
Types
8 lectures for CST Part II by Andrew Pitts

〈www.cl.cam.ac.uk/teaching/1314/Types/〉

“One of the most helpful concepts in the whole of programming is the notion of
type, used to classify the kinds of object which are manipulated. A significant
proportion of programming mistakes are detected by an implementation which
does type-checking before it runs any program. Types provide a taxonomy
which helps people to think and to communicate about programs.”

R. Milner, “Computing Tomorrow” (CUP, 1996), p264

0



The full title of this course is

Type Systems for Programming Languages

What are ‘type systems’ and what are they good for?

‘A type system is a tractable syntactic method for proving the absence
of certain program behaviours by classifying phrases according to the
kinds of values they compute’

B. Pierce, ‘Types and Programming Languages’ (MIT, 2002), p1

Type systems are one of the most important channels by which
developments in theoretical computer science get applied in
programming language design and software verification.

1



Uses of type systems

• Detecting errors via type-checking, either statically (decidable errors
detected before programs are executed) or dynamically (typing errors
detected during program execution).

• Abstraction and support for structuring large systems.

• Documentation.

• Efficiency.

• Whole-language safety.

2



Safety

Informal definitions from the literature.

‘A safe language is one that protects its own high-level abstractions [no
matter what legal program we write in it]’.

‘A safe language is completely defined by its programmer’s manual
[rather than which compiler we are using]’.

‘A safe language may have trapped errors [one that can be handled
gracefully], but can’t have untrapped errors [ones that cause
unpredictable crashes]’.

3



Formal type systems

• Constitute the precise, mathematical characterisation of informal type
systems (such as occur in the manuals of most typed languages.)

• Basis for type soundness theorems: ‘any well-typed program cannot
produce run-time errors (of some specified kind)’.

• Can decouple specification of typing aspects of a language from
algorithmic concerns: the formal type system can define typing
independently of particular implementations of type-checking
algorithms.

4



Typical type system ‘judgement’

is a relation between typing environments (Γ), program phrases (M )
and type expressions (τ ) that we write as

Γ !M : τ

and read as ‘given the assignment of types to free identifiers of M
specified by type environment Γ, then M has type τ ’.

E.g.

f : int list → int , b : bool ! (if b then f nil else 3) : int

is a valid typing judgement about ML.

5



Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar

Haskell-style:
foo :: bar

C/Java-style:
bar foo

6



Type checking, typeability, and type inference

Suppose given a type system for a programming language with
judgements of the form Γ !M : τ .

Type-checking problem: given Γ, M , and τ , is Γ !M : τ derivable
in the type system?

Typeability problem: given Γ and M , is there any τ for which
Γ !M : τ is derivable in the type system?

Second problem is usually harder than the first. Solving it usually
involves devising a type inference algorithm computing a τ for each Γ
and M (or failing, if there is none).

7



Polymorphism = ‘has many types’

Overloading (or ‘ad hoc’ polymorphism): same symbol denotes
operations with unrelated implementations. (E.g. + might mean both
integer addition and string concatenation.)

Subsumption τ1 <: τ2: any M1 : τ1 can be used as M1 : τ2

without violating safety.

Parametric polymorphism (‘generics’): same expression belongs to a
family of structurally related types. (E.g. in SML, length function

fun length nil = 0

| length (x :: xs) = 1 + (length xs)

has type τ list → int for all types τ .)

8



Type variables and type schemes in Mini-ML

To formalise statements like

‘ length has type τ list → int , for all types τ ’

it is natural to introduce type variables α (i.e. variables for which types
may be substituted) and write

length : ∀α (α list → int).

∀α (α list → int) is an example of a type scheme.

9



Polymorphism of let-bound variables in ML

For example in

let f = λx(x) in (f true) :: (f nil)

λx(x) has type τ → τ for any type τ , and the variable f to which it is
bound is used polymorphically:

- in (f true), f has type bool → bool

- in (f nil), f has type bool list → bool list

Overall, the expression has type bool list .

10



‘Ad hoc’ polymorphism:

if f : bool → bool

and f : bool list → bool list ,
then (f true) :: (f nil) : bool list .

‘Parametric’ polymorphism:

if f : ∀α (α→ α),
then (f true) :: (f nil) : bool list .

11



Mini-ML typing judgement

takes the form Γ !M : τ where

• the typing environment Γ is a finite function from variables to type
schemes.
(We write Γ = {x1 : σ1, . . . , xn : σn} to indicate that Γ has
domain of definition dom(Γ) = {x1, . . . , xn} and maps each
xi to the type scheme σi for i = 1..n.)

• M is an Mini-ML expression

• τ is an Mini-ML type.

14


