
Security II: Cryptography

Markus Kuhn

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/teaching/1314/SecurityII/

These notes are provided as an aid for following the lectures, and are not a substitute for attending

Lent 2014 – Part II

1

Related textbooks

Main reference:

I Jonathan Katz, Yehuda Lindell:
Introduction to Modern Cryptography
Chapman & Hall/CRC, 2008 (new edition announced for March 2014)

Further reading:

I Christof Paar, Jan Pelzl:
Understanding Cryptography
Springer, 2010

http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

I Douglas Stinson:
Cryptography – Theory and Practice
3rd ed., CRC Press, 2005

I Menezes, van Oorschot, Vanstone:
Handbook of Applied Cryptography
CRC Press, 1996
http://www.cacr.math.uwaterloo.ca/hac/

2

http://www.cl.cam.ac.uk/teaching/1314/SecurityII/
http://www.cs.umd.edu/~jkatz/imc.html
http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/
http://cacr.uwaterloo.ca/~dstinson/CTAP3/CTAP3.html
http://www.cacr.math.uwaterloo.ca/hac/

Encryption schemes

Encryption schemes are algorithm triples (Gen,Enc,Dec):

Private-key (symmetric) encryption scheme

I K ← Gen key generation

I C ← EncK(M) encryption

I M = DecK(C) decryption

Public-key (asymmetric) encryption scheme

I (PK,SK)← Gen

I C ← EncPK(M)

I M = DecSK(C)

Probabilistic algorithms: Gen and (often also) Enc access a random-bit

generator that can toss coins (uniformly distributed, independent).
Notation: ← assigns the output of a probabilistic algorithm, := that of a deterministic algorithm.

3

When is an encryption scheme “secure”?

If no adversary can . . .

I . . . find out the key K?

I . . . find the plaintext message M?

I . . . determine any character/bit of M?

I . . . determine any information about M from C?

I . . . compute any function of the plaintext M from ciphertext C?
⇒ “semantic security”

Note about message length: we explicitly do not worry here about the
adversary being able to infer something about the length m of the plaintext
message M by looking at the length n of the ciphertext C.

Therefore, we consider for the following security definitions only messages of
fixed length m.

Variable-length messages can always be extended to a fixed length, by padding,

but this can be expensive. It will depend on the specific application whether

the benefits of fixed-length padding outweigh the added transmission cost.

4

What capabilities may the adversary have?

I unlimited / polynomial / realistic (� 280 steps) computation time?

I only access to ciphertext C?

I access to some plaintext/ciphertext pairs (M,C) with
C ← EncK(M)?

I how many applications of K can be observed?

I ability to trick the user of EncK into encrypting some plaintext of
the adversary’s choice and return the result?
(“oracle access” to Enc)

I ability to trick the user of DecK into decrypting some ciphertext of
the adversary’s choice and return the result?
(“oracle access” to Dec)?

I ability to modify or replace C en route?
(not limited to eavesdropping)

Wanted: Clear definitions of what security of an encryption scheme
means, to guide both designers and users of schemes, and allow proofs.

5

1 Symmetric encryption

2 Message authenticity

3 Authenticated encryption

4 Asymmetric encryption

5 Number theory

6 RSA trapdoor function

6

Recall: perfect secrecy

Perfect secrecy

An encryption scheme (Gen,Enc,Dec) over a message space M is
perfectly secret if for every probability distribution over M, every
message M ∈M, and every ciphertext C ∈ C with P (C) > 0 we have

P (M |C) = P (M).

In other words: even an eavesdropper with unlimited computational
power cannot learn anything about M by looking at C that they didn’t
already know in advance about M ⇒ eavesdropping C has no benefit.

7

Recall: one-time pad

Shannon’s theorem:

Let (Gen,Enc,Dec) be an encryption scheme over a message space M
with |M| = |K| = |C|. It is perfectly secret if and only if

1 Gen chooses every K with equal probability 1/|K|;
2 for every M ∈M and every C ∈ C, there exists a unique key K ∈ K

such that C := EncKM .

The standard example of a perfectly-secure symmetric encryption scheme:

One-time pad

Gen : K ∈R {0, 1}m (m uniform, independent coin tosses)

Enc : C := K ⊕M (bit-wise XOR)

Dec : M := K ⊕ C

8

Private-key (symmetric) encryption

A private-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Enc,Dec) and sets K,M, C such that

I the key generation algorithm Gen receives a security parameter `
and outputs a key K ← Gen(1`), with K ∈ K, key length |K| ≥ `;

I the encryption algorithm Enc maps a key K and a plaintext
message M ∈M = {0, 1}m to a ciphertext message
C ← EncK(M);

I the decryption algorithm Dec maps a key K and a ciphertext
C ∈ C = {0, 1}n (n ≥ m) to a plaintext message M := DecK(C);

I for all `, K ← Gen(1`), and M ∈ {0, 1}m: DecK(EncK(M)) = M .

Notes:

A “polynomial-time algorithm” has constants a, b, c such that the runtime is
always less than a · `b + c if the input is ` bits long. (think Turing machine)
Technicality: we supply the security parameter ` to Gen here in unary encoding (as a sequence of `

“1” bits: 1`), merely to remain compatible with the notion of “input size” from computational

complexity theory. In practice, Gen usually simply picks ` random bits K ∈R {0, 1}`.

9

Security definitions for encryption schemes

We define security via the rules of a game played between two players:

I a challenger, who uses an encryption scheme Π = (Gen,Enc,Dec)

I an adversary A, who tries to demonstrate a weakness in Π.

Most of these games follow a simple pattern:

1 the challenger uniformly picks at random a secret bit b ∈R {0, 1}
2 A interacts with the challenger according to the rules of the game

3 At the end, A has to output a bit b′.

The outcome of such a game XA,Π(`) is either

I b = b′ ⇒ A won the game, we write XA,Π(`) = 1

I b 6= b′ ⇒ A lost the game, we write XA,Π(`) = 0

Advantage

One way to quantify A’s ability to guess b is

AdvXA,Π(`) =
∣∣P (b = 1 and b′ = 1)− P (b = 0 and b′ = 1)

∣∣
10

Negligible advantage

Security definition

An encryption scheme Π is considered “X secure” if for all probabilistic
polynomial-time (PPT) adversaries A there exists a “negligible” function
negl such that

P (XA,Π(`) = 1) <
1

2
+ negl(`).

Some authors prefer the equivalent definition with

AdvXA,Π(`) < negl(`).

Negligible functions

A function negl(`) is “negligible” if it converges faster to zero than any
polynomial over ` does, as `→∞.

In practice: We want negl(`) to drop below a small number (e.g., 2−80 or

2−100) for modest key lengths ` (e.g., log10 ` ≈ 2 . . . 3). Then no realistic

opponent will have the computational power to repeat the game often enough

to win at least once more than what is expected from random guessing.
11

Indistinguishability in the presence of an eavesdropper

Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKeav
A,Π(`):

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC

M0,M1
1`

b′b

1`

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A outputs a pair of messages:
M0,M1 ∈ {0, 1}m.

2 The challenger computes C ← EncK(Mb) and returns
C to A

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKeav
A,Π(`) = 1

12

Indistinguishability in the presence of an eavesdropper

Definition: A private-key encryption scheme Π has indistinguishable
encryption in the presence of an eavesdropper if for all probabilistic,
polynomial-time adversaries A there exists a negligible function negl,
such that

P (PrivKeav
A,Π(`) = 1) ≤ 1

2
+ negl(`)

In other words: as we increase the security parameter `, we quickly
reach the point where no eavesdropper can do significantly better than
just randomly guessing b.

13

Pseudo-random generator I

G : {0, 1}n → {0, 1}e(n) where e(·) is a polynomial (expansion factor)

Definition

G is a pseudo-random generator if both

1 e(n) > n for all n (expansion)

2 for all probabilistic, polynomial-time distinguishers D there exists a
negligible function negl such that

|P (D(r) = 1)− P (D(G(s)) = 1)| ≤ negl(n)

where both r ∈R {0, 1}e(n) and the seed s ∈R {0, 1}n are chosen at
random, and the probabilities are taken over all coin tosses used by
D and for picking r and s.

14

Pseudo-random generator II

A brute-force distinguisher D would enumerate all 2n possible outputs of
G, and return 1 if the input is one of them.

It would achieve

P (D(G(s)) = 1) = 1

P (D(r) = 1) =
2n

2e(n)

the difference of which converges to 1, which is not negligible.

But a brute-force distinguisher has a exponential run-time O(2n), and is
therefore excluded!

We do not know how to prove that a given algorithm is a pseudo-random
generator, but there are many algorithms that are widely believed to be.

Some constructions are pseudo-random generators if another well-studied
problem is not solvable in polynomial time.

15

Encrypting using a pseudo-random generator

We define the following fixed-length private-key encryption scheme:

ΠPRG = (Gen,Enc,Dec):

Let G be a pseudo-random generator with expansion factor e(·),
K = {0, 1}`, M = C = {0, 1}e(`)

I Gen: on input 1` chose K ∈R {0, 1}` randomly

I Enc: C := G(K)⊕M
I Dec: M := G(K)⊕ C

Such constructions are known as “stream ciphers”.

We can prove that ΠPRG has “indistinguishable encryption in the
presence of an eavesdropper” assuming that G is a pseudo-random
generator: if we had a polynomial-time adversary A that can succeed
with non-negligible advantage against ΠPRG, we can turn that using a
polynomial-time algorithm into a polynomial-time distinguisher for G,
which would violate the assumption.

16

Security proof for a stream cipher

Claim: ΠPRG has indistinguishability in the presence of an eavesdropper
if G is a pseudo-random generator.

Proof: (outline) If ΠPRG did not have indistinguishability in the presence
of an eavesdropper, there would be an adversary A for which

ε(`) := P (PrivKeav
A,ΠPRG

(`) = 1)− 1

2

is not negligible.

Use that A to construct a distinguisher D for G:

I receive input W ∈ {0, 1}e(`)

I pick b ∈R {0, 1}
I run A(1`) and receive from it M0,M1 ∈ {0, 1}e(`)

I return C := W ⊕Mb to A
I receive b′ from A
I return 1 if b′ = b, otherwise return 0

Now, what is |P (D(r) = 1)− P (D(G(K)) = 1)|?
17

Security proof for a stream cipher (cont’d)

What is |P (D(r) = 1)− P (D(G(K)) = 1)|?
I What is P (D(r) = 1)?

Let Π̃ be an instance of the one-time pad, with key and message
length e(`), i.e. compatible to ΠPRG. In the D(r) case, where we
feed it a random string r ∈R {0, 1}e(n), then from the point of view
of A being called as a subroutine of D(r), it is confronted with a
one-time pad Π̃. The perfect secrecy of Π̃ implies P (D(r) = 1) = 1

2 .

I What is P (D(G(K)) = 1)?
In this case, A participates in the game PrivKeav

A,ΠPRG
(`). Thus we

have P (D(G(K)) = 1) = P (PrivKeav
A,ΠPRG

(`) = 1) = 1
2 + ε(`).

Therefore
|P (D(r) = 1)− P (D(G(K)) = 1)| = ε(`)

which we have assumed not to be negligible, which implies that G is not
a pseudo-random generator, contradicting the assumption.
Katz/Lindell, pp 73-75

18

Security proofs through reduction

Some key points about this style of “security proof”:

I We have not shown that the encryption scheme ΠPRG is “secure”.
(We don’t know how to do this!)

I We have shown that ΠPRG has one particular type of security
property, if one of its building blocks (G) has another one.

I We have “reduced” the security of construct ΠPRG to another
problem X:

problem X

instance of

to X

solution
attack

instance of

scheme Π AReduction

A′

Here: X = distinguishing output of G from random string

I We have shown how to turn any successful attack on ΠPRG into an
equally successful attack on its underlying building block G.

I “Successful attack” means finding a polynomial-time probabilistic
adversary algorithm that succeeds with non-negligible success
probability in winning the game specified by the given security
definition.

19

Security proofs through reduction

In the end, the provable security of some cryptographic construct (e.g.,
ΠPRG, some mode of operation, some security protocol) boils down to
these questions:

I What do we expect from the construct?

I What do we expect from the underlying building blocks?

I Does the construct introduce new weaknesses?

I Does the construct mitigate potential existing weaknesses in its
underlying building blocks?

20

Security for multiple encryptions

Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKmult
A,Π(`):

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC1, C2, . . . , Ct

M1
1 ,M

2
1 , . . . ,M

t
1

M1
0 ,M

2
0 , . . . ,M

t
0

1`

b′

1`

b

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A outputs two sequences of t messages:
M1

0 ,M
2
0 , . . . ,M

t
0 and M1

1 ,M
2
1 , . . . ,M

t
1 , where all M i

j ∈ {0, 1}m.

2 The challenger computes Ci ← EncK(M i
b) and returns

C1, C2, . . . , Ct to A
Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKmult

A,Π(`) = 1

21

Security for multiple encryptions (cont’d)

Definition: A private-key encryption scheme Π has indistinguishable
multiple encryptions in the presence of an eavesdropper if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P (PrivKmult
A,Π(`) = 1) ≤ 1

2
+ negl(`)

Same definition as for indistinguishable encryptions in the presence of an eavesdropper, except for
referring to the multi-message eavesdropping experiment PrivKmult

A,Π(`).

Example: Does our stream cipher ΠPRG offer indistinguishable multiple
encryptions in the presence of an eavesdropper?

Adversary A4 outputs four messages , and

returns b′ = 1 iff . P (PrivKmult
A4,ΠPRG

(`) = 1) =

Actually: Any encryption scheme is going to fail here!

22

Securing a stream cipher for multiple encryptions I

How can we still use a stream cipher if we want to encrypt multiple
messages M1,M2, . . . ,Mt using a pseudo-random generator G?

Synchronized mode

Let the PRG run for longer to produce enough output bits for all
messages:

G(K) = R1‖R2‖ . . . ‖Rt, Ci = Ri ⊕Mi

‖ is concatenation of bit strings

I convenient if M1,M2, . . . ,Mt all belong to the same
communications session and G is of a type that can produce long
enough output

I requires preservation of internal state of G across sessions

23

Securing a stream cipher for multiple encryptions II

Unsynchronized mode

Some PRGs have two separate inputs, a key K and an “initial vector”
IV . The private key K remains constant, while IV is freshly chosen at
random for each message, and sent along with the message.

for each i: IVi ∈R {0, 1}n, Ci := (IVi, G(K, IVi)⊕Mi)

But: what exact security properties do we expect of a G with IV input?

This question leads us to a new security primitive and associated security
definition: pseudo-random functions and CPA security.

24

Security against chosen-plaintext attacks (CPA)
Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKcpa
A,Π(`):

A

adversary

Ct, . . . , C2, C1

M1,M2, . . . ,Mt

M0,M1

C

Ct+t
′
, . . . , Ct+1

Mt+1, . . . ,Mt+t′

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

C ← EncK(Mb)
challenger

1`

b′b

1`

Setup: (as before)

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A is given oracle access to EncK :
A outputs M1, gets EncK(M1), outputs M2, gets EncK(M2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncK(Mb) and returns C to A
4 The adversary A continues to have oracle access to EncK .

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKcpa
A,Π(`) = 1

25

Security against chosen-plaintext attacks (cont’d)

Definition: A private-key encryption scheme Π has indistinguishable
multiple encryptions under a chosen-plaintext attack (“is CPA-secure”) if
for all probabilistic, polynomial-time adversaries A there exists a
negligible function negl, such that

P (PrivKcpa
A,Π(`) = 1) ≤ 1

2
+ negl(`)

Advantages:

I Eavesdroppers can often observe their own text being encrypted,
even where the encrypter never intended to provide an oracle.
(WW2 story: Midway Island/AF, server communication).

I CPA security provably implies security for multiple encryptions.

I CPA security allows us to build a variable-length encryption scheme
simply by using a fixed-length one many times.

26

Pseudo-random function

F : {0, 1}∗
key

× {0, 1}∗
input

→ {0, 1}∗
output

efficient, keyed, length preserving
|input|=|output|

Definition

F is a pseudo-random function if for all probabilistic, polynomial-time
distinguishers D there exists a negligible function negl such that∣∣∣P (DFK (·)(1n) = 1)− P (Df(·)(1n) = 1)

∣∣∣ ≤ negl(n)

where K ∈R {0, 1}n is chosen uniformly at random and f is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bitstrings.

Notation: Df(·) means that algorithm D has oracle access to function f .

How does this differ from a pseudo-random generator?
The distinguisher of a pseudo-random generator examines a string. Here, the
distinguisher examines entire functions FK and f .

There are 2n·2
n

different functions mapping n-bit strings to n-bit strings, so
any description of f would be at least n · 2n bits long, which cannot be read in
polynomial time. Therefore, we need to provide oracle access.
Block ciphers: practical constructions believed to provide pseudo-random functions/permutations.

27

CPA-secure encryption using a pseudo-random function

We define the following fixed-length private-key encryption scheme:

ΠPRF = (Gen,Enc,Dec):

Let F be a pseudo-random function.

I Gen: on input 1` choose K ∈R {0, 1}` randomly

I Enc: read K ∈ {0, 1}` and M ∈ {0, 1}`, choose R ∈R {0, 1}` randomly,
then output

C := (R,FK(R)⊕M)

I Dec: read K ∈ {0, 1}`, C = (R,S) ∈ {0, 1}2`, then output

M := FK(R)⊕ S

Strategy for proving ΠPRF to be CPA secure:
1 Show that a variant scheme Π̃ in which we replace FK with a random

function f is CPA secure (just not efficient).

2 Show that replacing f with a pseudo-random function FK cannot make it
insecure, by showing how an attacker on the scheme using FK can be
converted into a distinguisher between f and FK , violating the
assumption that FK is a pseudo-random function. 28

Security proof for encryption scheme ΠPRF

First consider Π̃, a variant of ΠPRF in which the pseudo-random function
FK was replaced with a random function f . Claim:

P (PrivKcpa

A,Π̃
(`) = 1) ≤ 1

2
+
q(`)

2`
with q(`) oracle queries

Recall: when the challenge ciphertext C in PrivKcpa

A,Π̃
(`) is computed, the

challenger picks RC ∈R {0, 1}` and returns C := (RC , f(RC)⊕Mb).

Case 1: RC is also used in one of the oracle queries. In which case
A can easily find out f(RC) and decrypt Mb. A makes at most q(`)
oracle queries and there are 2` possible values of RC , this case happens
with a probability of at most q(`)/2`.

Case 2: RC is not used in any of the oracle queries. For A the value
RC remains completely random, f(RC) remains completely random, mb

is returned one-time pad encrypted, and A can only make a random
guess, so in this case P (b′ = b) = 1

2 .

P (PrivKcpa

A,Π̃(`) = 1)

= P (PrivKcpa

A,Π̃(`) = 1 ∧ Case 1) + P (PrivKcpa

A,Π̃(`) = 1 ∧ Case 2)

≤ P (Case 1) + P (PrivKcpa

A,Π̃(`) = 1|Case 2) ≤ q(`)

2`
+

1

2
.

29

Security proof for encryption scheme ΠPRF (cont’d)

Assume we have an attacker A against ΠPRF with non-negligible

ε(`) = P (PrivKcpa
A,ΠPRF

(`) = 1)− 1

2

Its performance against Π̃ is also limited by

P (PrivKcpa

A,Π̃
(`) = 1) ≤ 1

2
+
q(`)

2`

Combining those two equations we get

P (PrivKcpa
A,ΠPRF

(`) = 1)− P (PrivKcpa

A,Π̃
(`) = 1) ≥ ε(`)− q(`)

2`

which is not negligible either, allowing us to distinguish f from FK :

Build distinguisher DO using oracle O to play PrivKcpa
A,Π(`) with A:

1 Run A(1`) and for each of its oracle queries M i pick Ri ∈R {0, 1}`,
then return Ci := (Ri,O(Ri)⊕M i) to A.

2 When A outputs M0,M1, pick b ∈R {0, 1} and RC ∈R {0, 1}`, then
return C := (RC ,O(RC)⊕Mb) to A.

3 Continue answering A’s encryption oracle queries. When A outputs
b′, output 1 if b′ = b, otherwise 0.

30

Security proof for encryption scheme ΠPRF (cont’d)

How effective is this D?

1 If D’s oracle is FK : A effectively plays PrivKcpa
A,ΠPRF

(`) because if

K was chosen randomly, DFK behaves towards A just like ΠPRF,
and therefore

P (DFK(·)(1`) = 1) = P (PrivKcpa
A,ΠPRF

(`) = 1)

2 If D’s oracle is f : likewise, A effectively plays PrivKcpa

A,Π̃
(`) and

therefore
P (Df(·)(1`) = 1) = P (PrivKcpa

A,Π̃
(`) = 1)

if f ∈R ({0, 1}`){0,1}` is chosen uniformly at random.

All combined the difference

P (DFK(·)(1`) = 1)− P (Df(·)(1`) = 1) ≥ ε(`)− q(`)

2`

not being negligible implies that FK is not a pseudo-random function,
which contradicts the assumption, so ΠPRF is CPA secure.
Katz/Lindell, pp 90–93

31

Pseudo-random permutation

F : {0, 1}∗
key

× {0, 1}∗
input

→ {0, 1}∗
output

efficient, keyed, length preserving
|input|=|output|

FK is a pseudo-random permutation if

I for every key K, there is a 1-to-1 relationship for input and output

I FK and F−1
K can be calculated with polynomial-time algorithms

I there is no polynomial-time distinguisher that can distinguish FK

(with randomly picked K) from a random permutation.
Note: Any pseudo-random permutation is also a pseudo-random function. A random function f
looks to any distinguisher just like a random permutation until it finds a collision x 6= y with
f(x) = f(y). The probability for finding one in polynomial time is negligible (“birthday problem”).

A strong pseudo-random permutation remains indistinguishable even if
the distinguisher has oracle access to the inverse.

Definition: F is a strong pseudo-random permutation if for all
polynomial-time distinguishers D there exists a negligible function negl
such that∣∣∣P (DFK(·),F−1

K (·)(1n) = 1)− P (Df(·),f−1(·)(1n) = 1)
∣∣∣ ≤ negl(n)

where K ∈R {0, 1}n is chosen uniformly at random, and f is chosen
uniformly at random from the set of permutations on n-bit strings.

32

Probability of collision / birthday problem

Throw b balls into n bins, selecting each bin uniformly at random.
With what probability do at least two balls end up in the same bin?

10
0

10
10

10
20

10
30

10
40

0

0.2

0.4

0.6

0.8

1

number of balls thrown into 10
40

 bins

c
o
lli

s
io

n
 p

ro
b
a
b
ili

ty

upper bound

lower bound

10
0

10
10

10
20

10
30

10
40

10
−40

10
−30

10
−20

10
−10

10
0

number of balls thrown into 10
40

 bins

c
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

upper bound

lower bound

Remember: for large n the collision probability

I is near 1 for b�
√
n

I is near 0 for b�
√
n, growing roughly proportional to b2

n

Expected number of balls thrown before first collision:
√

π
2
n (for n→∞)

No simple, efficient, and exact formula for collision probability, but good approximations:
http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf

33

Iterating a random function

f : {1, . . . , n} → {1, . . . , n} nn such functions, pick one at random

Functional graph: vertices {1, . . . , n}, directed edges (i, f(i))

Several components, each a directed cycle and trees attached to it.

Some expected values for n→∞, random u ∈R {1, . . . , n}:
I tail length E(t(u)) =

√
πn/8 f t(u)(u) = f t(u)+c(u)·i(u), ∀i ∈ N,

I cycle length E(c(u)) =
√
πn/8 where t(u), c(u) minimal

I rho-length E(t(u) + c(u)) =
√
πn/2

I predecessors E(|{v|f i(v) = u ∧ i > 0}|) =
√
πn/8

I edges of component containing u: 2n/3

If f is a random permutation: no trees, expected cycle length (n+ 1)/2
Menezes/van Oorschot/Vanstone, §2.1.6. Knuth: TAOCP, §1.3.3, exercise 17.
Flajolet/Odlyzko: Random mapping statistics, EUROCRYPT’89, LNCS 434.

34

http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/about/chap2.pdf#page=7
http://link.springer.com/chapter/10.1007/3-540-46885-4_34

Modes of operation

Given a fixed-length pseudo-random function F , we could encrypt a
variable-length message M‖Pad(M) = M1‖M2‖ . . . ‖Mn by applying
ΠPRF to its individual blocks Mi, and the result will still be CPA secure:

EncK(M) = (R1,EncK(R1)⊕M1, R2,EncK(R2)⊕M2, . . . Rn,EncK(Rn)⊕Mn)

But this doubles the message length!

“Modes of operation” that have also been proven to be CPA secure:

Cipher-block chaining (CBC)
C0 ∈R {0, 1}m, Ci := GK(Mi ⊕ Ci−1)

Output feedback mode (OFB)
C0 := R0 ∈R {0, 1}m, Ri := GK(Ri−1), Ci := Mi ⊕Ri

Randomized counter mode (CNT)
C0 ∈R {0, 1}m, Ci := Mi ⊕ FK(C0 + i)

EncK(M1‖M2‖ . . . ‖Mn) = (C0‖C1‖C2‖ . . . ‖Cn)
Above, F is a pseudo-random function and G is a pseudo-random permutation. The security
depends on both their key size and block size.

35

Security against chosen-ciphertext attacks (CCA)
Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKcca
A,Π(`):

A

adversary

. . . ,M2, C1

M1, C2, . . .

M0,M1

C

. . . , Mt+2, Ct+1

Mt+1, Ct+2 6= C, . . .

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

M i ← DecK(Ci)

C ← EncK(Mb)

1`

b′

1`

b

Setup:

I handling of `, b, K as before

Rules for the interaction:

1 The adversary A is given oracle access to EncK and DecK :
A outputs M1, gets EncK(M1), outputs C2, gets DecK(C2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncK(Mb) and returns C to A
4 The adversary A continues to have oracle access to EncK and DecK

but is not allowed to ask for DecK(C).

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKcca
A,Π(`) = 1

36

Malleability

We call an encryption scheme (Gen,Enc,Dec) malleable if an adversary
can modify the ciphertext in a way that causes a predictable/useful
modification to the plaintext.

Example: stream ciphers allow adversary to XOR the plaintext M with
arbitrary value X:

C = EncK(M) = (R,FK(R)⊕M)

C ′ = (R, (FK(R)⊕M)⊕X)

M ′ = DecK(C ′) = FK(R)⊕ ((FK(R)⊕M)⊕X) = M ⊕X

Malleable encryption schemes are usually not CCA secure.

CBC, OFB, and CNT are all malleable and not CCA secure.

Malleability is not necessarily a bad thing. If carefully used, it can be an essential building block to
privacy-preserving technologies such as digital cash or anonymous electonic voting schemes.

Homomorphic encryption schemes are malleable by design, providing anyone not knowing the key a
means to transform the ciphertext of M into a valid encryption of f(M) for some restricted class
of transforms f .

37

PrivKeav

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC

M0,M1
1`

b′b

1`

PrivKmult

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC1, C2, . . . , Ct

M1
1 ,M

2
1 , . . . ,M

t
1

M1
0 ,M

2
0 , . . . ,M

t
0

1`

b′

1`

b

PrivKcpa A

adversary

Ct, . . . , C2, C1

M1,M2, . . . ,Mt

M0,M1

C

Ct+t
′
, . . . , Ct+1

Mt+1, . . . ,Mt+t′

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

C ← EncK(Mb)
challenger

1`

b′b

1`

PrivKcca A

adversary

. . . ,M2, C1

M1, C2, . . .

M0,M1

C

. . . , Mt+2, Ct+1

Mt+1, Ct+2 6= C, . . .

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

M i ← DecK(Ci)

C ← EncK(Mb)

1`

b′

1`

b
38

1 Symmetric encryption

2 Message authenticity

3 Authenticated encryption

4 Asymmetric encryption

5 Number theory

6 RSA trapdoor function

39

Message authentication code (MAC)

A message authentication code is a tuple of probabilistic
polynomial-time algorithms (Gen,Mac,Vrfy) and sets K,M such that

I the key generation algorithm Gen receives a security parameter `
and outputs a key K ← Gen(1`), with K ∈ K, key length |K| ≥ `;

I the tag-generation algorithm Mac maps a key K and a message
M ∈M = {0, 1}∗ to a tag T ← MacK(M);

I the verification algorithm Vrfy maps a key K, a message M and a
tag T to an output bit b := VrfyK(M,T) ∈ {0, 1}, with b = 1
meaning the tag is “valid” and b = 0 meaning it is “invalid”.

I for all `, K ← Gen(1`), and M ∈ {0, 1}m:
VrfyK(M,MacK(M)) = 1.

40

MAC security definition: existential unforgeability
Message authentication code Π = (Gen, Mac, Vrfy), M = {0, 1}∗, security parameter `.

Experiment/game Mac-forgeA,Π(`):

A

adversary

1`

b

1` K ← Gen(1`)

T i ← MacK(M i)
T t, . . . , T 2, T 1

M1,M2, . . . ,Mt

b := VrfyK(M,T)
M,T

M 6∈{M1,M2,...,Mt}

1 challenger generates random key K ← Gen(1`)

2 adversary A is given oracle access to MacK(·); let
Q = {M1, . . . ,M t} denote the set of queries that A asks the oracle

3 adversary outputs (M,T)

4 the experiment outputs 1 if VrfyK(M,T) = 1 and M 6∈ Q
Definition: A message authentication code Π = (Gen,Mac,Vrfy) is
existentially unforgeable under an adaptive chosen-message attack
(“secure”) if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

P (Mac-forgeA,Π(`) = 1) ≤ negl(`)

41

MACs versus security protocols

MACs prevent adversaries forging new messages. But adversaries can still

1 replay messages seen previously (“pay £1000”, old CCTV image)

2 drop or delay messages (“smartcard revoked”)

3 reorder a sequence of messages

4 redirect messages to different recipients

A security protocol is a higher-level mechanism that can be built using
MACs, to prevent such manipulations. This usually involves including
into each message additional data before calculating the MAC, such as

I nonces

• message sequence counters

• message timestamps and expiry times

• random challenge from the recipient

• MAC of the previous message

I identification of source, destination, purpose, protocol version

I “heartbeat” (regular message to confirm sequence number)

Security protocols also need to define unambiguous syntax for such
message fields, delimiting them securely from untrusted payload data.

42

MAC using a pseudo-random function

Let F be a pseudo-random function.

I Gen: on input 1` choose K ∈R {0, 1}` randomly

I Mac: read K ∈ {0, 1}` and M ∈ {0, 1}m,
then output T := FK(M) ∈ {0, 1}n

I Vrfy: read K ∈ {0, 1}`, M ∈ {0, 1}m, T ∈ {0, 1}n,
then output 1 iff T = FK(M).

If F is a pseudo-random function, then (Gen,Mac,Vrfy) is existentially
unforgeable under an adaptive chosen message attack.

43

MAC using a block cipher: CBC-MAC

Blockcipher E : {0, 1}` × {0, 1}m → {0, 1}m

EK

M1

EK

M2

⊕

· · · EK

Mn

CBC-MACEK
(M)

⊕

Similar to CBC: IV = 0m, last ciphertext block serves as tag.

Provides existential unforgeability, but only for fixed message length n:

Adversary asks oracle for T 1 := CBC-MACEK
(M1) = EK(M1) and then

presents M = M1‖(T 1 ⊕M1) and T := CBC-MACEK
(M) =

EK((M1 ⊕ T 1)⊕ EK(M1)) = EK((M1 ⊕ T 1)⊕ T 1) = EK(M1) = T 1.
44

Variable-length MAC using a block cipher: ECBC-MAC

Blockcipher E : {0, 1}` × {0, 1}m → {0, 1}m

EK1

M1

EK1

M2

⊕

· · · EK1

EK2

Mn

ECBC-MACEK1,K2
(M)

⊕

Padding: M‖10p

p = m− ((|M |+ 1) mod m)

Disadvantages:

I up to two additional
applications of block cipher

I need to rekey block cipher

I added block if m divides |M |

45

Variable-length MAC using a block cipher: CMAC

Blockcipher E : {0, 1}` × {0, 1}m → {0, 1}m (typically AES: m = 128)

Derive subkeys K1,K2 ∈ {0, 1}m from key K ∈ {0, 1}`:
I K0 := EK(0)

I if msb(K0) = 0 then K1 := (K0 � 1) else K1 := (K0 � 1)⊕ J
I if msb(K1) = 0 then K2 := (K1 � 1) else K2 := (K1 � 1)⊕ J

This merely clocks a linear-feedback shift register twice, or equivalently multiplies a value in
GF (2m) twice with x. J is a fixed constant (generator polynomial), � is a left shift.

CMAC algorithm:

M1‖M2‖ . . . ‖Mn := M
r := |Mn|
if r = m then Mn := K1 ⊕Mn

else Mn := K2 ⊕ (Mn‖10m−r−1)
return CBC-MACK(M1‖M2‖ . . . ‖Mn)

Provides existential unforgeability, without the disadvantages of ECBC.
NIST SP 800-38B, RFC 4493

46

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://www.ietf.org/rfc/rfc4493.txt

Birthday attack against CBC-MAC, ECBC-MAC, CMAC

Let E be an m-bit block cipher, used to build MACK with m-bit tags.

Birthday/collision attack:

I Make t ≈
√

2m oracle queries for T i := MACK(〈i〉‖Ri‖〈0〉) with
Ri ∈R {0, 1}m, 1 ≤ i ≤ t.
Here 〈i〉 ∈ {0, 1}m is the m-bit binary integer notation for i.

I Look for collision T i = T j with i 6= j

I Ask oracle for T ′ := MACK(〈i〉‖Ri‖〈1〉)
I Present M := 〈j〉‖Rj‖〈1〉 and T := T ′ = MACK(M)

EK

〈i〉

C1

EK

Ri

C2

⊕

EK

〈0〉

MACK

⊕

The same intermediate value
C2 occurs while calculating the
MAC of
〈i〉‖Ri‖〈0〉, 〈j〉‖Rj‖〈0〉,
〈i〉‖Ri‖〈1〉, 〈j〉‖Rj‖〈1〉.
Possible workaround:
Truncate MAC result to less than m bits,
such that adversary cannot easily spot col-
lisions in C2 from C3.

Solution: big enough m.
47

1 Symmetric encryption

2 Message authenticity

3 Authenticated encryption

4 Asymmetric encryption

5 Number theory

6 RSA trapdoor function

48

Ciphertext integrity

Private-key encryption scheme Π = (Gen,Enc,Dec), Dec can output error: ⊥
Experiment/game CIA,Π(`):

A

adversary

1`

b

1` K ← Gen(1`)

Ci ← EncK(M i)
Ct, . . . , C2, C1

M1,M2, . . . ,Mt

b :=

{
0, DecK (C) = ⊥
1, DecK (C) 6= ⊥ C

C 6∈{C1,C2,...,Ct}

1 challenger generates random key K ← Gen(1`)

2 adversary A is given oracle access to EncK(·); let Q = {C1, . . . , Ct}
denote the set of query answers that A got from the oracle

3 adversary outputs C

4 the experiment outputs 1 if DecK(C) 6= ⊥ and C 6∈ Q
Definition: An encryption scheme Π = (Gen,Enc,Dec) provides
ciphertext integrity if for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that

P (CIA,Π(`) = 1) ≤ negl(`)

49

Autenticated encryption

Definition: An encryption scheme Π = (Gen,Enc,Dec) provides
authenticated encryption if it provides both CPA security and ciphertext
integrity.

Such an encryption scheme will then also be CCA secure.

Example:

Private-key encryption scheme ΠE = (GenE,Enc,Dec)
Message authentication code ΠM = (GenM,Mac,Vrfy)

Encryption scheme Π′ = (Gen′,Enc′,Dec′):

1 Gen′(1`) := (KE,KM) with KE ← GenE(1`) and KM ← GenM(1`)

2 Enc′(KE,KM)(M) := (C, T) with C ← EncKE
(M) and

T ← MacKM
(C)

3 Dec′ on input of (KE,KM) and (C, T) first check if
VrfyKM

(C, T) = 1. If yes, output DecKE
(C), if no output ⊥.

If ΠE is a CPA-secure private-key encryption scheme and ΠM is a secure
message authentication code with unique tags, then Π′ is a CCA-secure
private-key encryption scheme.

A message authentication code has unique tags, if for every K and every M there exists a unique
value T , such that VrfyK(M,T) = 1. 50

Combining encryption and message authentication

Warning: Not every way of combining a CPA-secure encryption scheme
(to achieve privacy) and a secure message authentication code (to
prevent forgery) will necessarily provide CPA security:

Encrypt-and-authenticate: (EncKE
(M),MacKM

(M))
Unlikely to be CPA secure: MAC may leak information about M .

Authenticate-then-encrypt: EncKE
(M‖MacKM

(M))
May not be CPA secure: the recipient first decrypts the received
message with DecKE

, then parses the result into M and MacKM
(M) and

finally tries to verify the latter. A malleable encryption scheme, combined
with a parser that reports syntax errors, may reveal information about M .

Encrypt-then-authenticate: (EncKE
(M),MacKM

(EncKE
(M)))

Secure: provides both CCA security and existential unforgeability.
If the recipient does not even attempt to decrypt M unless the MAC has been verified successfully,
this method can also prevent some side-channel attacks.

Note: CCA security alone does not imply existential unforgeability.

51

Padding oracle

TLS record protocol:

Recipient steps: CBC decryption, then checks and removes padding,
finally checks MAC.

Padding: append n times byte n (1 ≤ n ≤ 16)

Padding syntax error and MAC failure (used to be) distinguished in error
messages.

DK

M1

C1

⊕

C0 = IV

DK

M2

C2

⊕

DK

M3‖pad

C3

⊕

52

Padding oracle (cont’d)

Attacker has C0, . . . , C3 and tries to get M2:

I truncate ciphertext after C2

I a = actual last byte of M2,
g = attacker’s guess of a
(try all g ∈ {0, . . . , 255})

I XOR the last byte of C1 with

g ⊕ 0x01

I last byte of M2 is now

a⊕ g ⊕ 0x01

I g = a: padding correct ⇒ MAC failed error
g 6= a: padding syntax error (high prob.)

DK

M1

C1

⊕

C0 = IV

DK

M2

C2

⊕

Then try 0x02 0x02 and so on.

Serge Vaudenay: Security flaws induced by CBC padding, EUROCRYPT 2002

53

1 Symmetric encryption

2 Message authenticity

3 Authenticated encryption

4 Asymmetric encryption

5 Number theory

6 RSA trapdoor function

54

http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Key distribution problem

In a group of n participants, there are n(n− 1)/2 pairs who might want
to communicate at some point, requiring O(n2) keys to be exchanged
securely in advance.

This gets quickly unpractical if n� 2 and if participants regularly join
and leave the group.

P1 P2

P3

P4P5P6

P7

P8

TTP

P1 P2

P3

P4P5P6

P7

P8

Alternative 1: introduce an intermediary “trusted third party”

55

Trusted third party – key distribution centre

Needham–Schroeder protocol

Communal trusted server S shares key KPS with each participant P .

1 A informs S that it wants to communicate with B.

2 S generates KAB and replies to A with
EncKAS

(B,KAB ,EncKBS
(A,KAB))

Enc is a symmetric authenticated-encryption scheme

3 A checks name of B, stores KAB , and forwards the “ticket”
EncKBS

(A,KAB) to B

4 B also checks name of A and stores KAB .

5 A and B now share KAB and communicate via EncKAB
/DecKAB

.

S

AB

1

2

3

56

Kerberos

An extension of the Needham–Schroeder protocol is now widely used in
corporate computer networks between desktop computers and servers, in
the form of Kerberos and Microsoft’s Active Directory. KAS is generated
from A’s password (hash function).

Extensions include:

I timestamps and nonces to prevent replay attacks

I a “ticket-granting ticket” is issued and cached at the start of a
session, replacing the password for a limited time, allowing the
password to be instantly wiped from memory again.

I a pre-authentication step ensures that S does not reply with
anything encrypted under KAS unless the sender has demonstrated
knowledge of KAS , to hinder offline password guessing.

I mechanisms for forwarding and renewing tickets

I support for a federation of administrative domains (“realms”)

57

Key distribution problem: other options

Alternative 2: hardware security modules + conditional access

1 A trusted third party generates a global key K and embeds it
securely in tamper-resistant hardware tokens (e.g., smartcard)

2 Every participant receives such a token, which also knows the
identity of its owner and that of any groups they might belong to.

3 Each token offers its holder authenticated encryption operations
EncK(·) and DecK(A, ·).

4 Each encrypted message EncK(A,M) contains the name of the
intended recipient A (or the name of a group to which A belongs).

5 A’s smartcard will only decrypt messages addressed this way to A.
Commonly used for “broadcast encryption”, e.g. pay-TV, navigation satellites.

Alternative 3: Public-key cryptography

I Find an encryption scheme where separate keys can be used for
encryption and decryption.

I Publish the encryption key: the “public key”

I Keep the decryption key: the “secret key”
Some form of trusted third party is usually still required to certify the correctness of the published
public keys, but it is no longer directly involved in establishing a secure connection.

58

Public-key encryption

A public-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Enc,Dec) such that

I the key generation algorithm Gen receives a security parameter `
and outputs a pair of keys (PK,SK)← Gen(1`), with key lengths
|PK| ≥ `, |SK| ≥ `;

I the encryption algorithm Enc maps a public key PK and a
plaintext message M ∈M to a ciphertext message
C ← EncPK(M);

I the decryption algorithm Dec maps a secret key SK and a
ciphertext C to a plaintext message M := DecSK(C), or outputs ⊥;

I for all `, (PK,SK)← Gen(1`): DecSK(EncPK(M)) = M .

In practice, the message space M may depend on PK.

In some practical schemes, the condition DecSK(EncPK(M)) = M may fail with negligible
probability.

59

Security against chosen-plaintext attacks (CPA)
Public-key encryption scheme Π = (Gen, Enc, Dec)

Experiment/game PubKcpa
A,Π(`):

A

adversary

1`

b′b

1`

C

M0,M1

PK

challenger

C ← EncPK(Mb)

b ∈R {0, 1}
(PK, SK)← Gen(1`)

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key pair
(PK,SK)← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A is given the public key PK

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncPK(Mb) and returns C to A
Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PubKcpa

A,Π(`) = 1

Note that unlike in PrivKcpa we do not need to provide A with any oracle access:
here A has access to the encryption key PK and can evaluate EncPK(·) itself.

60

Security against chosen-ciphertext attacks (CCA)
Public-key encryption scheme Π = (Gen, Enc, Dec)

Experiment/game PubKcca
A,Π(`):

A
Mt, . . . ,M2,M1

C1, C2, . . . , Ct

M0,M1

C

b ∈R {0, 1}
(PK, SK)← Gen(1`)

1`

b′

1`

b
. . . , Mt+2,Mt+1

M i ← DecSK(Ci)

C ← EncPK(Mb) adversaryCt+1 6= C, . . .

Setup:

I handling of `, b, PK, SK as before

Rules for the interaction:

1 The adversary A is given PK and oracle access to DecSK :
A outputs C1, gets DecSK(C1), outputs C2, gets DecSK(C2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncSK(Mb) and returns C to A
4 The adversary A continues to have oracle access to DecSK

but is not allowed to ask for DecSK(C).

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PubKcca
A,Π(`) = 1

61

Security against chosen-plaintext attacks (cont’d)

Definition: A public-key encryption scheme Π has indistinguishable
encryptions under a chosen-plaintext attack (“is CPA-secure”) if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P (PubKcpa
A,Π(`) = 1) ≤ 1

2
+ negl(`)

Definition: A public-key encryption scheme Π has indistinguishable
encryptions under a chosen-ciphertext attack (“is CCA-secure”) if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P (PubKcca
A,Π(`) = 1) ≤ 1

2
+ negl(`)

What about ciphertext integrity / authenticated encryption?

Since the adversary has access to the public encryption key PK, there is
no useful equivalent notion of authenticated encryption for a public-key
encryption scheme.

62

1 Symmetric encryption

2 Message authenticity

3 Authenticated encryption

4 Asymmetric encryption

5 Number theory

6 RSA trapdoor function

63

Number theory: basic concepts and notation

Set of integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}
I if there exists c ∈ Z such that ac = b, we say a divides b, or a | b

• if 0 < a then a is a “divisor” of b

• if 1 < a < b then a is a “factor” of b

• if a does not divide b: a - b
I if p > 1 has no factors (only 1 and p as divisors), it is “prime”

I every integer n > 1 has a unique prime factorization n =
∏

i p
ei
i

I The modulo operator performs integer division and outputs the
remainder:

a mod b = c ⇒ 0 ≤ c < b ∧ ∃d ∈ Z : a− db = c

Examples: 7 mod 5 = 2, −1 mod 10 = 9

64

Greatest common divisor

gcd(a, b) is the largest c ∈ Z with c | a and c | b
Examples: gcd(18, 12) = 6, gcd(15, 9) = 3, gcd(15, 8) = 1

I gcd(a, b) = gcd(b, a)

I Euclids algorithm (WLOG a ≥ b > 0):

gcd(a, b) =

{
b, if b | a
gcd(b, a mod b), otherwise

I gcd(a, b) = 1 means a and b are “relatively prime”

I for all positive integers a, b, there exist integers x and y such that
gcd(a, b) = ax+ by

I Euclids extended algorithm (a ≥ b > 0):

(gcd(a, b), x, y) :=

egcd(a, b) =

(b, 0, 1), if b | a
(d, y, x− yq), otherwise,

with (d, x, y) := egcd(b, r),

where a = qb+ r, 0 ≤ r < b
65

Modular arithmetic

Set of integers modulo n: Zn = {0, 1, . . . , n− 1}

When working in Zn, we apply after each addition, subtraction,
multiplication or exponentiation the modulo n operation.
We add/subtract the integer multiple of n needed to get the result back into Zn.

Examples in Z5: 4 + 3 = 2, 4 · 2 = 3, 42 = 1

(Zn,+) is an abelian group and (Zn,+, ·) is a commutative ring.

This means: that all the usual rules of arithmetic apply, such as
commutativity and associativity.

Example: a(b+ c) = ab+ ac = ca+ ba

66

Modular inversion: division in Zn
In Zn, element a has a multiplicative inverse a−1 (with aa−1 = 1) if and
only if gcd(n, a) = 1.

In this case, the extended Euclidian algorithm gives us

nx+ ay = 1

and since nx = 0 in Zn for all x, we have ay = 1.

Therefore y = a−1 is the inverse needed for dividing by a.

I We call the set of all elements in Zn that have an inverse the
“multiplicative group” of Zn:

Z∗n = {a ∈ Zn | gcd(n, a) = 1}

I If p is prime, then Zp is a (finite) field, that is every element except
0 has a multiplicative inverse:

Z∗p = {1, . . . , p− 1}

67

Groups

A group (G, •) is a set G and an operator • : G×G→ G that have

closure: a • b ∈ G for all a, b ∈ G
associativity: a • (b • c) = (a • b) • c for all a, b, c ∈ G

neutral element: there exists an e ∈ G such that for all a ∈ G:
a • e = e • a = a

inverse element: for each a ∈ G there exists some b ∈ G such that
a • b = b • a = e

If a • b = b • a for all a, b ∈ G, the group is called commutative (or abelian).

A subgroup H of G is a subset H ⊂ G that is also a group (same operator •).

Alternative notations:

“Additive” group: think of group operator as a kind of “+”

I write 0 for the neutral element and −g for the inverse of g ∈ G.

I write g · i := g • g • · · · • g︸ ︷︷ ︸
i times

(g ∈ G, i ∈ Z)

“Multiplicative” group: think of group operator as a kind of “×”

I write 1 for the neutral element and g−1 for the inverse of g ∈ G.

I write gi := g • g • · · · • g︸ ︷︷ ︸
i times

(g ∈ G, i ∈ Z)

68

Finite groups

Let (G, •) be a group with a finite number of elements |G|.
Practical examples here: (Zn, +), (Z∗n, ·), (GF (2n),⊕), (GF (2n) \ {0},⊗)

Terminology:

I The order of a group G is its size |G|
I order of group element g in G is

ordG(g) = min{i > 0 | gi = 1}.

Related notion: the characteristic of
a ring is the order of 1 in its
additive group, i.e. the smallest i
with 1 + 1 + · · · + 1︸ ︷︷ ︸

i times

= 0.

Useful facts regarding any element g ∈ G in a group of order m = |G|:
I gm = 1, gi = gi mod m

I gi = gi mod ord(g)

I gx = gy ⇔ x ≡ y (mod ord(g))

I ord(g) | m “Lagrange’s theorem”

I if gcd(e,m) = 1 then g 7→ ge is a permutation, and g 7→ gd its
inverse (i.e., ged = g) if ed mod m = 1

Proofs: Katz/Lindell, sections 7.1 and 7.3

69

Cyclic groups

Let G be a finite (multiplicative) group of order m = |G|.

For g ∈ G consider the set

〈g〉 := {g0, g1, g2, . . .}

Note that |〈g〉| = ord(g) and 〈g〉 = {g0, g1, g2, . . . , gord(g)−1}.

Definitions:

I We call g a generator of G if 〈g〉 = G.

I We call G cyclic if it has a generator.

Useful facts:

I Every cyclic group of order m is isomorphic to (Zm,+). (gi 7→ i)

I 〈g〉 is a subgroup of G (subset, a group under the same operator)

I If |G| is prime, then G is cyclic and all g ∈ G \ {1} are generators.
Recall that ord(g) | |G|. We have ord(g) ∈ {1, |G|} if |G| is prime, which makes g either 1
or a generator.

Proofs: Katz/Lindell, sections 7.3

70

How to find a generator?

Let G be a cyclic (multiplicative) group of order m = |G|.
I If m is prime, any non-neutral element is a generator. Done.

But |Z∗p| = p− 1 is not prime (for p > 3)!

I Directly testing for |〈g〉| ?
= m is infeasibe for crypto-sized m.

I Fast test: if m =
∏

i p
ei

i is composite, then g ∈ G is a generator if
and only if gm/pi 6= 1 for all i.

I Sampling a polynomial number of elements of G for the above test
will lead to a generator in polynomial time (of log2 m) with all but
negligible probability.

⇒ Make sure you pick a group of an order with known prime factors.

One possibility:

I Chose a “strong prime” p = 2q + 1, where q is also prime
⇒ |Z∗p| = p− 1 = 2q has prime factors 2 and q.

71

(Zp,+) is a cyclic group

For every prime p every element g ∈ Zp \ {0} is a generator:

Zp = 〈g〉 = {g · i mod p | 0 ≤ i ≤ p− 1}

Note that this follows from the last fact on slide 70: Zp is of order p, which is prime.

Example in Z7:

(1 · 0, 1 · 1, 1 · 2, 1 · 2, 1 · 4, 1 · 5, 1 · 6) = (0, 1, 2, 3, 4, 5, 6)

(2 · 0, 2 · 1, 2 · 2, 2 · 2, 2 · 4, 2 · 5, 2 · 6) = (0, 2, 4, 6, 1, 3, 5)

(3 · 0, 3 · 1, 3 · 2, 3 · 2, 3 · 4, 3 · 5, 3 · 6) = (0, 3, 6, 2, 5, 1, 4)

(4 · 0, 4 · 1, 4 · 2, 4 · 2, 4 · 4, 4 · 5, 4 · 6) = (0, 4, 1, 5, 2, 6, 3)

(5 · 0, 5 · 1, 5 · 2, 5 · 2, 5 · 4, 5 · 5, 5 · 6) = (0, 5, 3, 1, 6, 4, 2)

(6 · 0, 6 · 1, 6 · 2, 6 · 2, 6 · 4, 6 · 5, 6 · 6) = (0, 6, 5, 4, 3, 2, 1)

I All the non-zero elements of Z7 are generators

I ord(0) = 1, ord(1) = ord(2) = ord(3) = ord(4) = ord(5) = ord(6) = 7

72

(Z∗p, ·) is a cyclic group

For every prime p there exists a generator g ∈ Z∗p such that

Z∗p = {gi mod p | 0 ≤ i ≤ p− 2}

Note that this does not follow from the last fact on slide 70: Z∗p is of order p− 1, which is usually
even, not prime.

Example in Z∗7 :
(10, 11, 12, 13, 14, 15) = (1, 1, 1, 1, 1, 1)

(20, 21, 22, 23, 24, 25) = (1, 2, 4, 1, 2, 4)

(30, 31, 32, 33, 34, 35) = (1, 3, 2, 6, 4, 5)

(40, 41, 42, 43, 44, 45) = (1, 4, 2, 1, 4, 2)

(50, 51, 52, 53, 54, 55) = (1, 5, 4, 6, 2, 3)

(60, 61, 62, 63, 64, 65) = (1, 6, 1, 6, 1, 6)

I 3 and 5 are generators of Z∗7
Fast generator test (p. 71), using |Z∗7 | = 6 = 2 · 3:

36/2 = 6, 36/3 = 2, 56/2 = 6, 56/3 = 4, all 6= 1.

I 1, 2, 4, 6 generate subgroups of Z∗7 : {1}, {1, 2, 4}, {1, 2, 4}, {1, 6}
I ord(1) = 1, ord(2) = 3,

ord(3) = 6, ord(4) = 3,
ord(5) = 6, ord(6) = 2

The order of g in Z∗p is the size of the subgroup 〈g〉.
Lagrange’s theorem: ordZ∗p (g) | p− 1 for all g ∈ Z∗p

73

Fermat’s and Euler’s theorem

Fermat’s little theorem: (1640)

p prime and gcd(a, p) = 1 ⇒ ap−1 mod p = 1

Euler’s phi function:

ϕ(n) = |Z∗n| = |{a ∈ Zn | gcd(n, a) = 1}|

I Example: ϕ(12) = |{1, 5, 7, 11}| = 4

I primes p, q:
ϕ(p) = p− 1

ϕ(pk) = pk−1(p− 1)

ϕ(pq) = (p− 1)(q − 1)

I gcd(a, b) = 1 ⇒ ϕ(ab) = ϕ(a)ϕ(b)

Euler’s theorem: (1763)

gcd(a, n) = 1 ⇔ aϕ(n) mod n = 1

I this implies that in Zn: ax = ax mod ϕ(n) for any a ∈ Zn, x ∈ Z
74

Chinese remainder theorem

Definition: Let (G, •) and (H, ◦) be two groups. A function f : G→ H
is an isomorphism from G to H if

I f is a 1-to-1 mapping (bijection)

I f(g1 • g2) = f(g1) ◦ f(g2) for all g1, g2 ∈ G

Chinese remainder theorem:
For any p, q with gcd(p, q) = 1 and n = pq, the mapping

f : Zn ↔ Zp × Zq f(x) = (x mod p, x mod q)

is an isomorphism, both from Zn to Zp × Zq and from Z∗n to Z∗p × Z∗q .

Inverse: To get back from xp = x mod p and xq = x mod q to x, we first use Euclid’s extended
algorithm to find a, b such that ap + bq = 1, and then x = (xpbq + xqap) mod n.

Application: arithmetic operations on Zn can instead be done on both
Zp and Zq after this mapping, which may be faster.

75

Taking roots in Zp
If xe = c in Zp, then x is the “eth root” of c, or x = c1/e.

Case 1: gcd(e, p− 1) = 1
Find d with de = 1 in Zp−1 (Euclid’s extended), then c1/e = cd in Zp.
Proof: (cd)e = cde = cde mod ϕ(p) = cde mod p−1 = c1 = c.

Case 2: e = 2 (taking square roots)
gcd(2, p− 1) 6= 1 if p odd prime ⇒ Euclid’s extended alg. no help here.

Quadratic residues
In Z∗p, x 7→ x2 is a 2-to-1 function: x2 = (−x)2.

Example in Z∗7: (12, 22, 32, 42, 52, 62) = (1, 4, 2, 2, 4, 1)

If x has a square root in Zp, x is a “quadratic residue”.
Example: Z7 has 4 quadratic residues: {0, 1, 2, 4}.
If p is an odd prime: Zp has (p− 1)/2 + 1 quadratic residues.

Euler’s criterion:

c(p−1)/2 mod p = 1 ⇔ c is a quadratic residue in Z∗p
Example in Z7: (7− 1)/2 = 3, (13, 23, 33, 43, 53, 63) = (1, 1, 6, 1, 6, 6)
c(p−1)/2 is also called the Legendre symbol

76

Taking square roots in Zp

If p mod 4 = 3 and c ∈ Z∗p is a quadratic residue:
√
c = c(p+1)/4 in Zp.

Proof:
[
c(p+1)/4

]2
= c(p+1)/2 = c(p−1)/2︸ ︷︷ ︸

=1

·c = c.

If p mod 4 = 1 this can also be done efficiently (details omitted here).

Application: solve ax2 + bx+ c = 0 in Zp

Solution: x =
−b±

√
b2 − 4ac

2a

Algorithms:
√
b2 − 4ac as above, (2a)−1 using Euclid’s extended

Taking roots in Zn

If n is composite, then we know how to test whether c1/e exists, and how
to compute it efficiently, only if we know the prime factors of n.

77

Working in subgroups of Z∗p
How can we construct a cyclic finite group G where all non-neutral
elements are generators?

Recall that Zp has (p− 1)/2 + 1 quadratic residues. That includes 0, so:
Z∗p has q = (p− 1)/2 quadratic residues, exactly half of its elements.

Quadratic residue: an element that is the square of some other element.

Choose p to be a strong prime, that is where q is also prime.

Let G = {g2 | g ∈ Z∗p} be the set of quadratic residues of Z∗p. G with
operator “multiplication mod p” is a subgroup of Z∗p, with order |G| = q.

Since G has prime order |G| = q: for all g ∈ G \ {1}: 〈g〉 = G.

Generate group(1`):
p ∈R {(` + 1)-bit strong primes}
q := (p− 1)/2
x ∈R Z∗p \ {−1, 1}
g := x2 mod p
return p, q, g

This technique is widely used to obtain a cyclic
finite group of order q and associated genera-
tor g for which the Discrete Logarithm Problem
and the Decision Diffie–Hellmann Problem are
believed to be hard.

78

Modular exponentiation

In cyclic group (G, •) (e.g., G = Z∗p):

How do we calculate ge efficiently? (g ∈ G, e ∈ N)

Naive algorithm: ge = g • g • · · · • g︸ ︷︷ ︸
e times

Far too slow for crypto-size e (e.g., e ≈ 2128)!

Square and multiply algorithm:

Binary representation: e =
n∑

i=0

ei · 2i, n = blog2 ec, ei =
⌊

e
2i

⌋
mod 2

Computation:

g20

:= g, g2i

:=
(
g2i−1

)2

ge :=
n∏

i=0

(
g2i
)ei

Side-channel vulnerability: the if statement leaks the
binary representation of e. “Montgomery’s ladder”
is an alternative algorithm with fixed control flow.

Square and multiply(g, e):
a := g
b := 1
for i := 0 to n do

if be/2ic mod 2 = 1 then
b := b • a ← multiply

a := a • a ← square
return b

79

Number theory: easy and difficult problems

Easy:

I given composite n and x ∈ Z∗n: find x−1 ∈ Z∗n
I given prime p and polynomial f(x) ∈ Zp[x]:

find x ∈ Zp with f(x) = 0
runtime grows linearly with the degree of the polynomial

Difficult:

I given prime p, generator g ∈ Z∗p:
• given value a ∈ Z∗p: find x such that a = gx.
→ Discrete Logarithm Problem

• given values gx, gy ∈ Z∗p: find gxy.
→ Computational Diffie–Hellman Problem

• given values gx, gy, z ∈ Z∗p: tell whether z = gxy.
→ Decision Diffie–Hellman Problem

I given a random n = p · q, where p and q are `-bit primes (` ≥ 1024):

• find integers p and q such that n = p · q in N
→ Factoring Problem

• given a polynomial f(x) of degree > 1:
find x ∈ Zn such that f(x) = 0 in Zn

80

Comparison of difficulty

symmetric key factoring n = pq DH in Z∗p DH in EC

80 bits 1024 bits 1024 bits 160 bits
128 bits 3072 bits 3072 bits 256 bits
256 bits 15360 bits 15360 bits 512 bits

81

1 Symmetric encryption

2 Message authenticity

3 Authenticated encryption

4 Asymmetric encryption

5 Number theory

6 RSA trapdoor function

82

Trapdoor permutations

A trapdoor permutation is a tuple of polynomial-time algorithms
(Gen, F, F−1) such that

I the key generation algorithm Gen receives a security parameter `
and outputs a pair of keys (PK,SK)← Gen(1`), with key lengths
|PK| ≥ `, |SK| ≥ `;

I the sampling function F maps a public key PK and a value x ∈ X
to a value y := FPK(x) ∈ X ;

I the inverting function F−1 maps a secret key SK and a value
y ∈ X to a value x := F−1

SK(y) ∈ X ;

I for all `, (PK,SK)← Gen(1`), x ∈ X : F−1
SK(FPK(x)) = x.

In practice, the domain X may depend on PK.

This looks almost like the definition of a public-key encryption scheme,
the difference being

I F is deterministic;

I the associated security definition.

83

Secure trapdoor permutations
Trapdoor permutation: Π = (Gen, F, F−1)

Experiment/game TDInvA,Π(`):

A

adversary x′x

1`

challenger

PK, y

(PK, SK)← Gen(1`)

x ∈R X
y := FPK(x)

1 The challenger generates a key pair (PK,SK)← Gen(1`) and a
random value x ∈R X from the domain of FPK .

2 The adversary A is given inputs PK and y := FPK(x).

3 Finally, A outputs x′.

If x′ = x then A has succeeded: TDInvA,Π(`) = 1.

A trapdoor permutation Π is secure if for all probabilistic polynomial time
adversaries A the probability of success P (TDInvA,Π(`) = 1) is negligible.

While the definition of a trapdoor permutation resembles that of a public-key encryption scheme,
its security definition does not provide the adversary any control over the input (plaintext).

84

Public-key encryption scheme from trapdoor permutation

Trapdoor permutation: ΠTD = (GenTD, F, F
−1) with FPK : X ↔ X

Authentic. encrypt. scheme: ΠAE = (GenAE,Enc,Dec), key space K
Secure hash function h : X → K

We define the private-key encryption scheme Π = (Gen′,Enc′,Dec′):

I Gen′: output key pair (PK,SK)← GenTD(1`)

I Enc′: on input of plaintext message M , generate random x ∈R X ,
y = F (x), K = h(x), C ← EncK(M), output ciphertext (y, C);

I Dec′: on input of ciphertext message C = (y, C), recover
K = h(F−1(y)), output DecK(C)

Encrypted message: F (x),Ench(x)(M)

The trapdoor permutation is only used to communicate a “session key” h(x), the actual message
is protected by a symmetric authenticated encryption scheme. The adversary A in the PubKcca

A,Π′
game has no influence over the input of F .

If hash function h is replaced with a “random oracle” (something that
just picks a random output value for each input from X), the resulting
public-key encryption scheme Π′ is CCA secure.

85

“Textbook” RSA encryption

Key generation
I Choose random prime numbers p and q (each ≈ 1024 bits long)

I n := pq (≈ 2048 bits = key length) ϕ(n) = (p− 1)(q − 1)

I pick integer values e, d such that: ed mod ϕ(n) = 1

I public key PK := (n, e)

I secret key SK := (n, d)

Encryption
I input plaintext M ∈ Z∗n, public key (n, e)

I C := Me mod n

Decryption
I input ciphertext C ∈ Z∗n, secret key (n, d)

I M := Cd mod n

In Zn: (Me)d = Med = Med mod ϕ(n) = M1 = M .

Common implementation tricks to speed up computation:
I Choose small e with low Hamming weight (e.g., 3, 17, 216 + 1) for faster modular encryption
I Preserve factors of n in SK = (p, q, d), decryption in both Zp and Zq , use Chinese

remainder theorem to recover result in Zn.
86

“Textbook” RSA is not secure

There are significant security problems with a naive application of the
basic “textbook” RSA encryption function C := P e mod n:

I deterministic encryption: cannot be CPA secure

I malleability:

• adversary intercepts C and replaces it with C′ := Xe · C
• recipient decrypts M ′ = DecSK(C′) = X ·M mod n

I chosen-ciphertext attack recovers plaintext:

• adversary intercepts C and replaces it with C′ := Re · C mod n

• decryption oracle provides M ′ = DecSK(C′) = R ·M mod n

• adversary recovers M = M ′ ·R−1 mod n

I Small value of M (e.g., 128-bit AES key), small exponent e = 3:

• if Me < n then C = Me mod n = Me and then M = 3
√
C can be

calculated efficiently in Z (no modular arithmetic!)

I many other attacks exist . . .

87

Using RSA as a CCA-secure encryption scheme

Solution 1: use only as trapdoor function to build encryption scheme

I Pick random value x ∈ Z∗n
I Ciphertext is (xe mod n,Ench(x)(M)), where Enc is from an

authenticated encryption scheme

Solution 2: Optimal Asymmetric Encryption Padding

Make M (with zero padding) the left half,
and a random string R the right half, of the
input of a two-round Feistel cipher, using a
secure hash function as the round function.

Interpret the result (X,Y) as an integer
M ′.

Then calculate C := M ′
e

mod n.

PKCS #1 v2.0
Wikipedia/Ozga

88

http://www.rsa.com/rsalabs/node.asp?id=2125

Practical pitfalls with implementing RSA

I low entropy of random-number generator seed when generating p
and q (e.g. in embedded devices):

• take public RSA modulus n1 and n2 from two devices

• test gcd(n1, n2)
?
= 1 ⇒ if no, n1 and n2 share this number as a

common factor

• February 2012 experiments: worked for many public HTTPS keys
Lenstra et al.: Public keys, CRYPTO 2012
Heninger et al.: Mining your Ps and Qs, USENIX Security 2012.

89

Outlook

Goals of this course were

I revisit some of the constructions discussed in Part IB security,
with emphasis on concrete definitions of security

I introduce some of the discrete algebra necessary to understand
public-key encryption schemes, using RSA as an example

Modern cryptography is still a young discipline (born in the early 1980s),
but well on its way from a collection of tricks to a discipline with solid
theoretical foundations.

Some important concepts that we did not cover here:

I elliptic-curve groups

I digital signatures

I identity-based encryption

I side-channel attacks

I application protocols: electronic voting, digital cash, etc.

I secure multi-party computation

90

http://link.springer.com/chapter/10.1007/978-3-642-32009-5_37
https://factorable.net/paper.html

	Symmetric encryption
	Message authenticity
	Authenticated encryption
	Asymmetric encryption
	Number theory
	RSA trapdoor function

