


Two examples involving self-application

M
def
= let f = λx1(λx2(x1)) in f f

M ′ def
= (λf(f f)) λx1(λx2(x1))

Are M and M ′ typeable in the Mini-ML type system?

21







Constraints generated while inferring a type for

let f = λx1(λx2(x1)) in f f

A = ftv(τ2)(C0)

τ2 = τ3→ τ4(C1)

τ4 = τ5→ τ6(C2)

∀ { } (τ3) � τ6, i.e. τ3 = τ6(C3)

τ7 = τ8→ τ1(C4)

∀A (τ2) � τ7(C5)

∀A (τ2) � τ8(C6)

22













Two examples involving self-application

M
def
= let f = λx1(λx2(x1)) in f f

M ′ def
= (λf(f f)) λx1(λx2(x1))

Are M and M ′ typeable in the Mini-ML type system?

21







Principal type schemes for closed expressions

A closed type scheme ∀A (τ ) is the principal type scheme of a closed
Mini-ML expression M if

(a) `M : ∀A (τ )

(b) for any other closed type scheme ∀A′ (τ ′),
if `M : ∀A′ (τ ′), then ∀A (τ ) � τ ′

23



Theorem (Hindley; Damas-Milner)

If the closed Mini-ML expression M is typeable (i.e. `M : σ holds for
some type scheme σ), then there is a principal type scheme for M .

Indeed, there is an algorithm which, given any M as input, decides
whether or not it is typeable and returns a principal type scheme if it is.

24



An ML expression with a principal type scheme
hundreds of pages long

let pair = λx(λy(λz(z x y))) in

letx1 = λy(pair y y) in

letx2 = λy(x1(x1 y)) in

letx3 = λy(x2(x2 y)) in

letx4 = λy(x3(x3 y)) in

letx5 = λy(x4(x4 y)) in

x5(λy(y))

(Taken from Mairson 1990.)

25



Principal type schemes for open expressions

A solution for the typing problem Γ `M : ? is a pair (S, σ)

consisting of a type substitution S and a type scheme σ satisfying

S Γ `M : σ

(where S Γ = {x1 : S σ1, . . . , xn : S σn}, if
Γ = {x1 : σ1, . . . , xn : σn}).

Such a solution is principal if given any other, (S′, σ′), there is some
T ∈ Sub with TS = S′ and T (σ) � σ′.

[For type schemes σ and σ′, with σ′ = ∀A′ (τ ′) say, we define
σ � σ′ to mean A′ ∩ ftv(σ) = {} and σ � τ ′.]

27











Properties of the Mini-ML typing relation

• If Γ `M : σ, then for any type substitution S ∈ Sub
SΓ `M : Sσ.

• If Γ `M : σ and σ � σ′, then Γ `M : σ′.

28



Specification for the principal typing algorithm, pt

pt operates on typing problems Γ `M : ? (consisting of a typing
environment Γ and an Mini-ML expression M ). It returns either a pair
(S, τ ) consisting of a type substitution S ∈ Sub and an Mini-ML type
τ , or the exception FAIL.

• If Γ `M : ? has a solution (cf. Slide 27), then pt(Γ `M : ?)
returns (S, τ ) for some S and τ ;
moreover, setting A = (ftv(τ )− ftv(S Γ)), then
(S, ∀A (τ )) is a principal solution for the problem Γ `M : ?.

• If Γ `M : ? has no solution, then pt(Γ `M : ?) returns
FAIL.

29



Unification of ML types

There is an algorithm mgu which when input two Mini-ML types τ1 and
τ2 decides whether τ1 and τ2 are unifiable, i.e. whether there exists a
type-substitution S ∈ Sub with

(a) S(τ1) = S(τ2).

Moreover, if they are unifiable, mgu(τ1, τ2) returns the most general
unifier—an S satisfying both (a) and

(b) for all S′ ∈ Sub, if S′(τ1) = S′(τ2), then S′ = TS for some
T ∈ Sub.

By convention mgu(τ1, τ2) = FAIL if (and only if) τ1 and τ2 are not
unifiable.

26



Some of the clauses in a definition of pt

Function abstractions: pt(Γ ` λx(M) : ?)
def
=

let α = fresh in

let (S, τ ) = pt(Γ, x : α `M : ?) in (S, S(α)→ τ )

Function applications: pt(Γ `M1 M2 : ?)
def
=

let (S1, τ1) = pt(Γ `M1 : ?) in

let (S2, τ2) = pt(S1 Γ `M2 : ?) in

let α = fresh in

let S3 = mgu(S2 τ1, τ2→ α) in (S3S2S1, S3(α))

30



Mini-ML type system, III

Γ, x : τ1 `M : τ2

Γ ` λx(M) : τ1→ τ2

if x /∈ dom(Γ)(fn)

Γ `M1 : τ1→ τ2 Γ `M2 : τ1

Γ `M1 M2 : τ2

(app)

18












