Anonymity and Censorship Resistance

Steven J. Murdoch

http://www.cl.cam.ac.uk/users/sjm217/
What is being blocked, and why

- Out of the 40 countries studied by the OpenNet Initiative in 2006, 26 censored the Internet in some way.
- The types of material censored varied depending on country, e.g.:
 - Human Rights (blocked in China)
 - Religion (blocked in Saudi Arabia, UAE, Iran, Bahrain)
 - Pornography (blocked in Saudi Arabia, UAE, Iran, Bahrain, Singapore, Burma, . . .)
- Other issues censored include: military and militant websites; sex education, alcohol/drugs, music; gay and lesbian websites; news
What is being blocked, and why

- Out of the 40 countries studied by the OpenNet Initiative in 2006, 26 censored the Internet in some way.
- The types of material censored varied depending on country, e.g.:
 - Human Rights (blocked in China)
 - Religion (blocked in Saudi Arabia, UAE, Iran, Bahrain)
 - Pornography (blocked in Saudi Arabia, UAE, Iran, Bahrain, Singapore, Burma, ...)
- Other issues censored include: military and militant websites; sex education, alcohol/drugs, music; gay and lesbian websites; news
Out of the 40 countries studied by the OpenNet Initiative in 2006, 26 censored the Internet in some way.

The types of material censored varied depending on country, e.g.:

- Human Rights (blocked in China)
- Religion (blocked in Saudi Arabia, UAE, Iran, Bahrain)
- Pornography (blocked in Saudi Arabia, UAE, Iran, Bahrain, Singapore, Burma, . . .)

Other issues censored include: military and militant websites; sex education, alcohol/drugs, music; gay and lesbian websites; news.
Blocking with technology

- When a country’s government controls international connectivity, they can block requests for banned websites
- There are a number of different approaches (DNS blocking, IP address blocking, etc.)
- Software may be produced in-country, but often is an adapted commercial product
- These companies not only make the software, but provide a continuously updated list of websites to be blocked
Normal web browsing

1. User requests www.example.org/page.html
2. DNS lookup for www.example.org
3. Lookup response: www.example.org is 192.0.2.166
4. www.example.org is 192.0.2.166
5. Get web page: www.example.org/page.html at 192.0.2.166
6. Here is www.example.org/page.html

Diagram: Jane Gowan
DNS tampering

1. User requests www.example.org/page.html
2. DNS response: www.example.org does not exist
IP blocking

1. User requests www.example.org/page.html
2. DNS lookup for www.example.org
3. Lookup response: www.example.org is 192.0.2.166
4. www.example.org is 192.0.2.166
5. Get web page: www.example.org/page.html at 192.0.2.166
6. Router drops all packets to 192.0.2.166
7. Browser concludes that www.example.org is inaccessible
Tradeoffs in blocking systems

- DNS blocking
 - Easy and cheap to implement
 - Blocks at domain name granularity – overblocks protocols, webpages
 - Trivial to bypass

- IP blocking
 - Easy and cheap to implement
 - Blocks at IP address (perhaps port) – overblocks virtual hosting

- Proxy blocking
 - Expensive to implement
 - Blocks at webpage level – low overblocking

- Hybrid blocking – IP based redirection to proxy
 - Tricky to get right, but cheap
 - Has some vulnerabilities
 - Blocks at webpage level – low overblocking
Even if a site is accessible, it may be removed from search engine results

Searching for “Tiananmen Square” on Google.com and Google.cn
Limitations of blocking

- Censorship systems block legitimate content and fail to block banned content
- It is fairly easy for readers and publishers to circumvent the technical measures
- Building and maintaining censorship systems is expensive
- Blocking one type of content encourages other types to be blocked
- Often the process of censorship is not transparent
Blocking through laws, fear, and intimidation

- ISPs may be forced to block sites themselves, or implement self-regulation
- People can be intimidated into not testing rules through fear of detection and retribution
- These may be through laws, social pressure or extra-legal punishment
- All these approaches may be used at the same time, and complement each other
Censorship resistance systems

- Software to resist censorship should
 - Hide where user is visiting (to prevent blocking)
 - Hide who the user is (to protect them from intimidation)
- These properties should be maintained even if the censorship resistance system is partially compromised
There are many other reasons why people might want privacy

- Ordinary people
 - To avoid personal information being sold to marketers
 - Protect themselves when researching sensitive topics
- Militaries and law enforcement
 - To carry out intelligence gathering
 - Protect undercover field agents
 - Offer anonymous tip lines
- Journalists
 - To protect sources, such as whistle blowers
- Human rights workers
 - To publicise abuses and protect themselves from surveillance
 - Blogging about controversial subjects
- Businesses
 - To observe their competition and build anonymous collaborations
Anonymous communication

- People have to hide in a crowd of other people (“anonymity loves company”)
- The goal of the system is to make all users look as similar as possible, to give a bigger crowd
- Hide who is communicating with whom
- Layered encryption and random delays hide correlation between input traffic and output traffic
Threshold mix

- In each round, the “threshold mix” accepts a fixed number of messages.
- Once the number of messages reaches the “batch size” the mixflushes and sends them all, in a random order.
- Other strategies are possible, but this is the type of mix we will examine in the exercise.
- After observing one round, the attacker knows the set of senders and receivers, but not who sent each message.
Threshold mix

- In each round, the “threshold mix” accepts a fixed number of messages.
- Once the number of messages reaches the “batch size” the mix flushes and sends them all, in a random order.
- Other strategies are possible, but this is the type of mix we will examine in the exercise.
- After observing one round, the attacker knows the set of senders and receivers, but not who sent each message.
In each round, the “threshold mix” accepts a fixed number of messages.

Once the number of messages reaches the “batch size” the mix flushes and sends them all, in a random order.

Other strategies are possible, but this is the type of mix we will examine in the exercise.

After observing one round, the attacker knows the set of senders and receivers, but not who sent each message.
• In each round, the “threshold mix” accepts a fixed number of messages
• Once the number of messages reaches the “batch size” the mix flushes and sends them all, in a random order
• Other strategies are possible, but this is the type of mix we will examine in the exercise
• After observing one round, the attacker knows the set of senders and receivers, but not who sent each message
In each round, the “threshold mix” accepts a fixed number of messages.

Once the number of messages reaches the “batch size” the mix flushes and sends them all, in a random order.

Other strategies are possible, but this is the type of mix we will examine in the exercise.

After observing one round, the attacker knows the set of senders and receivers, but not who sent each message.
• In each round, the “threshold mix” accepts a fixed number of messages.
• Once the number of messages reaches the “batch size” the mix flushes and sends them all, in a random order.
• Other strategies are possible, but this is the type of mix we will examine in the exercise.
• After observing one round, the attacker knows the set of senders and receivers, but not who sent each message.
By observing traffic over many rounds, the adversary can count each recipient’s share of the messages received.

Some users will receive more messages than others.

These users may be of interest, so the target of further investigation.

E.g. Bob’s share is: messages received by Bob messages received in total over all rounds.
Tracking Alice’s Contacts

- Can observe each Bob’s share in both rounds where Alice was sending, and rounds where she was not not sending.
- Recipients whose share jumps when Alice is sending are likely Alice’s friends.
- Score = (Bob’s share in rounds where Alice is sending) – (Bob’s share in rounds where Alice not sending)

Rounds when:
- Alice not sending
- Alice sending

<table>
<thead>
<tr>
<th>Alice not sending</th>
<th>Alice sending</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>1%</td>
<td>20%</td>
</tr>
<tr>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>2%</td>
<td>15%</td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Anonymity systems exist for hiding both email and web traffic

- Hiding web traffic is a fundamentally more difficult problem than hiding email
- Anonymity is achieved by making all traffic look the same (padding) and hiding timing correlations (delays)
- Web traffic is very variable (few kB to few GB): so padding doesn’t work well
- Long latencies would be intolerable for interactive traffic: so adding delays don’t work well
- However it is not all bad: anonymity needs other users to hide in
- There is much more web traffic than there is email, so this partially makes up for the lower security
Tor is a low-latency anonymity system

- Based on technology developed in the Onion Routing project
- Commonly used for web browsing (works for any TCP traffic)
- Originally built as a pure anonymity system (hides who is talking to whom)
- Now designed to resist censorship too (hides whether someone is using the system at all)
- Centralised directory authorities publish a list of all servers
Tor hides communication patterns by relaying data through volunteer servers

Diagram: Robert Watson
Tor hides communication patterns by relaying data through volunteer servers.
Tor hides communication patterns by relaying data through volunteer servers

Diagram: Robert Watson
Tor uses two types of encryption

Circuit encryption unlinks data entering and leaving a server
Tor uses two types of encryption

Circuit encryption unlinks data entering and leaving a server
Link encryption (TLS) disguises individual circuits
Tor uses two types of encryption

Circuit encryption unlinks data entering and leaving a server.
Link encryption (TLS) disguises individual circuits.
But data rate is unchanged so traffic analysis can correlate flows.
Freenet is an anonymous content distribution network

- While Tor allows access to the Internet, Freenet creates a private network.
- Users can create websites, share files and send/receive emails between other members of the network.
- Content is hosted by sharing it amongst users of the network.
- Users cannot select what content they host, and it is stored in an encrypted form.
Psiphon a is censorship resistance system with different tradeoffs to Tor

- There is no centralized control, so it is hard to block but also hard for user to find a server
- Users do not have to download software, but this limits the strength of protection
- If the user cannot modify browser settings or install software, Psiphon is still usable
- Users within a censored country can ask someone they trust outside of the country to install the Psiphon server
Further information

“Tools and Technology of Internet Filtering”, a chapter in “Access Denied”.
http://opennet.net/accessdenied

http://www.cl.cam.ac.uk/~rja14/book.html

The anonymity bibliography
http://www.freehaven.net/anonbib/

The Tor Project website
https://www.torproject.org/

A copy of these slides will be available
http://www.cl.cam.ac.uk/~sjm217/