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The Golden Age, 1945–1959

Memory

Processor
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1962: First(?) Multiprocessor
BURROUGHS D825, 1962

‘‘Outstanding features include truly modular hardware
with parallel processing throughout’’

FUTURE PLANS
The complement of compiling languages is to be ex-
panded.’’
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... with Shared-Memory Concurrency

Shared Memory

Thread1 Threadn

W R RW

Multiple threads acting on a sequentially consistent (SC)
shared memory:

the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, respecting the order
specified by the program [Lamport, 1979]
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Multiprocessors, 1962–2012
Niche multiprocessors since 1962

IBM System 370/158MP in 1972

Mass-market since 2005 (Intel Core 2 Duo).
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Multiprocessors, 2012

Intel Xeon E7
(up to 20 hardware threads)
(also AMD, Centaur)

IBM Power 795 server
(up to 1024 hardware threads)

Oracle Sparc, Intel Itanium
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Why now?
Exponential increases in transistor counts continuing — but
not per-core performance

energy efficiency (computation per Watt)

limits of instruction-level parallelism

Concurrency finally mainstream — but how to understand and
design concurrent systems?

Aside: Concurrency everywhere, at many scales:

intra-core

GPU

multicore (/manycore) systems← our focus

datacenter-scale

explicit message-passing vs shared memory
– p. 7



These Lectures
Part 1: Concurrency in multiprocessors and programming
languages (Peter Sewell, Mark Batty)

Establish a solid basis for thinking about relaxed-memory
executions, linking to usage, microarchitecture, experiment,
and semantics. x86, POWER/ARM, problems with Java,
C/C++11

Part 2: Concurrent algorithms (Tim Harris, Oracle)

Concurrent programming: simple algorithms, correctness
criteria, advanced synchronisation patterns, transactional
memory.

Guest Lectures: Paul McKenney, Luis Ceze (?)
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Let’s Pretend... that we live in an SC world

Shared Memory

Thread1 Threadn

W R RW

Multiple threads acting on a sequentially consistent (SC)
shared memory:

the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, respecting the order
specified by the program [Lamport, 1979]

– p. 9



A Tiny Language
location, x , m address
integer , n integer
thread id , t thread id

expression, e ::= expression
| n integer literal
| x read from address x

| x = e write value of e to address x

| e; e ′ sequential composition
| e + e ′ plus

process , p ::= process
| t :e thread
| p|p′ parallel composition
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A Tiny Language

That was just the syntax — how can we be precise about the
permitted behaviours of programs?
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Defining an SC Semantics: SC memory
Take an SC memory M to be a function from addresses to
integers.

Define the behaviour as a labelled transition system (LTS): the
least set of (memory,label,memory) triples satisfying these
rules.

M
t:l
−→ M ′ M does t : l to become M ′

M (x ) = n

M
t :R x=n
−−−−−→ M

MREAD

M
t :W x=n
−−−−−→ M ⊕ (x 7→ n)

MWRITE
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Defining an SC Semantics: expressions

e
l
−→ e

′
e does l to become e

′

x
R x=n
−−−−→ n

READ

x = n
W x=n
−−−−→ n

WRITE

e
l
−→ e

′

x = e
l
−→ x = e ′

WRITE CONTEXT

n; e
τ

−→ e
SEQ

e1
l
−→ e

′

1

e1; e2
l
−→ e ′1; e2

SEQ CONTEXT

e
l
−→ e

′
e does l to become e

′

e1
l
−→ e

′

1

e1 + e2
l
−→ e ′1 + e2

PLUS CONTEXT 1

e2
l
−→ e

′

2

n1 + e2
l
−→ n1 + e ′2

PLUS CONTEXT 2

n = n1 + n2

n1 + n2
τ

−→ n
PLUS
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Example: SC Expression Trace
(x = y); x

– p. 14



Example: SC Expression Trace
(x = y); x

(x = y); x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9
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Example: SC Expression Trace
(x = y); x

(x = y); x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

y
R y=7
−−−→ 7

READ

x = y
R y=7
−−−→ x = 7

WRITE

(x = y); x
R y=7
−−−→ (x = 7); x

SEQ CONTEXT
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Example: SC Expression Trace
(x = y); x

(x = y); x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

x = 7
W x=7
−−−−→ 7

WRITE

(x = 7); x
W x=7
−−−−→ 7; x

SEQ CONTEXT
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Example: SC Expression Trace
(x = y); x

(x = y); x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

7; x
τ
−→ x

SEQ

x
R x=9
−−−→ 9

READ
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Defining an SC Semantics: lifting to processes

p
t:l
−→ p′ p does t : l to become p′

e
l
−→ e ′

t :e
t:l
−→ t :e ′

THREAD

p1
t:l
−→ p′

1

p1|p2
t:l
−→ p′

1
|p2

PAR CONTEXT LEFT

p2
t:l
−→ p′

2

p1|p2
t:l
−→ p1|p′2

PAR CONTEXT RIGHT

free interleaving

– p. 15



Defining an SC Semantics: whole-system states
A system state 〈p, M 〉 is a pair of a process and a memory.

s
t:l
−→ s ′ s does t : l to become s ′

p
t:l
−→ p′

M
t:l
−→ M ′

〈p, M 〉
t:l
−→ 〈p′, M ′〉

SSYNC

p
t :τ
−−→ p′

〈p, M 〉
t :τ
−−→ 〈p′, M 〉

STAU

synchronising between the process and the memory, and
letting threads do internal transitions

– p. 16



Example: SC Interleaving
All threads can read and write the shared memory.

Threads execute asynchronously – the semantics allows any
interleaving of the thread transitions. Here there are two:

〈t1:x = 1|t2:x = 2, {x 7→ 0}〉
t1:W x=1

uulllllllllllll

t2:W x=2

))RRRRRRRRRRRRR

〈t1:1|t2:x = 2, {x 7→ 1}〉

t2:W x=2

��

〈t1:x = 1|t2:2, {x 7→ 2}〉

t1:W x=1

��

〈t1:1|t2:2, {x 7→ 2}〉 〈t1:1|t2:2, {x 7→ 1}〉

But each interleaving has a linear order of reads and writes to
the memory.

– p. 17



Combinatorial Explosion
The behaviour of t1:x = x + 1|t2:x = x + 7 for the initial store
{x 7→ 0}:

〈t1:1|t2:(x = x + 7), {x 7→ 1}〉
r // •

+
// •

w // 〈t1:1|t2:8, {ll 7→ 8}〉

〈t1:(x = 1)|t2:(x = x + 7), {x 7→ 0}〉

r

**UUUUUUUUUUUUUUUUU

w

44iiiiiiiiiiiiiiiii

〈t1:1|t2:(x = 7 + 0), {x 7→ 1}〉

+

**TTTTTTTTTTTTTTTT

〈t1:(x = 1 + 0)|t2:(x = x + 7), {x 7→ 0}〉

r

((QQQQQQQQQQQQ

+

66mmmmmmmmmmmm

〈t1:(x = 1)|t2:(x = 7 + 0), {x 7→ 0}〉

+

**UUUUUUUUUUUUUUUUU

w

44iiiiiiiiiiiiiiiii

〈t1:1|t2:(x = 7), {x 7→ 1}〉
w // 〈t1:1|t2:7, {x 7→ 7}〉

〈t1:(x = x + 1)|t2:(x = x + 7), {x 7→ 0}〉

r

66mmmmmmmmmmmm

r

((QQQQQQQQQQQQ
〈t1:(x = 1 + 0)|t2:(x = 7 + 0), {x 7→ 0}〉

+

44iiiiiiiiiiiiiiiii

+
**UUUUUUUUUUUUUUUUU

〈t1:(x = 1)|t2:(x = 7), {x 7→ 0}〉

w

44jjjjjjjjjjjjjjjj

w

**TTTTTTTTTTTTTTTT

〈t1:(x = x + 1)|t2:(x = 7 + 0), {x 7→ 0}〉

r

66mmmmmmmmmmmm

+
((QQQQQQQQQQQQ

〈t1:(x = 1 + 0)|t2:(x = 7), {x 7→ 0}〉

+

44iiiiiiiiiiiiiiiii

w

**UUUUUUUUUUUUUUUUU
〈t1:x = 1|t2:7, {x 7→ 7}〉

w // 〈t1:1|t2:7, {x 7→ 1}〉

〈t1:(x = x + 1)|t2:(x = 7), {x 7→ 0}〉

r

44iiiiiiiiiiiiiiiii

w

**UUUUUUUUUUUUUUUUU
〈t1:x = 1 + 0|t2:7, {x 7→ 7}〉

+

44jjjjjjjjjjjjjjjj

〈t1:x = x + 1|t2:7, {x 7→ 7}〉
r // •

+
// •

w // 〈t1:8|t2:7, {ll 7→ 8}〉

NB: the labels +, w and r in this picture are just informal hints as to how
those transitions were derived
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Morals

For free interleaving, number of systems states scales as
nt, where n is the threads per state and t the number of
threads.

Drawing state-space diagrams only works for really tiny
examples – we need better techniques for analysis.

Almost certainly you (as the programmer) didn’t want all
those 3 outcomes to be possible – need better idioms or
constructs for programming.

– p. 19



Mutual Exclusion

For “simple” concurrency, need some way(s) to synchronise
between threads, so can enforce mutual exclusion for shared
data.

with built-in support from the scheduler, eg for mutexes
and condition variables (at the language or OS level)

coding up mutex library implementations just using reads
and writes

...or with richer hardware primitives (TAS, CAS, LL/SC)

See Part 2 of these lectures.
Here’s a good discussion of mutexes and condition variables: A. Birrell, J. Guttag, J. Horning,
and R. Levin. Thread synchronization: a Formal Specification. In System Programming with
Modula-3, chapter 5, pages 119-129. Prentice-Hall, 1991.
See Herlihy and Shavit’s text, and N. Lynch Distributed Algorithms, for many algorithms (and
much more). – p. 20



Implementing Simple Mutual Exclusion

Initial state: x=0 and y=0
Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

– p. 21



Implementing Simple Mutual Exclusion

Initial state: x=0 and y=0
Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

repeated use?
thread symmetry (same code on each thread)?
performance?
fairness?
deadlock, global lock ordering, compositionality?

– p. 21



Message Passing

Another basic concurrent idiom:

Initial State: flag=0
x1=10; while (0==flag) do {};
x2=20; x1+x2
flag=1

This is one-shot message passing — a step towards the
producer-consumer problems... (c.f. Herlihy and Shavit)

– p. 22



Atomicity again

In this toy language, assignments and dereferencing are
atomic. For example,
〈t1:x = 3498734590879238429384|t2:x = 7, {x 7→ 0}〉
will reduce to a state with x either 3498734590879238429384 or
7, not something with the first word of one and the second
word of the other. Implement?

But in t1:(x = e)|t2:e
′, the steps of evaluating e and e ′ can be

interleaved.

Wrapping all subexpressions that access potentially shared
variables in lock/unlock pairs enlarges the granularity of
atomic reads and writes.

– p. 23



Data Races

...or, said another way, it excludes data races

(and if you’ve done so, the exactly level of atomicity doesn’t
matter)

(p.s. what is a race exactly?)

– p. 24



Let’s Try...

SB:

– p. 25



MP
In SC, message passing should work as expected:

Thread 1 Thread 2

data = 1

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

– p. 26



MP

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

Regardless of other reads.

– p. 26



MP

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
HotSpot) will rewrite

print data =⇒ print r1

– p. 26



MP

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print r1

In SC, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
HotSpot) will rewrite

print data =⇒ print r1

So the compiled program can print 0

– p. 26



Let’s Not Pretend... that we live in an SC world
Not since that IBM System 370/158MP in 1972

nor in x86, ARM, POWER, SPARC, or Itanium

or in C, C++, or Java

– p. 27



Relaxed Memory

Multiprocessors and compilers incorporate many performance
optimisations

(hierarchies of cache, load and store buffers, speculative execution,
cache protocols, common subexpression elimination, etc., etc.)

These are:

unobservable by single-threaded code

sometimes observable by concurrent code

Upshot: they provide only various relaxed (or weakly
consistent) memory models, not sequentially consistent
memory.

– p. 28



What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

– p. 29



What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

Flawed. Always confusing, sometimes wrong. – p. 29



What About the Specs?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011

– p. 30



In practice

Architectures described by informal prose:

In a multiprocessor system, maintenance of cache
consistency may, in rare circumstances, require
intervention by system software.

(Intel SDM, Nov. 2006, vol 3a, 10-5)

– p. 31



A Cautionary Tale
Intel 64/IA32 and AMD64 - before August 2007 (Era of
Vagueness)

A model called Processor
Ordering, informal prose

Example: Linux Kernel mail-
ing list, 20 Nov 1999 - 7 Dec
1999 (143 posts)

Keywords: speculation, or-
dering, cache, retire, causal-
ity

A one-instruction program-
ming question, a microarchi-
tectural debate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unloc
optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unloc
down from about 22 ticks for the "lock; btrl $0,%0" asm code
to 1 tick for a simple "movl $0,%0" instruction, a huge gain. Later
he reported that Ingo Molnar noticed a 4% speed-up in a bench-
mark test, making the optimization very valuable. Ingo also
added that the same optimization cropped up in the FreeBSD
mailing list a few days previously. But Linus Torvalds poured cold
water on the whole thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster
timings. They will crash, eventually.
The window may be small, but if you do this, then sud-
denly spinlocks aren’t reliable any more.

– p. 32



Resolved only by appeal to
an oracle:

that the piplines are no longer invalid and the buffers
should be blown out.
I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD people
must still be on older Pentium hardware and that’s why
they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel,
also replied to Linus, pointing out a possible misconception
his proposed exploit. Regarding the code Linus posted, Er
replied:

It will always return 0. You don’t need "spin un-

lock()" to be serializing.
The only thing you need is to make sure there is a
store in "spin unlock()", and that is kind of true by
the fact that you’re changing something to be observ-
able on other processors.
The reason for this is that stores can only possibly
be observed when all prior instructions have retired
(i.e. the store is not sent outside of the processor until
it is committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:
Since the instructions for the store in the spin unlock

– p. 33



IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose
principles, e.g.

P1. Loads are not reordered with older loads
P2. Stores are not reordered with older stores

supported by 10 litmus tests illustrating allowed or forbidden
behaviours, e.g.

Message Passing (MP)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV EAX←[y] (read y=1)

MOV [y]←1 (write y=1) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 1:EAX=1 ∧ Thread 1:EBX=0

– p. 34



P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

– p. 35



P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Store Buffer (SB)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 35



Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

– p. 36



Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 36



Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

– p. 37



Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

Microarchitecturally plausible? yes, e.g. with shared store
buffers

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory – p. 37



Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

AMD3.14: Allowed

IWP: ???

Real hardware: unobserved

Problem for normal programming: ?

Weakness: adding memory barriers does not recover SC,
which was assumed in a Sun implementation of the JMM

– p. 37



Problem 2: Ambiguity

P1–4. ...may be reordered with...

P5. Intel 64 memory ordering ensures transitive visibility of
stores — i.e. stores that are causally related appear to
execute in an order consistent with the causal relation

Write-to-Read Causality (WRC) (Litmus Test 2.5)
Thread 0 Thread 1 Thread 2

MOV [x]←1 (W x=1) MOV EAX←[x] (R x=1) MOV EBX←[y] (R y=1)

MOV [y]←1 (W y=1) MOV ECX←[x] (R x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 2:EBX=1

∧ Thread 2:ECX=0

– p. 38



Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

– p. 39



Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

In the view of Thread 0:
a→b by P4: Reads may [...] not be reordered with older writes to the same location.
b→c by P1: Reads are not reordered with other reads.
c→d, otherwise c would read 2 from d
d→e by P3. Writes are not reordered with older reads.
so a:Wx=1 → e:Wx=2

But then that should be respected in the final state, by P6: In a multiprocessor system, stores to

the same location have a total order, and it isn’t.

(can see allowed in store-buffer microarchitecture) – p. 39



Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

So spec unsound (and also our POPL09 model based on it).

– p. 39



Intel SDM and AMD64, Nov. 2008 – now

Intel SDM rev. 29–35 and AMD3.17

Not unsound in the previous sense

Explicitly exclude IRIW, so not weak in that sense. New
principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores

But, still ambiguous, and the view by those processors is left
entirely unspecified

– p. 40



Intel:
http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html

(rev. 35 on 6/10/2010).
See especially SDM Vol. 3A, Ch. 8.

AMD:
http://developer.amd.com/Resources/documentation/guides/Pages/defa

(rev. 3.17 on 6/10/2010).
See especially APM Vol. 2, Ch. 7.

– p. 41



Why all these problems?
Recall that the vendor architectures are:

loose specifications;

claimed to cover a wide range of past and future
processor implementations.

Architectures should:

reveal enough for effective programming;

without revealing sensitive IP; and

without unduly constraining future processor design.

There’s a big tension between these, compounded by internal
politics and inertia.

– p. 42



Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

– p. 43



Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x INC x

– p. 44



Aside: x86 ISA, Locked Instructions
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Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG
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Aside: x86 ISA, Locked Instructions

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:

if equal, set ZF=1 and load src into dest,

otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

Can use to solve consensus problem...
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Aside: x86 ISA, Memory Barriers

MFENCE memory barrier

(also SFENCE and LFENCE)

– p. 46



Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 47



Inventing a Usable Abstraction
Have to be:

Unambiguous

Sound w.r.t. experimentally observable behaviour

Easy to understand

Consistent with what we know of vendors intentions

Consistent with expert-programmer reasoning

Key facts:

Store buffering (with forwarding) is observable

IRIW is not observable, and is forbidden by the recent
docs

Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO. – p. 48



x86-TSO Abstract Machine

Separate instruction semantics and memory model

Define the memory model in two (provably equivalent) styles:

an abstract machine (or operational model)

an axiomatic model

Put the instruction semantics and abstract machine in
parallel, exchanging read and write messages (and
lock/unlock messages).
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x86-TSO Abstract Machine

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread
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x86-TSO Abstract Machine: Interface
Events
e ::= t:W x=v a write of value v to address x by thread t

| t:Rx=v a read of v from x by t

| t:B an MFENCE memory barrier by t

| t:L start of an instruction with LOCK prefix by t

| t:U end of an instruction with LOCK prefix by t

| t:τ x=v an internal action of the machine,
moving x = v from the write buffer on t to
shared memory

where

t is a hardware thread id, of type tid,

x and y are memory addresses, of type addr

v and w are machine words, of type value
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x86-TSO Abstract Machine: Machine States

A machine state s is a record

s : 〈[ M : addr→ value;
B : tid→ (addr× value) list;
L : tid option]〉

Here:

s.M is the shared memory, mapping addresses to values

s.B gives the store buffer for each thread

s.L is the global machine lock indicating when a thread
has exclusive access to memory

– p. 52



x86-TSO Abstract Machine: Auxiliary Definitions

Say t is not blocked in machine state s if either it holds the
lock (s.L = SOME t) or the lock is not held (s.L = NONE).

Say there are no pending writes in t’s buffer s.B(t) for address
x if there are no (x, v) elements in s.B(t).
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x86-TSO Abstract Machine: Behaviour

RM: Read from memory

not blocked(s , t)

s .M (x ) = v

no pending(s .B(t), x )

s
t:Rx=v
−−−−−−→ s

Thread t can read v from memory at address x if t is

not blocked, the memory does contain v at x , and

there are no writes to x in t ’s store buffer.
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x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not blocked(s , t)

∃b1 b2. s .B(t) = b1 ++[(x , v)] ++b2

no pending(b1, x )

s
t:Rx=v
−−−−−−→ s

Thread t can read v from its store buffer for address x

if t is not blocked and has v as the newest write to x

in its buffer;

– p. 55



x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

s
t:W x=v
−−−−−−→ s ⊕ 〈[B := s .B ⊕ (t 7→ ([(x , v)] ++s .B(t)))]〉

Thread t can write v to its store buffer for address x

at any time;
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x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory

not blocked(s , t)

s .B(t) = b ++[(x , v)]

s
t:τ x=v−−−−−→

s ⊕ 〈[M := s .M ⊕ (x 7→ v)]〉 ⊕ 〈[B := s .B ⊕ (t 7→ b)]〉

If t is not blocked, it can silently dequeue the oldest

write from its store buffer and place the value in

memory at the given address, without coordinating

with any hardware thread
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x86-TSO Abstract Machine: Behaviour

L: Lock
s .L = NONE

s .B(t) = [ ]

s
t:L
−−→ s ⊕ 〈[L :=SOME(t)]〉

If the lock is not held and its buffer is empty, thread t

can begin a LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d instruction

when its store buffer is not empty, the machine can take one or

more t:τ x=v steps to empty the buffer and then proceed.
– p. 58



x86-TSO Abstract Machine: Behaviour

U: Unlock
s .L = SOME(t)

s .B(t) = [ ]

s
t:U
−−→ s ⊕ 〈[L :=NONE]〉

If t holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.
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x86-TSO Abstract Machine: Behaviour

B: Barrier

s .B(t) = [ ]

s
t:B
−−→ s

If t ’s store buffer is empty, it can execute an MFENCE.
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Notation Reference

SOME and NONE construct optional values

(·, ·) builds tuples

[ ] builds lists

++ appends lists

· ⊕ 〈[· := ·]〉 updates records

·(· 7→ ·) updates functions.
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First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0x=0
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Barriers and LOCK’d Instructions, recap

MFENCE memory barrier
flushes local write buffer

LOCK’d instructions (atomic INC, ADD, CMPXCHG, etc.)
flush local write buffer
globally locks memory

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE

MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

NB: both are expensive
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NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible
behavior, not a description of the implementation internals

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread ⊇beh

6=hw

Force: Of the internal optimizations of processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving
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Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:
hyperthreading): multiple hardware threads/core sharing
resources.

If the OS flushes store buffers on context switch, software
threads should have the same semantics.

– p. 65
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