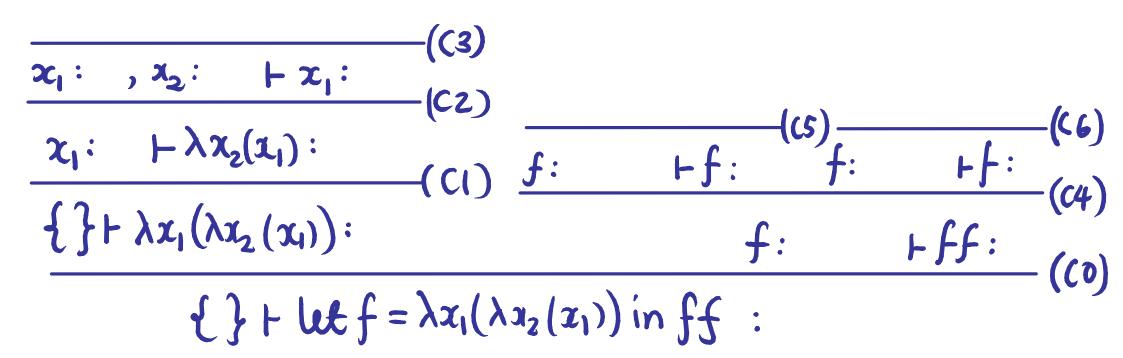
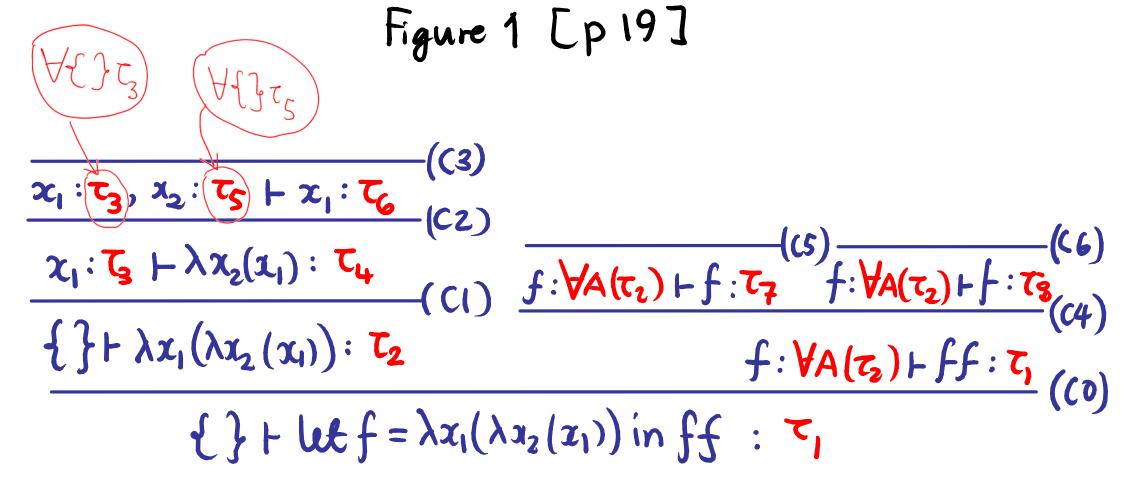
Two examples involving self-application

$$egin{aligned} M \stackrel{ ext{def}}{=} & ext{let} \ f = \lambda x_1(\lambda x_2(x_1)) ext{ in } f \ f \ M' \stackrel{ ext{def}}{=} & (\lambda f(f f)) \ \lambda x_1(\lambda x_2(x_1)) \end{aligned}$$

Are M and M' typeable in the Mini-ML type system?

Figure 1 [p 19]





Constraints generated while inferring a type for

let $f = \lambda x_1(\lambda x_2(x_1))$ in $f \, f$

(C0)	$A=ftv(au_2)$
(C1)	$ au_2 = au_3 o au_4$
(C2)	$ au_4= au_5 o au_6$
(C3)	$orall\left\{ ight\} (au_{3}) \succ au_{6}, ext{ i.e. } au_{3} = au_{6}$
(C4)	$ au_7= au_8 o au_1$
(C5)	$\forall A \left(\tau_2 \right) \succ \tau_7$
(C6)	$\forall A \left(\tau_2 \right) \succ \tau_8$

 $T_2 \stackrel{(CI)}{=} T_3 \rightarrow T_4 \stackrel{(C2)}{=} T_3 \rightarrow (T_5 \rightarrow T_6) \stackrel{(C3)}{=} T_6 \rightarrow (T_5 \rightarrow T_6)$

$$\tau_{2} \stackrel{(CI)}{=} \tau_{3} \rightarrow \tau_{4} \stackrel{(C2)}{=} \tau_{3} \rightarrow (\tau_{5} \rightarrow \tau_{6}) \stackrel{(C3)}{=} \tau_{6} \rightarrow (\tau_{5} \rightarrow \tau_{6})$$

Take $T_6 = \alpha_1$ } type variables. $T_5 = \alpha_2$ } type variables.

So $A = ftv(G_2) = ftv(\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)) = (\alpha_1, \alpha_2)$

٠

$$\tau_{2} \stackrel{(CI)}{=} \tau_{3} \rightarrow \tau_{4} \stackrel{(C2)}{=} \tau_{3} \rightarrow (\tau_{5} \rightarrow \tau_{6}) \stackrel{(C3)}{=} \tau_{6} \rightarrow (\tau_{5} \rightarrow \tau_{6})$$

Take
$$T_5 = \alpha_1$$
 } type variables.

So $A = ftv(\tau_2) = ftv(\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)) = \ell \alpha_1, \alpha_2 f$ (C5): $\forall \ell \alpha_1, \alpha_2 f(\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)) > \tau_7 \stackrel{(C4)}{=} \tau_8 \rightarrow \tau_1$ (C6): " " " > τ_8 So $\int \tau_8 \rightarrow \tau_1 = \tau_9 \rightarrow (\tau_{10} \rightarrow \tau_9)$ for some $\tau_9, \tau_{10}, \tau_8 = \tau_{11} \rightarrow (\tau_{12} \rightarrow \tau_{11})$

So $\int T_8 = T_9 B T_1 = (\tau_{10} \rightarrow \tau_9)$ for some $\tau_9, \tau_{10}, \tau_8 = \tau_{11} \rightarrow (\tau_{12} \rightarrow \tau_{11})$

So $T_1 = T_{10} \rightarrow T_9 = T_{10} \rightarrow T_8 = T_{10} \rightarrow (T_{11} \rightarrow (T_{12} \rightarrow T_{11}))$

Thus

$$\begin{cases}
\begin{cases}
\xi \neq (let f = \lambda \alpha_{1}(\lambda \alpha_{2}(\alpha_{1})) \text{ in } ff): \tau_{10} \rightarrow (\tau_{11} \rightarrow (\tau_{12} \rightarrow \tau_{11})) \\
\text{holds for any } \tau_{10}, \tau_{11}, \tau_{12}
\end{cases}$$
So

$$\begin{cases}
f(let f = \lambda \alpha_{1}(\lambda \alpha_{2}(\alpha_{1})) \text{ in } ff): \\
\forall \alpha_{11}, \alpha_{21}, \alpha_{3}(\alpha_{1} \rightarrow (\alpha_{2} \rightarrow (\alpha_{3} \rightarrow \alpha_{21})))
\end{cases}$$

Two examples involving self-application

$$M \stackrel{\mathrm{def}}{=} \operatorname{let} f = \lambda x_1(\lambda x_2(x_1)) \operatorname{in} f f$$
 $M' \stackrel{\mathrm{def}}{=} (\lambda f(f f)) \lambda x_1(\lambda x_2(x_1))$

Are M and M' typeable in the Mini-ML type system?

[Page 21] The constraints generated from trying to type $(\lambda f(ff)) \lambda x_1(\lambda x_2(x_1))$

 $\tau_{7} \stackrel{(Cl3)}{=} \tau_{4} \stackrel{(Cl2)}{=} \tau_{6} \stackrel{(Cl1)}{=} \tau_{7} \stackrel{\tau_{7}}{\rightarrow} \tau_{5}$

[Page 21] The constraints generated from trying to type $(\lambda f(ff)) \lambda_{x_1}(\lambda_{x_2}(x_1))$ give $(C_{3})_{4} = \tau_{4} = \tau_{6} = \tau_{7} = \tau_{7}$ these Cannot be equal - they have different numbers of the symbol "→" in them

Principal type schemes for closed expressions

A closed type scheme $\forall A(\tau)$ is the *principal* type scheme of a closed Mini-ML expression M if

- (a) $\vdash M : \forall A(\tau)$
- (b) for any other closed type scheme $\forall A'(\tau')$, if $\vdash M : \forall A'(\tau')$, then $\forall A(\tau) \succ \tau'$

eq
$$\forall \alpha_1, \alpha_2, \alpha_3 (\alpha_1, \neg) (\alpha_2, \neg) (\alpha_3, \neg) (\alpha_2, \gamma)$$
 is principal type scheme
for let $f = \lambda \alpha_1 (\lambda \alpha_2(1, 1))$ in ff

Theorem (Hindley; Damas-Milner)

If the closed Mini-ML expression M is typeable (i.e. $\vdash M : \sigma$ holds for some type scheme σ), then there is a principal type scheme for M.

Indeed, there is an algorithm which, given any M as input, decides whether or not it is typeable and returns a principal type scheme if it is.

An ML expression with a principal type scheme hundreds of pages long

let $pair = \lambda x (\lambda y (\lambda z (z \, x \, y)))$ in let $x_1 = \lambda y (pair \, y \, y)$ in let $x_2 = \lambda y (x_1 (x_1 \, y))$ in let $x_3 = \lambda y (x_2 (x_2 \, y))$ in let $x_4 = \lambda y (x_3 (x_3 \, y))$ in let $x_5 = \lambda y (x_4 (x_4 \, y))$ in

(Taken from Mairson 1990.)

A *solution* for the typing problem $\Gamma \vdash M$: ? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S\Gamma \vdash M:\sigma$

(where $S \Gamma = \{x_1 : S \sigma_1, \dots, x_n : S \sigma_n\}$, if $\Gamma = \{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$).

Such a solution is *principal* if given any other, (S', σ') , there is some $T \in \text{Sub}$ with TS = S' and $T(\sigma) \succ \sigma'$.

[For type schemes σ and σ' , with $\sigma' = \forall A'(\tau')$ say, we define $\sigma \succ \sigma'$ to mean $A' \cap ftv(\sigma) = \{\}$ and $\sigma \succ \tau'$.]

Example typing problem: $x: \forall \alpha (\beta \rightarrow (\gamma \rightarrow \alpha)) \vdash x \text{ true }?$

Has solutions

$$S_{i} = \{ \beta \mapsto bool \}, \sigma_{i} = \forall \alpha (\gamma \rightarrow \alpha)$$

Example typing problem: $x: \forall \alpha (\beta \rightarrow (\gamma \rightarrow \alpha)) \vdash x \text{ true } ?$ Has solutions

 $S_{1} = \{\beta \mapsto bool\}, \sigma_{1} = \forall \alpha (\gamma \rightarrow \alpha) \leftarrow BoTH \\ PRINCIPAL \\ Solutions \\ S_{2} = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_{2} = \forall \alpha' (\alpha \rightarrow \alpha') \leftarrow Solutions \\ \end{bmatrix}$

Example typing problem: $x: \forall \alpha (\beta \rightarrow (\gamma \rightarrow \alpha)) \vdash x \text{ true } ?$ Has solutions

 $S_{1} = \{\beta \mapsto bool\}, \sigma_{1} = \forall \alpha (\gamma \rightarrow \alpha) \leftarrow BoTH \\ PRINCIPAL \\ Solutions \\ S_{2} = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_{2} = \forall \alpha' (\alpha \rightarrow \alpha') \leftarrow Solutions \\ S_{2} = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_{3} = \forall \alpha' (\alpha \rightarrow \alpha') \leftarrow Solutions \\ S_{3} = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_{3} = \forall \alpha' (\alpha \rightarrow (\alpha' \rightarrow \alpha')) \\ \end{bmatrix}$

Example typing problem: $x: \forall \alpha (\beta \rightarrow (\gamma \rightarrow \alpha)) \vdash x \text{ true } ?$ Has solutions

Properties of the Mini-ML typing relation

- If $\Gamma \vdash M : \sigma$, then for any type substitution $S \in Sub$ $S\Gamma \vdash M : S\sigma$.
- If $\Gamma \vdash M : \sigma$ and $\sigma \succ \sigma'$, then $\Gamma \vdash M : \sigma'$.

pt operates on typing problems $\Gamma \vdash M$: ? (consisting of a typing environment Γ and an Mini-ML expression M). It returns either a pair (S, τ) consisting of a type substitution $S \in \mathbf{Sub}$ and an Mini-ML type τ , or the exception *FAIL*.

- If $\Gamma \vdash M$: ? has a solution (cf. Slide 27), then $pt(\Gamma \vdash M$: ?) returns (S, τ) for some S and τ ; moreover, setting $A = (ftv(\tau) - ftv(S\Gamma))$, then $(S, \forall A(\tau))$ is a principal solution for the problem $\Gamma \vdash M$: ?.
- If $\Gamma \vdash M$: ? has no solution, then $pt(\Gamma \vdash M$: ?) returns *FAIL*.

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

(a) $S(\tau_1) = S(\tau_2)$.

Moreover, if they are unifiable, $mgu(\tau_1, \tau_2)$ returns the *most general unifier*—an *S* satisfying both (a) and

(b) for all $S' \in \operatorname{Sub}$, if $S'(\tau_1) = S'(\tau_2)$, then S' = TS for some $T \in \operatorname{Sub}$.

By convention $mgu(\tau_1, \tau_2) = FAIL$ if (and only if) τ_1 and τ_2 are not unifiable.

Function abstractions: $pt(\Gamma \vdash \lambda x(M) : ?) \stackrel{\text{def}}{=}$ let $\alpha = \text{fresh in}$ let $(S, \tau) = pt(\Gamma, x : \alpha \vdash M : ?)$ in $(S, S(\alpha) \rightarrow \tau)$ Function applications: $pt(\Gamma \vdash M_1 M_2 : ?) \stackrel{\text{def}}{=}$ let $(S_1, \tau_1) = pt(\Gamma \vdash M_1 : ?)$ in let $(S_2, \tau_2) = pt(S_1 \Gamma \vdash M_2 : ?)$ in let $\alpha = \text{fresh in}$ let $S_3 = mgu(S_2 \tau_1, \tau_2 \rightarrow \alpha)$ in $(S_3 S_2 S_1, S_3(\alpha))$

Mini-ML type system, III

(fn)
$$\frac{\Gamma, x: \tau_1 \vdash M: \tau_2}{\Gamma \vdash \lambda x(M): \tau_1 \to \tau_2} \text{ if } x \notin dom(\Gamma)$$
$$\frac{\Gamma \vdash M_1: \tau_1 \to \tau_2 \quad \Gamma \vdash M_2: \tau_1}{\Gamma \vdash M_1 M_2: \tau_2}$$

 $pt(\Gamma M_1:?)=(S_1, \tau)$ $S, \Gamma \vdash M, : \tau$

 $\rightarrow pt(\Gamma' + M_1M_2:?) =$

 $pt(\Gamma M_1:?)=(S_1, \tau)$ $pt(S_1\Gamma + M_2;?) = (S_2, Z_2)$ +slide 28 $S_2S_1\Gamma \vdash M_2: T_2$ $S_2S_1\Gamma + M_1:S_2\tau_1$

 $\rightarrow pt(\Gamma' + M_1M_2:?) =$

 $pt(\Gamma M_1:?)=(S_1, G)$ $pt(S_1\Gamma + M_2;?) = (S_2, T_2)$ $\operatorname{Mgu}(S_{2}\tau_{1},\tau_{2}\rightarrow\alpha)=S_{3}$ +Slide 28 S₃τ₂ → S₃α $S_3 S_2 S_1 \Gamma + M_2 : S_3 \tau_2$ $S_3S_2S_1\Gamma + M_1:S_3S_2\tau_1$

$$pt(\Gamma \vdash M_{1}:?) = (S_{1}, \tau_{1}) \qquad pt(S_{1}\Gamma \vdash M_{2}:?) = (S_{2}, \tau_{2})$$

$$mgu(S_{2}\tau_{1}, \tau_{2} \rightarrow \alpha) = S_{3}$$

$$S_{3}S_{2}S_{1}\Gamma \vdash M_{1}:S_{3}\tau_{2} \rightarrow S_{3}\alpha \qquad S_{3}S_{2}S_{1}\Gamma \vdash M_{2}:S_{3}\tau_{2}$$

$$S_{3}S_{2}S_{1}\Gamma \vdash M_{1}M_{2}:S_{3}\alpha$$

$$\downarrow pt(\Gamma \vdash M_{1}M_{2}:?) = (S_{3}S_{2}S_{1}, S_{3}\alpha)$$

$$(app)$$