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Linearizability 

3 



More generally 

 Suppose we build a shared-memory data structure directly 
from read/write/CAS, rather than using locking as an 
intermediate layer 
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H/W primitives: read, 
write, CAS, ... 

Locks 

Data structure 

H/W primitives: read, 
write, CAS, ... 

Data structure 

 Why might we want to do this? 

 What does it mean for the data structure to be correct? 



What we’re building 

 A set of integers, represented by a sorted linked list 
 

 find(int) -> bool 

 insert(int) -> bool 

 delete(int) -> bool 
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Searching a sorted list 

 find(20): 

H 10 30 T 

20? 

 find(20) -> false 
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Inserting an item with CAS 

 insert(20): 

 

H 10 30 T 

20 

30  20 
 

 insert(20) -> true 
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Inserting an item with CAS 

 insert(20): 

 

H 10 30 T 

20 

30  20 

25 

30  25 

 

 

• insert(25): 
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Searching and finding together 

 find(20) 

H 10 30 T 

 -> false 

 

20 

20? 

• insert(20)  -> true 

 

This thread saw 20 
was not in the set... 

...but this thread 
succeeded in putting 

it in! 

• Is this a correct implementation of a set? 

• Should the programmer be surprised if this happens? 

• What about more complicated mixes of operations? 
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Correctness criteria 

10 

Informally:  

 

Look at the behaviour of the data structure (what 
operations are called on it, and what their results are).   
 
If this behaviour is indistinguishable from atomic calls 
to a sequential implementation then the concurrent 
implementation is correct. 



Sequential specification 

 Ignore the list for the moment, and focus on the set: 

find(int) -> bool 

insert(int) -> bool 

delete(int) -> bool 

10, 20, 30 

10, 15, 20, 30 

10, 15, 30 10, 15, 20, 30 

insert(15)->true 

insert(20)->false delete(20)->true 

Sequential:  we’re only 
considering one operation 

on the set at a time 

Specification:  we’re saying what 
a set does, not what a list does, 

or how it looks in memory 
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Sequential specification 

deleteany() -> int 10, 20, 30 

deleteany()->10 

20, 30 

deleteany()->20 

10, 30 

This is still a sequential spec... just 
not a deterministic one 
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System model 

Shared object (e.g. “set”) 

find/insert/delete 

Thread 1 Thread n ... 
Threads make 

invocations and receive 
responses from the set  

(~method calls/returns) 

Primitive objects (e.g. 
“memory location”) 

read/write/CAS ...the set is 
implemented by 

making invocations and 
responses on memory 
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High level: sequential history 

time 

T
1: in

sert(10
) 

->
 t

ru
e 

T
2

: in
sert(20

) 

->
 t

ru
e 

T
1: fin

d
(15) 

->
 f

al
se

 

• No overlapping invocations:  

10 10, 20 10, 20 
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High level: concurrent history 

time 

• Allow overlapping invocations:  

Thread 2: 

Thread 1: 

insert(10)->true insert(20)->true 

find(20)->false 
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Linearizability 

• Is there a correct sequential history: 

• Same results as the concurrent one 

• Consistent with the timing of the 
invocations/responses? 
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Example: linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true insert(20)->true 

find(20)->false 
A valid sequential 

history: this concurrent 
execution is OK 
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Example: linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true delete(10)->true 

find(10)->false 

18 

A valid sequential 
history: this concurrent 

execution is OK 



Example: not linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true insert(10)->false 

delete(10)->true 
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Returning to our example 

• find(20) 

H 10 30 T 

   -> false 

 

20 

20? 

• insert(20)  -> true 

 

Thread 2: 

Thread 1: 

insert(20)->true 

find(20)->false 

A valid sequential history: 
this concurrent execution 

is OK 
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Recurring technique 

 For updates: 

 Perform an essential step of an operation by a single atomic 
instruction 

 E.g. CAS to insert an item into a list 

 This forms a “linearization point” 

 For reads:  

 Identify a point during the operation’s execution when the 
result is valid  

 Not always a specific instruction 
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Correctness (informal) 
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10, 20 

H 10 20 T 

15 

10, 15, 
20 

Abstraction 
function maps the 

concrete list to 
the abstract set’s 

contents 



Correctness (informal) 
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time 

L
o

o
ku

p
(20

) 

Tru
e 

In
se

rt(15) 

Tru
e 

High-level operation 

Primitive step 
(read/write/CAS) 

H H->10 10->20 H H->10 New CAS  



Correctness (informal) 
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time 

L
o

o
ku

p
(20

) 

Tru
e 

In
se

rt(15) 

Tru
e 

H H->10 10->20 H H->10 New CAS  

A left mover commutes with 
operations immediately before it 

A right mover commutes with 
operations immediately after it 

1. Show operations before linearization  
point are right movers 

2. Show operations after linearization point 
 are left movers 

3. Show linearization point updates abstract state  



Correctness (informal) 
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time 

L
o

o
ku

p
(20

) 

Tru
e 

In
se

rt(15) 

Tru
e 

H H->10 10->20 H H->10 New CAS  

A left mover commutes with 
operations immediately before it 

A right mover commutes with 
operations immediately after it 

Move these right 
over the read of the 

10->20 link 



Adding “delete” 

 First attempt: just use CAS 
delete(10): 

 

H 10 30 T 

10  30  
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Delete and insert: 

 delete(10) & insert(20): 

 

H 10 30 T 

10  30  

20 

30  20  
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Logical vs physical deletion 

H 10 30 T 

20 

10  30 
 

30  30X 
 

 

30  20  
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 Use a ‘spare’ bit to indicate logically deleted nodes: 



Delete-greater-than-or-equal 

 DeleteGE(int x) -> int 

 Remove “x”, or next element above “x” 

H 10 30 T 

• DeleteGE(20) -> 30 

H 10 T 
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Does this work: DeleteGE(20) 

H 10 30 T 

1. Walk down the list, as in a 
normal delete, find 30 as 

next-after-20 

2. Do the deletion as normal: 
set the mark bit in 30, then 

physically unlink 
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Delete-greater-than-or-equal 

time 

Thread 2: 

Thread 1: 

insert(25)->true insert(30)->false 

deleteGE(20)->30 

A B 

C 

A must be after C 
(otherwise C should 

have returned 15) 

C must be after B 
(otherwise B should 

have succeeded) 

B must be after A 
(thread order) 

31 



How to realise this is wrong 

 See operation which determines result 

 Consider a delay at that point 

 Is the result still valid? 

 Delayed read: is the memory still accessible (more of this next 
week) 

 Delayed write: is the write still correct to perform? 

 Delayed CAS: does the value checked by the CAS determine 
the result? 
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Lock-free progress 
 
properties 
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static volatile int MY_LIST = 0; 

 

bool find(int key) { 

 

  // Wait until list available 

  while (CAS(&MY_LIST, 0, 1) == 1) {  

  } 

 

  ...  

 

  // Release list 

  MY_LIST = 0; 

} 

OK, we’re not calling 
pthread_mutex_lock... but 
we’re essentially doing the 

same thing 

34 

Progress: is this a good “lock-free” list? 



“Lock-free” 

 A specific kind of non-blocking progress guarantee 

 Precludes the use of typical locks 

 From libraries 

 Or “hand rolled” 

 Often mis-used informally as a synonym for 

 Free from calls to a locking function 

 Fast 

 Scalable 

35 



“Lock-free” 

 A specific kind of non-blocking progress guarantee 

 Precludes the use of typical locks 

 From libraries 

 Or “hand rolled” 

 Often mis-used informally as a synonym for 

 Free from calls to a locking function 

 Fast 

 Scalable 
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The version number mechanism is an example of a technique  
that is often effective in practice, does not use locks, but  
is not lock-free in this technical sense 



time 

Wait-free 

 A thread finishes its own operation if it continues executing steps 

S
tart 

F
in

ish
 

F
in

ish
 

S
tart 

F
in

ish
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S
tart 



Implementing wait-free algorithms 
 Important in some significant niches 

 e.g., in real-time systems with worst-case execution time 
guarantees 

 General construction techniques exist (“universal constructions”) 

 Queuing and helping strategies: everyone ensures oldest 
operation makes progress 
 Often a high sequential overhead 
 Often limited scalability 

 Fast-path / slow-path constructions 
 Start out with a faster lock-free algorithm 
 Switch over to a wait-free algorithm if there is no progress 
 ...if done carefully, obtain wait-free progress overall 

 In practice, progress guarantees can vary between operations on 
a shared object 
 e.g., wait-free find + lock-free delete 
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time 

Lock-free 

 Some thread finishes its operation if threads continue taking 
steps 

S
tart 

S
tart 

F
in

ish
 

F
in

ish
 

S
tart 

S
tart 

F
in

ish
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A (poor) lock-free counter 

40 

int getNext(int *counter) { 
   while (true) { 
       int result = *counter; 
       if (CAS(counter, result, result+1)) { 
           return result; 
       } 
   } 
} 

Not wait free: no 
guarantee that any 

particular thread will 
succeed 



Implementing lock-free algorithms 

 Ensure that one thread (A) only has to repeat work if some 
other thread (B) has made “real progress” 

 e.g., insert(x) starts again if it finds that a conflicting update 
has occurred 

 Use helping to let one thread finish another’s work 

 e.g., physically deleting a node on its behalf 
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time 

Obstruction-free 

 A thread finishes its own operation if it runs in isolation 

S
tart 

S
tart 

F
in

ish
 Interference here can prevent 

any operation finishing 
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A (poor) obstruction-free counter 
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int getNext(int *counter) { 
   while (true) { 
       int result = LL(counter); 
       if (SC(counter, result+1)) { 
           return result; 
       } 
   } 
} 

Weak load-linked (LL) 
store-conditional (SC): LL 
on one thread will prevent 
an SC on another thread 

succeeding 



Building obstruction-free algorithms 

 Ensure that none of the low-level steps leave a data 
structure “broken” 

 On detecting a conflict: 

 Help the other party finish 

 Get the other party out of the way 

 Use contention management to reduce likelihood of live-
lock  
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Hashtables and  
 
skiplists 

45 



Hash tables 

0 16 24 

5 

3 11 

Bucket array: 
8 entries in 

example 

List of items with  
hash val modulo 8 == 0 

46 



Hash tables: Contains(16) 

0 16 24 

5 

3 11 

1. Hash 16.  
Use bucket 0 

2. Use normal 
list operations 
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Hash tables: Delete(11) 

0 16 24 

5 

3 11 

1. Hash 11.  
Use bucket 3 

2. Use normal 
list operations 
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Lessons from this hashtable 

 Informal correctness argument: 

 Operations on different buckets don’t conflict: no extra 
concurrency control needed 

 Operations appear to occur atomically at the point where the 
underlying list operation occurs 

 (Not specific to lock-free lists: could use whole-table lock, 
or per-list locks, etc.) 
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Practical difficulties: 

 Key-value mapping 

 Population count 

 Iteration 

 Resizing the bucket array 

Options to consider when  
implementing a “difficult” operation: 

 
 
 
 
 
 
 
 
 

Relax the semantics  
(e.g., non-exact count, or non-linearizable count) 

Fall back to a simple implementation if permitted 
(e.g., lock the whole table for resize) 

Design a clever implementation 
(e.g., split-ordered lists) 

Use a different data structure 
(e.g., skip lists) 
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Skip lists 

5 11 16 24 0 3 

Each node is a “tower” of 
random size.  High levels 

skip over lower levels 

All items in a single list: 
this defines the set’s 

contents 
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Skip lists: Delete(11) 

5 11 16 24 0 3 

Principle: lowest list is the truth 

1. Find “11” node, mark it 
logically deleted 

2. Link by link remove “11” 
from the towers 

3. Finally, remove “11” 
from lowest list 
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Queues 
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Work stealing queues 

PushBottom(Item) 
PopBottom() -> Item 

PopTop() -> Item 

Add/remove items, 
PopBottom must return 
an item if the queue is 

not empty 

Try to steal an item.  
May sometimes return 

nothing “spuriously” 1. Semantics relaxed for “PopTop” 

2. Restriction: only one thread ever calls “Push/PopBottom” 

3. Implementation costs skewed toward “PopTop” complex 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom “Bottom” is a normal 
integer, updated only by 

the local end of the queue 

Items between the 
indices are present in the 

queue “Top” has a version 
number, updated 
atomically with it 

55 Arora, Blumofe, Plaxton 



0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

57 



Top / V1 

0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

if (bottom==top) { 

  bottom = 0; 

  if (CAS( &<top,version>, 

 <tmp_top,tmp_v>, 

 <0,v+1>)) { 

    return result; 

  } 

} 

<top,version>=<0,v+1> 

Item popTop() { 

  if (bottom <= top) return null; 

  <tmp_top,tmp_v> = <top, version>; 

  result = tasks[tmp_top]; 

  if (CAS( &<top,version>, 

 <tmp_top, tmp_v>, 

 <tmp_top+1, v+1>)) { 

    return result; 

  } 

  return null; 

} 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

if (bottom==top) { 

  bottom = 0; 

  if (CAS( &<top,version>, 

 <tmp_top,tmp_v>, 

 <0,v+1>)) { 

    return result; 

  } 

} 

<top,version>=<0,v+1> 

Item popTop() { 

  if (bottom <= top) return null; 

  <tmp_top,tmp_v> = <top, version>; 

  result = tasks[tmp_top]; 

  if (CAS( &<top,version>, 

 <tmp_top, tmp_v>, 

 <tmp_top+1, v+1>)) { 

    return result; 

  } 

  return null; 

} 
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ABA problems 

0 

1 

2 

3 

4 

Top 

Item popTop() { 

  if (bottom <= top) return null; 

  tmp_top = top; 

  result = tasks[tmp_top]; 

  if (CAS(&top, top, top+1)) { 

      return result; 

  } 

  return null; 

} 

AAA 

BBB 

CCC 

Bottom 

result = CCC 

FFF 

EEE 

DDD 
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General techniques 

 Local operations designed to avoid CAS 

 Traditionally slower, less so now 

 Costs of memory fences can be important (“Idempotent work 
stealing”, Michael et al) 

 Local operations just use read and write 

 Only one accessor, check for interference 

 Use CAS: 

 Resolve conflicts between stealers  

 Resolve local/stealer conflicts 

 Version number to ensure conflicts seen 
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Reducing contention 

62 



Reducing contention 

 Suppose you’re implementing a shared counter with the 
following sequential spec: 
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void increment(int *counter) { 

   atomic { 

       (*counter) ++; 

   } 

} 

How well can this scale? 

void decrement(int *counter) { 

   atomic { 

       (*counter) --; 

   } 

} 

bool isZero(int *counter) { 

   atomic { 

       return (*counter) == 0; 

   } 

} 



SNZI trees 
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SNZI 

(10,100) 

SNZI 

(2,230) 

SNZI 

(5,250) 

T2 T1 T3 T5 T4 T6 

Child SNZI forwards 
inc/dec to parent when 

the child changes 
to/from zero 

Each node holds a value 
and a version number 

(updated together with 
CAS)  

SNZI: Scalable NonZero Indicators, Ellen et al 



SNZI trees, linearizability on 0->1 change 
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SNZI 

(0,100) 

SNZI 

(0,230) 

T2 T1 

1. T1 calls increment 
2. T1 increments child to 1 
3. T2 calls increment 
4. T2 increments child to 2 
5. T2 completes 
6. Tx calls isZero 
7. Tx sees 0 at parent 
8. T1 calls increment on parent 
9. T1 completes 

 

Tx 



SNZI trees 
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void increment(snzi *s) { 

   bool done=false; 

   int undo=0; 

   while(!done) { 

      <val,ver> = read(s->state); 

      if (val >= 1 && CAS(s->state, <val,ver>, <val+1,ver>)) { done = true; } 

      if (val == 0 && CAS(s->state, <val,ver>, <½, ver+1>)) {  

          done = true;  val=½; ver=ver+1 

      } 

      if (val == ½) { 

          increment(s->parent); 

          if (!CAS(s->state, <val, ver>, <1, ver)) { undo ++; } 

      } 

   } 

   while (undo > 0) { 

      decrement(s->parent); 

   } 

} 



Reducing contention: stack 

67 

A scalable lock-free stack algorithm, Hendler et al 

Existing lock-free stack 
(e.g., Treiber’s): good 

performance under low 
contention, poor 

scalability 
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Pairing up operations 
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P
u

sh
(10

) 

P
u

sh
(20

) 

P
u

sh
(30

) 

P
o

p
 

20 

P
o

p
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Back-off elimination array 
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Stack 

Elimination array 

Contention on  
the stack?  Try  
the array 

Don’t get  
eliminated?  

Try the stack 

Operation record: Thread, Push/Pop, … 



Explicit memory  
 
management 
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Deletion revisited: Delete(10) 

H 10 30 T 

H 10 30 T 

H 10 30 T 
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De-allocate to the OS? 

H 30 T 10 

Search(20) 
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Re-use as something else? 

H 30 T 10 100 200 

Search(20) 
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Re-use as a list node? 

H 30 T 10 

H 30 T 

20 

Search(20) 

74 



H 10 30 T 

Reference counting 

1 1 1 1 

1. Decide what to access 
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H 10 30 T 

Reference counting 

2 1 1 1 

1. Decide what to access 
2. Increment reference count 
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H 10 30 T 

Reference counting 

2 1 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

2 2 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

1 2 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

1 1 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
4. Defer deallocation until count 0 
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Epoch mechanisms 
Global epoch: 1000 
Thread 1 epoch: - 
Thread 2 epoch: - 

H 10 30 T 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1000 

Thread 1 epoch: 1000 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1000 

Thread 1 epoch: 1000 
Thread 2 epoch: 1000 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

Deallocate @ 1000 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1001 

Thread 1 epoch: 1000 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

3. Increment global epoch at end 
of operation (or periodically) 

84 

Deallocate @ 1000 



Epoch mechanisms 
Global epoch: 1002 
Thread 1 epoch: - 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

3. Increment global epoch at end 
of operation (or periodically) 

4. Free when everyone past epoch 

10 

Deallocate @ 1000 
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H 30 T 



The “repeat offender problem” 
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Free: ready for 
allocation 

Allocated and 
linked in to a data 

structure 

Escaping: unlinked, 
but possibly 

temporarily in use 



Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

H 10 30 T 

1. Decide what to access 
2. Set guard 
3. Check access still OK 
4. Batch deallocations and defer on 

objects while guards are present 

Thread 1 
guards 

93 

See also:  “Safe 
memory reclamation” 

& hazard pointers, 
Maged Michael 


