Polymorphism of \texttt{let}-bound variables in ML

For example in

\[
\text{let } f = \lambda x(x) \text{ in } (f \text{ true}) :: (f \text{ nil})
\]

\(\lambda x(x)\) has type \(\tau \rightarrow \tau\) for any type \(\tau\), and the variable \(f\) to which it is bound is used polymorphically:

- in \((f \text{ true})\), \(f\) has type \(\text{bool} \rightarrow \text{bool}\)

- in \((f \text{ nil})\), \(f\) has type \(\text{bool list} \rightarrow \text{bool list}\)

Overall, the expression has type \(\text{bool list}\).
Mini-ML expressions, M

$$\ ::= \ x$$

| $true$ | variable
| $false$ | boolean values
| $if \ M \ then \ M \ else \ M$ | conditional
| $\lambda x(M)$ | function abstraction
| MM | function application
| $let \ x = M \ in \ M$ | local declaration
| nil | nil list
| $M :: M$ | list cons
| $case \ M \ of \ nil \ => \ M \ | \ x :: x \ => \ M$ | case expression
Mini-ML types and type schemes

Types

\[\tau ::= \alpha \quad \text{type variable} \]
\[| \quad \text{bool} \quad \text{type of booleans} \]
\[| \quad \tau \rightarrow \tau \quad \text{function type} \]
\[| \quad \tau \text{list} \quad \text{list type} \]

where \(\alpha \) ranges over a fixed, countably infinite set \(\text{TyVar} \).

Type Schemes

\[\sigma ::= \forall A (\tau) \]

where \(A \) ranges over finite subsets of the set \(\text{TyVar} \).

When \(A = \{ \alpha_1, \ldots, \alpha_n \} \), we write \(\forall A (\tau) \) as

\[\forall \alpha_1, \ldots, \alpha_n (\tau). \]

E.g.s of type schemes: \(\forall \alpha, \beta (\alpha \rightarrow \beta) \) \(\forall \alpha (\alpha \text{list} \rightarrow \beta) \)
Mini-ML types and type schemes

Types

\[\tau ::= \alpha \text{ type variable} \]
\[| \ \text{bool} \text{ type of booleans} \]
\[| \ \tau \rightarrow \tau \text{ function type} \]
\[| \ \tau \text{ list} \text{ list type} \]

where \(\alpha \) ranges over a fixed, countably infinite set \(\text{TyVar} \).

Type Schemes

\[\sigma ::= \forall A (\tau) \]

where \(A \) ranges over finite subsets of the set \(\text{TyVar} \).

When \(A = \{ \alpha_1, \ldots, \alpha_n \} \), we write \(\forall A (\tau) \) as

\[\forall \alpha_1, \ldots, \alpha_n (\tau). \]

E.g. s of type schemes: \(\forall \alpha, \beta (\alpha \rightarrow \beta) \) \(\forall \alpha (\alpha \text{ list} \rightarrow \beta) \) \(\forall \exists \gamma (\alpha \rightarrow \text{bool}) \)
Mini-ML typing judgement

takes the form $\Gamma \vdash M : \tau$ where

- the **typing environment** Γ is a finite function from variables to type schemes.

 (We write $\Gamma = \{x_1 : \sigma_1, \ldots, x_n : \sigma_n\}$ to indicate that Γ has domain of definition $\text{dom}(\Gamma) = \{x_1, \ldots, x_n\}$ and maps each x_i to the type scheme σ_i for $i = 1..n$.)

- M is an Mini-ML expression

- τ is an Mini-ML type.
Mini-ML type system, I

(var \succ) \[\Gamma \vdash x : \tau \quad \text{if} \ (x : \sigma) \in \Gamma \quad \text{and} \quad \sigma \succ \tau \]

(bool) \[\Gamma \vdash B : bool \quad \text{if} \ B \in \{\text{true}, \text{false}\} \]

(if) \[\Gamma \vdash M_1 : bool \quad \Gamma \vdash M_2 : \tau \quad \Gamma \vdash M_3 : \tau \]

\[\Gamma \vdash \text{if } M_1 \text{ then } M_2 \text{ else } M_3 : \tau \]
The “generalises” relation between type schemes and types

We say a type scheme \(\sigma = \forall \alpha_1, \ldots, \alpha_n (\tau') \) generalises a type \(\tau \), and write \(\sigma \succ \tau \) if \(\tau \) can be obtained from the type \(\tau' \) by simultaneously substituting some types \(\tau_i \) for the type variables \(\alpha_i \) \((i = 1, \ldots, n)\):

\[
\tau = \tau'[\tau_1/\alpha_1, \ldots, \tau_n/\alpha_n].
\]

(N.B. The relation is unaffected by the particular choice of names of bound type variables in \(\sigma \).)

The converse relation is called specialisation: a type \(\tau \) is a specialisation of a type scheme \(\sigma \) if \(\sigma \succ \tau \).

E.g. \(\forall \alpha, \beta (\alpha \rightarrow \beta) \succ \text{bool} \rightarrow \text{bool} \)

but \(\forall \alpha (\alpha \rightarrow \beta) \not\succ \text{bool} \rightarrow \text{bool} \)
The “generalises” relation between type schemes and types

We say a type scheme \(\sigma = \forall \alpha_1, \ldots, \alpha_n (\tau') \) generalises a type \(\tau \), and write \(\sigma \succ \tau \) if \(\tau \) can be obtained from the type \(\tau' \) by simultaneously substituting some types \(\tau_i \) for the type variables \(\alpha_i \) (\(i = 1, \ldots, n \)):

\[
\tau = \tau'[\tau_1/\alpha_1, \ldots, \tau_n/\alpha_n].
\]

(N.B. The relation is unaffected by the particular choice of names of bound type variables in \(\sigma \).)

The converse relation is called specialisation: a type \(\tau \) is a specialisation of a type scheme \(\sigma \) if \(\sigma \succ \tau \).

So we identify type schemes up to renaming bound type vars.

\[\forall \alpha(\alpha \to \alpha') = \forall \alpha''(\alpha'' \to \alpha') \neq \forall \alpha'(\alpha' \to \alpha')\]
(nil) \(\Gamma \vdash \text{nil} : \tau \ list \)

(cons) \[\frac{\Gamma \vdash M_1 : \tau \quad \Gamma \vdash M_2 : \tau \ list}{\Gamma \vdash M_1 :: M_2 : \tau \ list} \]

(case) \[\frac{\Gamma \vdash M_1 : \tau_1 \ list \quad \Gamma \vdash M_2 : \tau_2}{\Gamma \vdash \text{case } M_1 \text{ of nil } \Rightarrow M_2 \quad \mid x_1 :: x_2 \Rightarrow M_3 : \tau_2}{\Gamma \vdash \text{case } M_1 \text{ of nil } \Rightarrow M_2 \quad \mid x_1 :: x_2 \Rightarrow M_3 : \tau_2}{\text{if } x_1, x_2 \notin \text{dom}(\Gamma) \quad \text{and } x_1 \neq x_2} \]
(nil) \[\Gamma \vdash \text{nil} : \tau \text{list} \]

(cons) \[\frac{\Gamma \vdash M_1 : \tau \quad \Gamma \vdash M_2 : \tau \text{list}}{\Gamma \vdash M_1 :: M_2 : \tau \text{list}} \]

(case) \[\frac{\Gamma \vdash M_1 : \tau_1 \text{list} \quad \Gamma \vdash M_2 : \tau_2 \quad \Gamma, x_1 : \tau_1, x_2 : \tau_1 \text{list} \vdash M_3 : \tau_2}{\Gamma \vdash \text{case } M_1 \text{ of nil } \Rightarrow M_2}{\mid x_1 :: x_2 \Rightarrow M_3 : \tau_2} \]

if \(x_1, x_2 \notin \text{dom}(\Gamma) \) and \(x_1 \neq x_2 \)

abbreviation for \(\Gamma, x : A \vdash \exists y. \text{let } z = y \text{ in } z \)
Mini-ML type system, III

(fn)

\[\frac{\Gamma, x : \tau_1 \vdash M : \tau_2}{\Gamma \vdash \lambda x(M) : \tau_1 \rightarrow \tau_2} \]

if \(x \notin \text{dom}(\Gamma) \)

(app)

\[\frac{\Gamma \vdash M_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash M_2 : \tau_1}{\Gamma \vdash M_1 M_2 : \tau_2} \]
(let)

\[\Gamma \vdash M_1 : \tau\]
\[\Gamma, x : \forall A \left(\tau\right) \vdash M_2 : \tau'\]
\[\Gamma \vdash \text{let } x = M_1 \text{ in } M_2 : \tau'\]

if \(x \not\in \text{dom}(\Gamma)\) and \(A = \text{ftv}(\tau) - \text{ftv}(\Gamma)\)

\(\text{ftv}(\tau) = \text{all type vars occurring in type } \tau\)

\(\text{ftv}\{x_1 : \sigma_1, \ldots, x_n : \sigma_n\} = \text{ftv}(\sigma_1) \cup \ldots \cup \text{ftv}(\sigma_n)\)

where if \(\sigma = \forall A (\tau)\), then \(\text{ftv}(\sigma) = \text{ftv}(\tau) - A\)
Example of the (let) rule

\[\Gamma \vdash M_1 : \tau \text{ is } \{y : \beta, z : \forall x (x \to x \to \text{bool})\} \vdash \lambda u(y) : \alpha \to \beta \]

so A is \{\alpha, \beta\} - \{\beta\} = \{\alpha\}
Example of the (let) rule

\[\Gamma \vdash M_1 : \tau \text{ is } \{y : \beta, z : \forall y (x \rightarrow x \rightarrow \text{bool})\} \vdash \lambda u(y) : \alpha \rightarrow \beta \]

so \(A \) is \(\{\alpha, \beta\} - \{\beta\} = \{\alpha \}

\[\Gamma, x : \forall A(x) \vdash M_2 : \tau' \text{ is } \{y : \beta, z : \forall y (x \rightarrow x \rightarrow \text{bool}), x : \forall \alpha (\alpha \rightarrow \beta)\} \vdash z(x y)(x \text{ nit}) : \text{bool} \]
Example of the (let) rule

$$\Gamma \vdash M_1 : \tau \text{ is } \{y : \beta, z : \forall y (y \rightarrow \tau \rightarrow \text{bool})\} \vdash \lambda u(y) : \alpha \rightarrow \beta$$

so $$\Delta$$ is $$\{\alpha, \beta\} - \{\beta\} = \{\alpha\}$$

$$\Gamma, x : \forall A(c) \vdash M_2 : \tau' \text{ is } \{y : \beta, z : \forall y (y \rightarrow \tau \rightarrow \text{bool}), x : \forall\alpha (\alpha \rightarrow \beta)\} \vdash z(xy)(x\text{nil}) : \text{bool}$$

Applying (let) we get

$$\{y : \beta, z : \forall y (y \rightarrow \tau \rightarrow \text{bool})\} \vdash \text{let } x = \lambda u(y) \text{ in } z(xy)(x\text{nil}) : \text{bool}$$
Assigning type schemes to Mini-ML expressions

Given a type scheme $\sigma = \forall A \ (\tau)$, write

$$\Gamma \vdash M : \sigma$$

if $A = \text{ftv}(\tau) - \text{ftv}(\Gamma)$ and $\Gamma \vdash M : \tau$ is derivable from the axiom and rules on Slides 16–19.

When $\Gamma = \{\}$ we just write $\vdash M : \sigma$ for $\{\} \vdash M : \sigma$ and say that the (necessarily closed—see Exercise 2.5.2) expression M is typeable in Mini-ML with type scheme σ.

["closed" = "has no free variables"]
[cf. Slide 7]

(a) A Mini-ML type checking problem:

\[
\text{given closed } M \text{ and } \sigma, \text{ does } \vdash M : \sigma \text{ hold?}
\]

(b) A Mini-ML typeability problem:

\[
\text{given closed } M, \text{ does there exist a closed } \sigma \text{ such that } \vdash M : \sigma \text{ holds?}
\]

N.B. Solving (a) entails solving (b) because of the form of the (let) typing rule.
Two examples involving self-application

\[
M \overset{\text{def}}{=} \text{let } f = \lambda x_1(\lambda x_2(x_1)) \text{ in } f \ f \\
M' \overset{\text{def}}{=} (\lambda f(f \ f)) \ \lambda x_1(\lambda x_2(x_1))
\]

Are \(M \) and \(M' \) typeable in the Mini-ML type system?