations (in ‘curried’

form)

f : bool → bool → · · · bool→
︸ ︷︷ ︸

n arguments

bool

and returns true if f is a tautology, i.e. has value true for all of its 2n possible arguments,

and returns false otherwise. One might try to program taut in Standard ML as on Slide 57.

This is algorithmically correct, but does not type-check in ML. Why? Intuitively, the

type of taut n for each natural number n = 0, 1, 2, . . . is the type nAryBoolOp of ‘n-

ary curried boolean operations’ defined (by induction on n) on Slide 57. Thus taut is

really a dependently typed function—the type of its result depends on the value of the

61
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argument supplied to it—and so it is rejected by the ML type-checker, because ML does

not permit such dependence in its types. Slide 58 programs the tautology-checker in Agda

(wiki.portal.chalmers.se/agda/agda.php), a popular dependently typed functional

programming language with syntax reminiscent of Haskell (www.haskell.org).

The tautology checker in Agda

data Bool : Set where

True : Bool

False : Bool

_and_ : Bool -> Bool -> Bool

True and True = True

True and False = False

False and _ = False

data Nat : Set where

Zero : Nat

Succ : Nat -> Nat

_AryBoolOp : Nat -> Set

Zero AryBoolOp = Bool

(Succ n) AryBoolOp = Bool -> n AryBoolOp

taut : (n : Nat) -> n AryBoolOp -> Bool

taut Zero f = f

taut (Succ n) f = taut n (f True) and taut n (f False)

Slide 58

In general a dependent type is a family of types indexed by individual values of a datatype.

(In the above example the family of types nAryBoolOp is indexed by values n of a type of

numbers.) Some typing rules for dependent function types are given on Slide 59. Note that

the usual typing rules for function types τ → τ ′ are the special case where the type τ ′ has no

dependency on values.

Type systems featuring dependent types are able to express much more refined properties

of programs than ones without this feature. So why do they not get used in programming

languages? The answer lies in the fact that type-checking with dependent types naturally

involves checking equalities between the data values upon which the types depend. For

example, if we add to the Agda code in Slide 58 a definition of the addition function

_plus_ : Nat -> Nat -> Nat

n plus Zero = n

n plus (Succ n’) = Succ(n plus n’)

then terms of type ((Succ Zero)plus(Succ Zero))AryBoolOp are also terms of type

(Succ(Succ(Zero)))AryBoolOp.
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Dependent function types (x : τ)→ τ ′

Γ, x : τ ⊢M : τ ′

Γ ⊢ λx : τ (M) : (x : τ)→ τ ′
if x /∈ dom(Γ) ∪ fv (Γ)

Γ ⊢M : (x : τ)→ τ ′ Γ ⊢M ′ : τ

Γ ⊢M M ′ : τ ′[M ′/x]

τ ′ may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in τ ′ are bound in (x : τ)→ τ ′.)

Slide 59

In a Turing-powerful language (which Agda is not) one would expect such value-equality

to be undecidable and hence static type-checking becomes impossible. How to get round this

problem is an active area of research. For example the Cayenne language (Augustsson 1998)

takes a general-purpose, pragmatic, but incomplete approach; whereas (Xi and Pfenning

1998) uses dependent types for a specific task, namely static elimination of run-time array

bound checking, by resticting dependency to a language of integer expressions where

checking equality reduces to solving linear programming problems.

Type theories with dependent types have been used extensively in computer systems for

formalising mathematics, for proof construction, and for checking the correctness of proofs.

Coq (coq.inria.fr) is an increasingly popular example of such a system. In this respect

Martin-Löf’s intuitionistic type theory (which first popularised the notion of ‘dependent type’)

has been highly influential; see Nordström, Petersson, and Smith 1990 for an introduction.

The Agda language is based upon it (and as it says on its home page, ‘Agda is a proof

assistant’ as well as a dependently typed functional programming language).
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Curry-Howard correspondence

Logic ↔ Type system

propositions, φ ↔ types, τ

(constructive) proofs, p ↔ expressions, M

‘p is a proof of φ’ ↔ ‘M is an expression of type τ ’

simplification of proofs ↔ reduction of expressions

Slide 60

5.2 Curry-Howard correspondence

The concept of ‘type’ first arose in the logical foundations of mathematics. Russell (1903)

circumvented the paradox he discovered in Frege’s set theory by stratifying the universe of

untyped sets into levels, or types. Church (1940) proposed a typed, higher order logic based

on functions rather than sets and which is capable of formalising large areas of mathematics.

A version of this logic is the one underlying the HOL system (Gordon and Melham 1993).

See (Lamport and Paulson 1999) for a stimulating discussion of the pros and cons of untyped

logics (typically, set theory) versus typed logics for mechanising mathematics.

The interplay between logic and types has often been mediated by the correspondence

between certain systems of constructive logic and certain typed lambda calculi first noted by

the logician Curry in the 1950s and brought to the attention of computer scientists by the

work of Howard in the 1980s. As a result, this connection between logic and type systems

is often known as the Curry-Howard correspondence (and also as the ‘proposition as types’

idea); it is sketched on Slide 60. To see how the Curry-Howard correspondence works, we

will look at a specific instance, namely the correspondence between the PLC type system of

Section 4 and the logic known as second-order intuitionistic propositional calculus (2IPC),

which is defined on Slide 61.
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Second-order intuitionistic propositional calculus (2IPC)

2IPC propositions: φ ::= p | φ→ φ | ∀ p (φ) , where p ranges over

an infinite set of propositional variables.

2IPC sequents: Φ ⊢ φ , where Φ is a finite (multi)set of 2IPC

propositions and φ is a 2IPC proposition.

Φ ⊢ φ is provable if it is in the set of sequents inductively generated by:

(Id) Φ ⊢ φ if φ ∈ Φ

(→I)
Φ, φ ⊢ φ′

Φ ⊢ φ→ φ′
(→E)

Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
if p /∈ fv(Φ) (∀E)

Φ ⊢ ∀ p (φ)
Φ ⊢ φ[φ′/p]

Slide 61

Note that if we identify propositional variables with PLC’s type variables, then 2IPC

propositions are just PLC types. Every proof of a 2IPC sequent Φ ⊢ φ can be described

by a PLC expression M satisfying Γ ⊢ M : φ, once we have fixed a labelling Γ = {x1 :
φ1, . . . , xn : φn} of the propositions in Φ = {φ1, . . . , φn} with variables x1, . . . , xn. M
is built up by recursion on the structure of the proof of the sequent using the following

transformations:

(Id) Φ, φ ⊢ φ 7→ (id) x : Φ, x : φ ⊢ x : φ

(→I)
Φ, φ ⊢ φ′

Φ ⊢ φ→ φ′

7→ (fn)
x : Φ, x : φ ⊢M : φ′

x : Φ ⊢ λx : φ (M) : φ→ φ′

(→E)
Φ ⊢ φ→ φ′ Φ ⊢ φ

Φ ⊢ φ′

7→ (app)
x : Φ ⊢M1 : φ→ φ′ x : Φ ⊢M2 : φ

x : Φ ⊢M1 M2 : φ′

(∀I)
Φ ⊢ φ

Φ ⊢ ∀ p (φ)
7→ (gen)

x : Φ ⊢M : φ

x : Φ ⊢ Λ p (M) : ∀ p (φ)

(∀E)
Φ ⊢ ∀ p (φ)
Φ ⊢ φ[φ′/p]

7→ (spec)
x : Φ ⊢M : ∀ p (φ)

x : Φ ⊢M φ′ : φ[φ′/p]

This is illustrated on Slide 62. The example on that slide uses the fact that the logical
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operation of conjunction can be defined in 2IPC. Slide 65 gives some other logical operators

that are definable in 2IPC. Compare it with Figure 5: the richness of PLC for expressing

datatypes is mirrored under the Curry-Howard correspondence by the richness of 2IPC for

expressing logical constructions.

A 2IPC proof

{p & q, p, q} ⊢ p
(Id)

{p & q, p} ⊢ q→ p
(→I)

{p & q} ⊢ p→ q→ p
(→I)

{p & q} ⊢ ∀ r ((p→ q→ r)→ r)
(Id)

{p & q} ⊢ (p→ q→ p)→ p
(∀E)

{p & q} ⊢ p
(→E)

{ } ⊢ p & q→ p
(→I)

{ } ⊢ ∀ q (p & q→ p)
(∀I)

{ } ⊢ ∀ p, q (p & q→ p)
(∀I)

where p & q is an abbreviation for ∀ r ((p→ q→ r)→ r).

The PLC expression corresponding to this proof is:

Λ p, q (λ z : p & q (z p (λx : p, y : q (x)))).

Slide 62

The Curry-Howard correspondence gives us a different perspective on the typing judge-

ment Γ ⊢M : σ, outlined on Slide 63. As well as the undecidablity result mentioned on that

slide, it should be noted that 2IPC is a constructive rather than a classical logic, in the sense

that the Law of Excluded Middle is not provable in 2IPC—see Slide 64. The Law of Excluded

Middle is so familiar that, when reasoning in classical logic, we may hardly be aware we are

using it. Slide 66 gives an example of a proof in classical logic that perhaps leaves a bad taste

in the mouth: it proves that there are irrational numbers whose exponential is rational, but it

does not give any explicit example of such numbers.

The Curry-Howard correspondence cuts both ways: in one direction it has proved very

helpful to use lambda terms as notations for proofs in mechanised proof assistants (such

as Coq); in the other it has helped to suggest new type systems for programming and

specification languages. Two examples of the second kind of application are the transfer of

ideas from Girard’s linear logic (Girard 1987) into systems of linear types in usage analyses

(see Chirimar, Gunter, and Riecke (1996), for example); and the use of type systems based

on modal logics for analysing partial evaluation and run-time code generation (Davis and

Pfenning 1996).



5.2 Curry-Howard correspondence 67

Type-inference versus proof search

Type-inference: ‘given Γ and M , is there a type σ such that

Γ ⊢M : σ?’

(For PLC/2IPC this is decidable.)

Proof-search: ‘given Γ and σ, is there a proof term M such that

Γ ⊢M : σ?’

(For PLC/2IPC this is undecidable.)

Slide 63

2IPC is a constructive logic

For example, there is no proof of the Law of Excluded Middle

∀ p (p ∨ ¬p)

Using the definitions on Slide 65, this is an abbreviation for

∀ p, q ((p→ q)→ ((p→∀ r (r))→ q)→ q)

(The fact that there is no closed PLC term of type ∀ p (p ∨ ¬p) can be proved

using the technique developed in the Tripos question 13 on paper 9 in 2000.)

Slide 64
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Logical operations definable in 2IPC

• Truth: true
def
= ∀ p (p→ p).

• Falsity : false
def
= ∀ p (p).

• Conjunction: φ & φ′ def= ∀ p ((φ→ φ′→ p)→ p)
(where p /∈ fv(φ, φ′)).

• Disjunction: φ ∨ φ′ def= ∀ p ((φ→ p)→ (φ′→ p)→ p) (where

p /∈ fv(φ, φ′)).

• Negation: ¬φ def
= φ→ false .

• Existential quantification: ∃ p (φ) def
= ∀ p′ (∀ p (φ→ p′)→ p′)

(where p′ /∈ fv(φ, p)).

Slide 65

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that ba is

rational.

Proof. Either
√
2
√
2

is rational, or it is not (LEM!).

If it is, we can take a = b =
√
2, since

√
2 is irrational by a well-known

theorem attributed to Euclid.

If it is not, we can take a =
√
2 and b =

√
2
√
2
, since then

ba = (
√
2
√
2)

√
2 =
√
2
√
2×√

2 =
√
22 = 2.

QED

Slide 66
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CST Part II Types: Exercise Sheet

ML Polymorphism

Exercise 1. Here are some type checking problems, in the sense of Slide 7. Prove the

following typings hold for the Mini-ML type system:

⊢ λx(x :: nil) : ∀α (α→ α list)

⊢ λx(case x of nil=> true |x1 :: x2 => false) : ∀α (α list → bool)

⊢ λx1(λx2(x1)) : ∀α1, α2 (α1→ (α2→ α1))

⊢ let f = λx1(λx2(x1)) in f f : ∀α1, α2, α3 (α1→ (α2→ (α3→ α2))).

Exercise 2. Show that if { } ⊢ M : σ is provable, then M must be closed, i.e. have no free

variables. [Hint: use rule induction for the rules on Slides 16–19 to show that the provable

typing judgements, Γ ⊢M : τ , all have the property that fv(M) ⊆ dom(Γ).]

Exercise 3. Let σ and σ′ be Mini-ML type schemes. Show that the relation σ ≻ σ′ defined

on Slide 27 holds if and only if

∀ τ (σ′ ≻ τ ⇒ σ ≻ τ).

[Hint: use the following property of simultaneous substitution:

(τ [τ1/α1, . . . , τn/αn])[~τ
′/~α′] = τ [τ1[~τ

′/~α′]/α1, . . . , τn[~τ
′/~α′]/αn]

which holds provided the type variables ~α′ do not occur in τ .]

Exercise 4. Try to augment the definition of pt on Slide 30 and in Figure 3 with clauses for

nil, cons, and case-expressions.

Exercise 5. Suppose M is a closed expression and that (S, σ) is a principal solution for the

typing problem { } ⊢ M : ? in the sense of Slide 27. Show that σ must be a principal type

scheme for M in the sense of Slide 23.

Exercise 6. Show that if Γ ⊢ M : σ is provable and S ∈ Sub is a type substitution, then

S Γ ⊢M : S σ is also provable.

Polymorphic Reference Types

Exercise 7. Letting M denote the expression on Slide 33 and { } the empty state, show that

〈M, { }〉 →∗ FAIL is provable in the transition system defined in Figure 4.

Exercise 8. Give an example of a Mini-ML let-expression which is typeable in the type

system of Section 2.1, but not in the type system of Section 3.2 for Midi-ML with the value-

restricted rule (letv).



Polymorphic Lambda Calculus

Exercise 9. Give a proof inference tree for (8) in Example 4.1.1. Show that

∀α1 (α1→∀α2 (α2))→ bool list

is another possible polymorphic type for λf((f true) :: (f nil)).

Exercise 10. Show that if Γ ⊢ M : τ and Γ ⊢ M : τ ′ are both provable in the PLC type

system, then τ = τ ′ (equality up to α-conversion). [Hint: show that H
def
= {(Γ,M, τ) | Γ ⊢

M : τ & ∀ τ ′ (Γ ⊢M : τ ′ ⇒ τ = τ ′)} is closed under the axioms and rules on Slide 45.]

Exercise 11. In PLC, defining the expression letx = M1 : τ inM2 to be an abbreviation

for (λx : τ (M2))M1, show that the typing rule

Γ ⊢M1 : τ1 Γ, x : τ1 ⊢M2 : τ2

Γ ⊢ (let x = M1 : τ1 inM2) : τ2
if x /∈ dom(Γ)

is admissible—in the sense that the conclusion is provable if the hypotheses are.

Exercise 12. The erasure, erase(M), of a PLC expression M is the expression of the

untyped lambda calculus obtained by deleting all type information from M :

erase(x)
def
= x

erase(λx : τ (M))
def
= λx (erase(M))

erase(M1 M2)
def
= erase(M1) erase(M2)

erase(Λα (M))
def
= erase(M)

erase(M τ)
def
= erase(M).

(i) Find PLC expressions M1 and M2 satisfying erase(M1) = λx (x) = erase(M2) such that

⊢M1 : ∀α (α→ α) and ⊢M2 : ∀α1 (α1→∀α2 (α1)) are provable PLC typings.

(ii) We saw in Example 4.2.6 that there is a closed PLC expression M of type ∀α (α)→∀α (α)
satisfying erase(M) = λ f (f f). Find some other closed, typeable PLC expressions with

this property.

(iii) [For this part you will need to recall, from the CST Part IB Foundations of Functional

Programming course, some properties of beta reduction of expressions in the untyped lambda

calculus.] A theorem of Girard says that if ⊢ M : τ is provable in the PLC type system,

then erase(M) is strongly normalisable in the untyped lambda calculus, i.e. there are no

infinite chains of beta-reductions starting from erase(M). Assuming this result, exhibit an

expression of the untyped lambda calculus which is not equal to erase(M) for any closed,

typeable PLC expression M .

Exercise 13. Prove the various typings and beta-reductions asserted in Example 4.4.4.



Exercise 14. Prove the various typings asserted in Example 4.4.5 and the beta-conversions

on Slide 56.

Exercise 15. For the polymorphic product type α1 ∗ α2 defined in the right-hand column of

Figure 5, show that there are PLC expressions Pair , fst , and snd satisfying:

{ } ⊢ Pair : ∀α1, α2 (α1→ α2→ (α1 ∗ α2))

{ } ⊢ fst : ∀α1, α2 ((α1 ∗ α2)→ α1)

{ } ⊢ snd : ∀α1, α2 ((α1 ∗ α2)→ α2)

fst α1 α2(Pair α1 α2 x1 x2) =β x1

snd α1 α2(Pair α1 α2 x1 x2) =β x2.

Exercise 16. [hard] Suppose that τ is a PLC type with a single free type variable, α. Suppose

also that T is a closed PLC expression satisfying

{ } ⊢ T : ∀α1, α2 ((α1→ α2)→ (τ [α1/α]→ τ [α2/α])).

Define ι to be the closed PLC type

ι
def
= ∀α ((τ → α)→ α).

Show how to define PLC expressions R and I satisfying

{ } ⊢ R : ∀α ((τ → α)→ ι→ α)

{ } ⊢ I : τ [ι/α]→ ι

(Rαf)(I x)→∗ f (T ι α (Rαf) x).




