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ABSTRACT
Network use has evolved to be dominated by content distri-
bution and retrieval, while networking technology still can
only speak of connections between hosts. Accessing con-
tent and services requires mapping from the what that users
care about to the network’s where. We present Content-
Centric Networking (CCN) which takes content as a primi-
tive – decoupling location from identity, security and access,
and retrieving content by name. Using new approaches to
routing named content, derived heavily from IP, we can si-
multaneously achieve scalability, security and performance.
We have implemented the basic features of our architecture
and demonstrate resilience and performance with secure file
downloads and VoIP calls.

1. INTRODUCTION
The engineering principles and architecture of today’s In-

ternet were created in the 1960s and ’70s. The problem net-
working aimed to solve was resource sharing — remotely
using scarce and expensive devices like card readers or high-
speed tape drives or even supercomputers. The communica-
tion model that resulted is a conversation between exactly
two machines, one wishing to use the resource and one pro-
viding access to it. Thus IP packets contain two identifiers
(addresses), one for the source and one for the destination
host, and almost all the traffic on the Internet consists of
(TCP) conversations between pairs of hosts.

In the 50 years since the creation of packet networking,
computers and their attachments have become cheap, ubiq-
uitous commodities. The connectivity offered by the Internet
and the low storage costs have enabled access to a stagger-
ing amount of new content – 500 exabytes created in 2008
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alone [12]. People value the Internet for what content it con-
tains, but communication is still in terms of where.

We see a number of issues that affect users arising from
this incompatibility between models.

• Availability: Fast, reliable access to content requires
awkward, pre-planned, application-specific mech-
anisms like CDNs and P2P networks, and/or imposes
excessive bandwidth costs.

• Security: Trust in content is easily misplaced, relying
on untrustworthy location and connection information.

• Location-dependence: Mapping content to host loca-
tions complicates configuration as well as implemen-
tation of network services.

The direct, unified way to solve these problems is to re-
place where with what. Host-to-host conversations are a net-
working abstraction chosen to fit the problems of the ’60s.
While many of the Internet’s design principles remain valid,
we argue that named data is a better abstraction for today’s
communication problems than named hosts.

We introduce Content-Centric Networking (CCN), a com-
munications architecture built on named data. CCN has no
notion of host at its lowest level – a packet “address” names
content, not location. However, we preserve the design de-
cisions that make TCP/IP simple, robust and scalable.

Figure 1 compares the IP and CCN protocol stacks. Most
layers of the stack reflect bilateral agreements; e.g., a layer 2
framing protocol is an agreement between the two ends of a
physical link and a layer 4 transport protocol is an agreement
between some producer and consumer. The only layer that
requires universal agreement is layer 3, the network layer.
Much of IP’s success is due to the simplicity of its network
layer (the IP packet - the thin ‘waist’ of the stack) and the
weak demands it makes on layer 2, namely: stateless, unre-
liable, unordered, best-effort delivery. CCN’s network layer
(described in Section 3) is similar to IP’s and makes fewer
demands on layer 2, giving it many of the same attractive
properties. Additionally, CCN can be layered over anything,
including IP itself.

CCN departs from IP in a number of critical ways. Two
of these, strategy and security, are shown as new layers in
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Figure 1: CCN moves the universal component of the
network stack from IP to chunks of named content.

its protocol stack. CCN can take maximum advantage of
multiple simultaneous connectivities (e.g., ethernet and 3G
and bluetooth and 802.11) due to its simpler relationship
with layer 2. The strategy layer (Section 3.1) makes the
fine-grained, dynamic optimization choices needed to best
exploit multiple connectivities under changing conditions.
CCN secures content itself (Section 5), rather than the con-
nections over which it travels, thereby avoiding many of the
host-based vulnerabilities that plague IP networking.

We describe the architecture and operation of CCN in Sec-
tions 2 through 5. In Section 6 we evaluate performance
using our prototype implementation. Finally, in Sections 7
and 8, we discuss related work and conclude.

2. CCN NODE MODEL
CCN communication is driven by the consumers of data.

There are two CCN packet types, Interest and Data
(Figure 2). A consumer asks for content by broadcasting
its interest over all available connectivity. Any node hearing
the interest and having data that satisfies it can respond with
a Data packet. Data is transmitted only in response to an
Interest and consumes that Interest.1 Since both Interest and
Data identify the content being exchanged by name, multiple
nodes interested in the same content can share transmissions
over a broadcast medium using standard multicast suppres-
sion techniques [2].

Data ‘satisfies’ an Interest if the ContentName in the In-
terest packet is a prefix of the ContentName in the Data
packet. CCN names are opaque, binary objects composed
of an (explicitly specified) number of components (see Fig-
ure 4). Names are typically hierarchical so this prefix match
is equivalent to saying that the Data packet is in the name
subtree specified by the Interest packet (see Section 3.2). IP
uses the same matching convention to resolve the < net,
subnet, host > hierarchical structure of IP addresses. Expe-
rience has shown that this allows for efficient, distributed hi-

1Interest and Data packets are thus one-for-one and maintain a
strict flow balance. A similar flow balance between data and ack
packets is what gives TCP its scalability and adaptability [19] but,
unlike TCP, CCN’s model works for many-to-many multipoint de-
livery (see Section 3.1).

Selector
(order preference, publisher �lter, scope, ...)

Nonce

Content NameContent Name

Data

Data packetInterest packet

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator, stale time, ...)

Figure 2: CCN packet types

erarchical aggregation of routing and forwarding state while
allowing for fast lookups.2 One implication of this matching
is that interests may be received for content that does not yet
exist – allowing a publisher to generate that content on the
fly in response to a particular query. Such active names al-
low CCN to transparently support a mix of statically cached
and dynamically-generated content, as is common in today’s
Web. Content names may also be context-dependent.

The basic operation of a CCN node is very similar to an
IP node: A packet arrives on a face, a longest-match look-up
is done on its name, and then an action is performed based
on the result of that lookup.3 Figure 3 is a schematic of the
core CCN packet forwarding engine. It has three main data
structures: the FIB (Forwarding Information Base), Content
Store (buffer memory) and PIT (Pending Interest Table).

The FIB is used to forward Interest packets toward poten-
tial source(s) of matching Data. It is almost identical to an
IP FIB except it allows for a list of outgoing faces rather than
a single one. This reflects the fact that CCN is not restricted
to forwarding on a spanning tree. It allows multiple sources
for data and can query them all in parallel.

The Content Store is the same as the buffer memory of an
IP router but has a different replacement policy. Since each
IP packet belongs to a single point-to-point conversation,
it has no further value after being forwarded downstream.
Thus IP ‘forgets’ about a packet and recycles its buffer im-
mediately on forwarding completion (MRU replacement).
CCN packets are idempotent, self-identifying and self-
authenticating so each packet is potentially useful to many
consumers (e.g., many hosts reading the same newspaper or
watching the same YouTube video). To maximize the prob-
ability of sharing, which minimizes upstream bandwidth de-
mand and downstream latency, CCN remembers arriving
2While CCN names are variable length and usually longer than IP
addresses, they can be looked up as efficiently. The structure of an
IP address is not explicit but instead implicitly specified by the con-
tents of a node’s forwarding table. Thus it is very difficult to apply
modern O(1) hashing techniques to IP lookups. Instead, log(n)
radix tree search (software) or parallel but expensive TCAMs (high
end hardware) are typically used. Since the CCN name structure is
explicit, ContentNames can easily be hashed for efficient lookup.
3We use the term face rather than interface because packets are
not only forwarded over hardware network interfaces but also ex-
changed directly with application processes within a machine, as
described in Section 6.
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Figure 3: CCN forwarding engine model

Data packets as long as possible (LRU or LFU replacement).
The PIT keeps track of Interests that have been forwarded

upstream toward content source(s) so that returned Data can
be sent downstream to its requestor(s). In CCN, only Interest
packets are routed and, as they propagate upstream toward
potential Data sources, they leave a trail of ‘bread crumbs’
for a matching Data packet to follow back to the original re-
questor(s). Each PIT entry is a bread crumb. PIT entries are
erased as soon as they have been used to forward a matching
Data packet (the Data ‘consumes’ the Interest). PIT entries
for Interests that never find a matching Data are eventually
timed out (a ‘soft state’ model — the consumer is responsi-
ble for re-expressing the interest if it still wants the Data).

When an Interest packet arrives on some face, a longest-
match lookup is done on its ContentName. The index struc-
ture used for lookup is ordered so that a ContentStore match
will be preferred over a PIT match which will be preferred
over a FIB match.

Thus if there is already a Data packet in the ContentStore
that matches the Interest, it will be sent out the face the In-
terest arrived on and the Interest will be discarded (since it
will have been satisfied).

Otherwise, if there is an exact-match PIT entry the Inter-
est’s arrival face will be added to the PIT entry’s Requesting-
Faces list and the Interest will be discarded. (An Interest in
this data has already been sent upstream so all that needs to
be done is to make sure that when the Data packet it solicits
arrives, a copy of that packet will be sent out the face that
the new Interest arrived on.)

Otherwise, if there is a matching FIB entry then the Inter-
est needs to be sent upstream towards the data. The arrival
face is removed from the face list of the FIB entry then, if
the resulting list is not empty, the Interest is sent out all the
faces that remain and a new PIT entry is created from the
Interest and its arrival face.

If there is no match for the Interest it is discarded (this
node doesn’t have any matching data and does not know how
to find any).

The processing of Data packets is relatively simple since

Data is not routed, it simply follows the chain of PIT entries
back to the original requestor(s). When a Data packet ar-
rives a longest-match lookup of it’s ContentName is done.
A ContentStore match means the Data is a duplicate so it is
discarded. A FIB match means there are no matching PIT
entries so the Data is unsolicited and it’s discarded4 A PIT
match (there may be more than one) means the Data was
solicited by Interest(s) sent by this node. The Data is (op-
tionally) validated (see Section 5.1) then added to the Con-
tentStore (i.e., a C-type index entry is created to point to the
Data packet). Then a list is created that is the union of the
RequestingFaces list of each PIT match minus the arrival
face of the Data packet. The Data packet is then sent out
each face on this list.

Unlike IP’s FIFO buffer model, the CCN Content Store
model allows the node memory already required for stat mux-
ing to simultaneously be used for transparent caching through-
out the network. All nodes can provide caching, subject only
to their independent resource availabilities and policies.

The multipoint nature of data retrieval by Interest pro-
vides flexibility to maintain communication in highly dy-
namic network environments. Any node having access to
multiple networks can serve as a content router between them.
Using its cache, a mobile node can even serve as the net-
work medium between disconnected areas, or provide de-
layed connectivity over sporadically connected links. Thus
CCN transport provides Disruption Tolerant Networking [10].
The Interest/Data exchange also functions whenever there
is local connectivity. For example, two business colleagues
with laptops and ad-hoc wireless could continue to share cor-
porate documents normally even in an isolated location with
no connectivity to the Internet or rest of the organization.

3. TRANSPORT

3.1 Reliability and Flow Control
CCN transport is designed to operate on top of unreliable

packet delivery services, including the highly dynamic con-
nectivity of mobile and ubiquitous computing. Thus Inter-
ests, Data, or both might be lost or damaged in transit, or
requested data might be temporarily unavailable. To provide
reliable, resilient delivery, CCN Interests that are not satis-
fied in some reasonable period of time must be retransmitted.
Unlike TCP, CCN senders are stateless and the final receiver
(the application that originated the initial Interest) is respon-
sible for maintaining a timer on unsatisfied Interests and re-
sending them if it still wants the data. The receiver’s strat-
egy layer (see Figure 1) is responsible for retransmission. It

4‘Unsolicited’ Data can arise from malicious behavior but also
from data arriving from multiple sources or multiple paths from
a single source. In the latter cases the first copy of the Data that ar-
rives will consume the Interest so the duplicate(s) won’t find a PIT
entry. In all cases the Data should be discarded since that preserves
flow balance and helps guarantee stable operation under arbitrary
load.
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is also responsible such things as selecting which and how
many of the available communication interfaces to use for
sending interests, how many unsatisfied interests should be
allowed, the relative priority of different interests, etc.

Underlying packet networks might duplicate packets, and
CCN multipoint distribution may also cause duplication. All
duplicate Data packets are discarded by the basic node mech-
anisms describe in the preceding section. But while data
cannot loop in CCN, in richly connected topologies Inter-
ests can go round a loop and make it appear that there is
Interest on a face where no interest actually exists. To detect
and prevent this, Interest packets contain a random nonce
value so that duplicates received over different paths may be
discarded (see Figure 2).

CCN Interests perform the same flow control and sequenc-
ing function as TCP ack packets. Flow control is described
here and sequencing in the next section.

One Interest retrieves at most one Data packet. This basic
rule ensures that flow balance is maintained in the network
and allows efficient communication between varied machines
over networks of widely different speeds. Just as in TCP,
however, it is possible to overlap data and requests. Multi-
ple Interests may be issued at once, before Data arrives to
consume the first. The Interests serve the role of window ad-
vertisements in TCP. A recipient can dynamically vary the
window size by varying the Interests that it issues. We show
the effect of such pipelining later in Section 6.2. Since CCN
packets are independently named, the pipeline does not stall
on a loss – the equivalent of TCP SACK is intrinsic.

In a large network, the end-to-end nature of TCP conver-
sations means that there are many points between sender
and receiver where congestion can occur from aggregation
of conversations even though each conversation is operating
in flow balance. The effect of this congestion is delay and
packet loss. The TCP solution is for endpoints to dynami-
cally adjust their window sizes to keep the aggregate traffic
volume below the level where congestion occurs [19]. The
need for this congestion control is a result of TCP’s flow
balance being end-to-end. In CCN, by contrast, all commu-
nication is local so there are no points between sender and
receiver that are not involved in their balance. Since CCN
flow balance is maintained at each hop, there is no need for
additional techniques to control congestion in the middle of
a path. This is not the same as hop-by-hop flow control,
where backpressure between adjacent nodes is used to adjust
resource sharing among continuous flows. CCN does not
have FIFO queues between links but rather an LRU mem-
ory (the cache) which decouples the hop-by-hop feedback
control loops and damps oscillations. (We plan to cover this
topic in detail in a future paper.)

3.2 Sequencing
In a TCP conversation between hosts, data is identified

by simple sequence numbers. CCN needs something more
sophisticated because consumers are requesting individual
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Figure 4: Example Data name

pieces from large collections of data and many recipients
may share the same Data packets. Locating and sharing data
is facilitated by using hierarchical, aggregatable names that
are at least partly meaningful to humans and reflect some
organizational structure of their origin, rather than just the
sequence in an ephemeral conversation. But, despite this ex-
tra richness in CCN names, the transport function of their
use in Interests is exactly the same as that of sequence num-
bers in TCP ACKs: an Interest specifies the next Data that
the recipient requires.

Before explaining how the next Data is identified, we first
describe the names in more detail. As mentioned, names are
hierarchically structured so that an individual name is com-
posed of a number of components. Each component is com-
posed of a number of arbitrary octets – variable-length bi-
nary values that have no meaning to CCN transport. Names
must be meaningful to some higher layer(s) in the stack to
be useful, but the transport imposes no restrictions except the
component structure. Binary encodings of integers or other
complex values may be used directly without conversion to
text for transmission. Name components may even be en-
crypted for privacy. For notational convenience, we present
names like URIs with / characters separating components,
as in Figure 4, but these delimiters are not part of the names
and are not included in the packet encodings. The final com-
ponent of every Data packet name includes a SHA256 digest
of the data itself. The digest component is not actually trans-
mitted in packets since it is derivable from the data itself.

An Interest can specify precisely what content is required
next with the full name of the Data (digest included) when it
is known, as when dereferencing secure links. In most cases,
however, the full name of the next Data will not be known
in advance by the consumer, and the Interest will specify
what is needed next relative to a collection of packets whose
names are known. The names of all possible packets form
a single name tree, and any name prefix identifies a sub-tree
and thereby the collection of data with names sharing that
prefix. Although the names are opaque to CCN transport,
we apply a simple lexicographic ordering for sibling com-
ponents in the tree, in which shorter components precede
longer ones and those of equal length are ordered by their
value as unsigned integers. With the addition of a traversal
order rule (pre-order) we have a total ordering defined for
the name tree. Thus an Interest can request the next Data
packet within a collection according to the total ordering,
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and the request can be satisfied by the CCN transport with-
out knowledge of any semantic interpretations of the names.

Let us illustrate this with a concrete example from Fig-
ure 4. The name in the figure is a hypothetical name of
one packet of video data. The prefix /parc.com/videos
/WidgetA.mpg identifies the collection of data that makes
up what humans would call a video file. This is the only
name that a user would typically see, and would be the name
presented to a player application. Starting from that name
alone, an Interest can be generated requesting the next Data
packet having exactly that prefix, which has the semantic
effect of requesting the first available packet in the video.
Suppose that this Interest retrieves a packet with the name as
shown in Figure 4. In this example, the names of individual
video packets are constructed with a version marker ( v) and
an integer version number and a constant segment marker
( s) and an integer value which might be the frame number
of the first video frame contained in the packet. Given this
name, a new Interest can be constructed to request the packet
with the next name in the tree after the one in Figure 4 but
still having the same prefix (i.e., still within the same collec-
tion/video file).

As this example illustrates, the naming conventions for
pieces of data within a collection can be designed to take
advantage of the relative retrieval features of Interest pack-
ets, and applications can discover available data through tree
traversal. Although such naming conventions are not part
of basic CCN transport, they are a very important element
of application design. We anticipate that a wide variety of
reusable conventions will be standardized and implemented
in shared libraries to provide applications with high-level ab-
stractions such as files and media streams over CCN.

Interests, then, provide a form of restricted query mech-
anism over collections of content accessible in a CCN, de-
signed for efficient expression of what the receiver requires
next. We do not have space to describe the details of the
query options that are under development. It will be possi-
ble to restrict results in certain ways by publisher, not just
by collection, and to exclude content already obtained when
simple ordering is insufficient. We also plan optional name
discovery mechanisms to be implemented on top of CCN
transport that will be more efficient for exploring large name
subtrees when the content itself is not required.

4. ROUTING

4.1 Intra-domain Routing
Intra-domain routing protocols provide a means for nodes

to discover and describe their local connectivity
(‘adjacencies’), and to describe directly connected resources
(‘prefix announcements’) [15, 13]. These two functions are
orthogonal—one describes links in the graph while the other
describes what is available at particular nodes in the graph.
It is common for these two functions to be performed in
completely different information domains. For example, IS-

A

B

D

C

E

F

Client

/parc.com/media/art /parc.com/media/art
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/parc.com/media
/parc.com/media/art A,B

B

Figure 5: Routing Interests to a domain’s media content

IS [15] describes adjacencies in terms of IEEE 802.1 layer
2 MAC addresses but announces layer 3 IP4 and/or IP6 pre-
fixes. As described in the previous section, IP forwarding
and CCN forwarding are almost identical. They both use
prefix-based longest match lookups (and use them for the
same reason—hierarchical aggregation of detail) to find lo-
cal neighbor(s) ‘closer’ to the identifier matched. Given the
similarities of the two FIBs, one might suspect that the dis-
tributed routing machinery used to create IP FIBs might be
easily adapted to create CCN FIBs. This is indeed the case.

Since CCN prefixes are very different from IP prefixes,
the main issue is whether it is possible to express them in
some particular routing protocol. Fortunately, both IS-IS
and OSPF can describe directly connected resources via a
very general TLV (‘type label value’) scheme [17, 18] that
is quite suitable for distributing CCN content prefixes. The
spec says that unrecognized types should be ignored, which
means that content routers, implementing the full CCN In-
terest/Data forwarding model can be attached to an existing
IS-IS or OSPF network with no modifications to the net-
work or its routers. The content routers learn the physical
network topology and announce their place in that topology
via the adjacency protocol and flood their prefixes in prefix
announcements using a CCN TLV.

For example, Figure 5 shows an IGP domain with some
IP-only routers (single circles) and some IP+CCN routers.
The media repository next to A is announcing (via a CCN
broadcast in a local network management namespace) that it
can serve Interests matching the prefix ‘/parc.com/media/art’.
A routing application running on A hears this announcement
(since it has expressed interest in the namespace where such
announcements are made), installs a local CCN FIB entry for
the prefix pointing at the face where it heard the announce-
ment, and packages the prefix into IGP LSA which is flooded
to all nodes. When the routing application on E, for example,
initially gets this LSA, it creates a CCN face to A then adds
a prefix entry for ‘/parc.com/media/art’ via that face to the
local CCN FIB. When a different repository adjacent to B
announces ‘/parc.com/media’ and ‘/parc.com/media/art’, B
floods an IGP LSA for these two prefixes with the result that
E’s CCN FIB is as shown in the figure. If a client adjacent
to E expresses interest in /parc.com/media/art/impressionist-
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history.mp4, this interest will get forwarded to both A and B,
who will each forward it to their adjacent repository.

CCN, in general, dynamically constructs topologies that
are close to optimal for both bandwidth and delay (i.e., data
goes only where there is interest, over the shortest path, and
at most one copy of any piece of data goes over any link).
But this delivery topology is clearly non-optimal since a client
adjacent to F interested in the same movie would result in a
second copy of the content crossing the A-C or B-C link.
This happens when an incremental CCN deployment leaves
some parts of the physical topology inaccessible to CCN (C
is not a content router so it cannot cache). As soon as C
gets the CCN software upgrade, E and F will forward their
interests via it and the distribution will be optimal.

In the model described above, IGP LSA’s are used as a
transport for normal CCN messages which have full CCN
content authentication, protection and policy annotation.
Thus even though the IGP is not secure, the communica-
tion between CCN-capable nodes is and, if all the nodes are
evolved to being CCN-capable, the IGP topology infrastruc-
ture is automatically secured (see Section 5.1). The security
of the externally originated prefix announcements is a func-
tion of the announcing protocol. CCN content prefixes, such
as those announced by the media servers in Figure 5, are se-
cured by CCN and have its robust trust model. IP prefixes
announced from other IGPs or BGP would be untrusted.

There is a behavioral difference between IP and CCN in
what happens when there are multiple announcements of the
same prefix. In IP any particular node will send all matching
traffic to exactly one of the announcers. In CCN all nodes
send all matching interests to all of the announcers. This
arises from a semantic difference: An IP prefix announce-
ment from some IGP router essentially says “all the hosts
with this prefix can be reached via me”. The equivalent an-
nouncement from a CCN router says “some of the content
with this prefix can be reached via me”. Since IP has no way
of detecting loops at the content level, it’s forced to construct
loop-free forwarding topologies, i.e., a sink tree rooted at the
destination. Since a tree has only a single path between any
two nodes, an IP FIB has only one slot for ‘outgoing inter-
face’. So all the hosts associated with a prefix have to be
reachable via the node announcing a prefix because all traf-
fic matching the prefix will be sent to that node. Since CCN
packets cannot loop, a prefix announcement does not have to
mean that the node is adjacent to all the content covered by
the prefix, and CCN FIBs are set up to forward Interests to
all the nodes that announce the prefix. Fortunately this se-
mantic difference can be accommodated without changing
the IGP because it’s an implementation change, not a proto-
col change. i.e., IP has to compute a spanning tree from the
prefix announcements and CCN does not, but this computa-
tion is done where the information is used, not where it is
produced, so both protocols receive complete information.
However, if the IGP were a distance vector protocol such
as RIP or EIGRP, the production of a routing announcement

involves a Bellman-Ford calculation that presupposes span-
ning trees and will lose information. Such an IGP would not
be suitable for CCN (based on a long history of routing prob-
lems, there are many who believe distance vector protocols
are not even suitable for IP). A CCN deployment in such an
environment might require its own routing protocol.

4.2 Inter-domain Routing
Current BGP inter-domain routing has the equivalent of

the IGP TLV mechanism that would allow domains to ad-
vertise their content prefixes. The BGP AS-path information
also lets each domain construct a topology map equivalent to
the one constructed in the IGP case, but at the Autonomous
System (AS) rather than network prefix level. This map is
functionally equivalent to the IGP case (one learns which do-
mains serve Interests in some prefix and what is the closest
CCN-capable domain on the paths to those domains) so the
same algorithms apply.

5. CONTENT-BASED SECURITY
CCN is built on the notion of content-based security: pro-

tection and trust travel with the content itself, rather than
being a property of the connections over which it travels.
In CCN, all content is authenticated with digital signatures,
and private content is protected with encryption. This is a
critical enabler for CCN’s dynamic content-caching capabil-
ities – if you are to retrieve content from the closest avail-
able copy, you must be able to validate the content you get.
IP network clients often must retrieve content directly from
the publisher, rather than efficiently sharing cached copies
with their peers, since peers can only trust content they have
retrieved directly from the original source. Embodying se-
curity in content, not hosts, also reduces the trust we need
to place in network intermediaries. This opens the network
to wide participation. In this paper, we give an overview of
CCN’s core security design, and highlight novel aspects of
its security processing. Detailed analysis of the CCN secu-
rity model, including topics like revocation, are in prepara-
tion for submission in a separate paper.

5.1 Validating Content
Each CCN data packet (Figure 2) contains digital sig-

nature information, authenticating the binding between its
name and its corresponding content. This allows publishers
to securely bind arbitrary names to content, in contrast to
previous approaches that rely on self-certifying name struc-
tures to achieve such a binding (e.g., by using the crypto-
graphic digest of the content as its name [23, 25, 11, 8]).
The ability to directly use user- or application-meaningful
names to securely obtain data enhances usability and eases
transport; systems without it require an “indirection infras-
tructure” [3, 5] to map from the names humans care about to
secure, opaque, self-certifying names.

CCN’s per-Data packet signature information consists of a
standard public key signature as well as (signed) supporting
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Figure 6: CCN trust establishment can associate content
namespaces with publisher keys.

data helpful in verifying it. The use of public key signatures
makes all CCN data publicly authenticatable – anyone, not
just the endpoints for a communication stream, can verify
that a name-content mapping was signed by a particular key.

The signature algorithm used may be selected by the con-
tent publisher from a large fixed set, and chosen to meet the
performance requirements of that particular data – e.g., to
minimize the size of the verification data, or the latency or
computational cost of signature generation or verification.
Data packets are designed to be individually verifiable, but
the cost of signature generation may be amortized across
multiple packets through the use of aggregation techniques
such as Merkle Hash Trees [24]. Supporting data (“signed
info” in Figure 2) includes the fingerprint of the public key
used for signing, to select the correct key for verification
(e.g., from a local cache), and a key locator, which indicates
where that key can be obtained; this can be the key itself, or
a CCN name where the key can be retrieved.

5.2 Trust Establishment
Although CCN moves data in a peer-to-peer fashion, it

provides end-to-end security between content publisher and
content consumer. CCN content consumers must determine
whether received content is acceptable, or trustworthy for
their individual purpose. Trust in content is narrowly de-
termined, both by who signed it, and specifically what the
content is (as indicated by its name), and what it will be
used for (as determined by the consumer). This approach
to contextual trust is much more flexible and easier to use
than attempts to mandate a one-size-fits-all trust establish-
ment mechanism (such as a global PKI).

At the lowest layers, CCN routers may simply verify that
content was signed by the key it purports – without attach-
ing any real-world identity or semantics to who owns that
key. This can be surprisingly effective. This allows con-
tent consumers to request content by publisher key as well
as name, and to get the content they intend in the face of
spurious or malicious data. This most generic form of ver-
ification is used to defend against many types of network
attack. Routers may choose to verify all, some or no data,

as their resources allow; they may also dynamically adapt,
verifying more data in response to detected attack.

Application-level CCN consumers must solve traditional
key management problems – associating public keys with in-
dividuals and organizations, and determining what keys are
acceptable signers for each type of content they are inter-
ested in. CCN simplifies this task in three ways: first, it
directly addresses the practical problem of merely obtaining
the keys necessary to verify a piece of content. Keys are just
another type of CCN Data, and simple naming conventions
enable them to be easily found.

Second, by organizing content in terms of hierarchical
namespaces, CCN allows signing policy, and even keys, to
attach to particular names; authorization at one level of a
namespace is given by a signature from a key at a higher
level. Figure 6 shows the key for parc.com authorizing
that of the user george, who goes on to authorize the key
for his desktop computer. These trust statements, rep-
resented as CCN data, help a consumer evaluate whether or
not he is an acceptable publisher of WidgetA.mpg in the
parc.com namespace. Such namespaces make up a forest-
of-trees – a content consumer might trust that they have the
right key for parc.com (or even directly for /parc.com/
george) for any number of reasons from direct experience
(e.g., they are a PARC employee), to information provided
by their friends, to its presence in a trusted directory of keys.
It is not required, or even expected, that all such trees will be
joined in a single (or small number of) root(s); as happens in
traditional global or commercial PKIs. Most notably, it is the
consumer who decides why they trust a particular key, using
many types of information, not the publisher in obtaining a
certificate from a particular vendor.

CCN’s signed bindings between names and content act in
essence to certify that content – and when that content is a
public key, as a certificate for that public key. It is trivial
to represent a traditional certificate-based public key infras-
tructure (PKI), or PGP Web of Trust, directly in CCN data.
Users are free to reuse these existing models for establishing
trust in keys, or to embrace or define new ones more appro-
priate to CCN. A model particularly appropriate to CCN is
that of SDSI/SPKI [30, 9, 1], wherein identities, and corre-
sponding keys form local namespaces that can be mapped
directly onto CCN names – e.g., the members of an organi-
zation might be recognized because their keys are certified
by the organization itself; not because they are validated by
some source of external, third-party trust (e.g., Verisign).

Third, CCN enables secure linkage between content items
– one content item can refer to another not only by its name,
but also by the cryptographic digest of its contents (form-
ing effectively a self-certifying name [23, 25, 11, 8]), or by
the identity (key) of its publisher [8, 29, 22, 21]). This al-
lows individual signed pieces of content to effectively certify
other pieces of content they (securely) refer to; each piece of
content the user encounters acts as a potential piece of evi-
dence as to the validity of the content and keys they have en-
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countered before. A user may also, having decided to trust
content A, say a web page, automatically trusts the content
A securely links to – e.g., its images, ads, source material
and so on, without additional management or configuration
overhead; however that trust is very fine-grained – those ma-
terials are only considered valid within the context of A.

Together, these mechanisms allow users to leverage boot-
strapped trust in a small number of public keys accepted
using a variety of user-friendly mechanisms (e.g., personal
contact, organizational membership, public experience [28,
34]), to allow fine-grained validation of a wide range of con-
tent in context.

5.3 Content Protection and Access Control
The primary means of controlling access to CCN content

is encryption. CCN does not require trusted servers or di-
rectories to enforce access control policies; no matter who
stumbles across private content, only authorized users are
able to decrypt it.

Encryption of content, or even names or name compo-
nents, is completely transparent to the network – to CCN,
it is all just named binary data (though efficient routing and
data sequencing may require that some name components re-
main in the clear). Decryption keys can be distributed along
with their content, as CCN data blocks. CCN does not man-
date any particular encryption or key distribution scheme –
arbitrary, application-appropriate access control models can
be implemented simply by choosing how to encode and dis-
tribute decryption keys for particular content.

5.4 Network Security and Policy Enforcement
CCN’s design protects it from many standard classes of at-

tack. Authenticating all content, including routing and pol-
icy information, prevents data from being spoofed or tam-
pered with. The fact that CCN messages can talk only about
content, and simply cannot talk to hosts makes it very diffi-
cult to send malicious packets to a particular target. To be
effective, attacks against a CCN must focus on denial of ser-
vice: “hiding” legitimate content (e.g., simply not returning
an available later version), or “drowning” it – preventing its
delivery by overwhelming it in a sea of spurious packets.

CCN incorporates a number of mechanisms to prevent ex-
cessive forwarding of unwanted traffic. Flow balance be-
tween Interests and Data prevents brute force denial of ser-
vice over anything beyond the local link; extra Data packets
will not be forwarded. To ensure they get the content they
want in the face of potential spurious alternatives, consumers
can request it by publisher as well as by name. Routers be-
longing to an organization or service provider can enforce
policy-based routing, where content forwarding policy is as-
sociated with content name and signer. A simple example of
such might be a “content firewall” that only allows Interests
from the Internet to be satisfied if they were requesting con-
tent under the /parc.com/public namespace. Finally,
Interests may also be digitally signed, enabling policy rout-

ing to limit into what namespaces or how often particular
signers may query.

6. EVALUATION
In this section, we evaluate the performance of our pro-

totype CCN implementation in the context of two illustra-
tive applications. Packets are encoded in the ccnb com-
pact binary representation of XML, which uses dictionary-
based tag compression. Our CCN forwarder, ccnd is im-
plemented in C as a userspace deamon. Interest and Data
packets are encapsulated in UDP for forwarding over exist-
ing networks as broadcast, multicast, or unicast.

Much of the “work” of using CCN – communicating with
ccnd, key management, signing, basic encryption and much
of trust management are embodied in a CCN library layer.
This library layer (implemented in both Java and C) encap-
sulates a set of common conventions for names and data,
covering things such as encoding fragmentation and version-
ing information in names, and representing keying informa-
tion for encryption and trust management. These conven-
tions are organized into topic-specific profiles representing
application-level protocols layered on top of Interest-Data.

The host architecture has two notable implications. First,
the security perimeter around sensitive data is pushed far into
the application – content is decrypted only inside an appli-
cation that has rights to it, not inside the networking stack or
in cache or on disk. Second, much of the work of writing a
CCN application consists of specifying a set of conventions
to be agreed upon between publishers and consumers.

All components run on Linux, Mac OS XTM, SolarisTM,
FreeBSD, NetBSD and Microsoft WindowsTM. Crypto-
graphic operations are provided by OpenSSL and Java.

6.1 Voice over CCN
To demonstrate how CCN can be used to support arbitrary

point-to-point protocols, we have implemented Voice over
IP (VoIP) on top of CCN (VoCCN), and evaluated its perfor-
mance. Implementing a point-to-point network protocol on
top of CCN is done by taking advantage of the fact that In-
terests can be generated to retrieve Data that has not yet been
created. Applications can register to receive Interests in re-
sponse to which they are prepared to generate data. Such
Interests are forwarded to the most likely source of corre-
sponding data based on a longest prefix match. One can map
the distinguishing fields in the original point-to-point proto-
col header directly into CCN name components, resulting in
names that both parties can generate a priori. For example,
an Interest in the next packet in a TCP exchange might ask
for /company/dst/<servername>/src/<client-
name>/dport/25/sport/4567/seq/15238.

We implemented a secure Voice over CCN client on top of
Linphone (version 3.0), an open source Linux VoIP phone.
VoCCN operates by encapsulating standard VoIP messages
(SIP, RTP) directly inside CCN traffic, enabling interoper-
ability with standard phones via a VoCCN-VoIP gateway.
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Figure 7: CCN automatic network interface failover.

Each VoCCN client registers with its local ccnd its desire
to receive Session Initiation Protocol (SIP) INVITE mes-
sages for its user. A caller encodes such an INVITE as a
CCN name under a prefix specified by the phone’s config-
ured SIP identity: /<sipdomain>/<sipuser>/sip-
/INVITE/<contents>, and sends that name as an In-
terest. On receipt of such an INVITE, the callee generates
a signed Data packet with the INVITE name as its name,
and the SIP response as its payload; thus completing SIP
signalling in a single round trip. The VoCCN phones de-
rive a set of paired name prefixes from information in the
SIP messages under which to write their actual call data,
in the form of RTP packets. These names can be crypto-
graphically anonymized to unlink them from the SIP ex-
change, and provide user privacy. Our modified VoCCN-
Linphone uses standard VoIP protocols to secure the call it-
self – MIKEY [16] to exchange session keys, and SRTP [14]
to encrypt the media path; it uses native CCN encryption to
protect the content of the SIP messages. All VoCCN Data
packets, both SIP and SRTP, are signed with 1024-bit RSA
keys; faster algorithms (e.g., ESIGN [27]) can be used, if
necessary, for video or other higher-rate data.

We measured the performance of our VoCCN client and
compared it to an (insecure) stock Linphone. Our experi-
mental data was collected from VoCCN calls between two
machines, one an Intel P4 at 3.4 GHz and the other an Intel
Core2 Duo at 2.66 GHz, both running Linux with a 2.6.27
kernel. Both machines were connected to two isolated wired
1 Gbs networks. We conducted failover tests by manually
disconnecting and reconnecting network cables.

As measured by voice quality, the performance of our se-
cure VoCCN prototype was equivalent to that of stock Lin-
phone. No packets were lost by either client, however a
small number of VoCCN packets (< 0.1%) were dropped
by Linphone for having arrived too late.

Figure 7 shows our simple CCN strategy layer’s (Sec-
tion 3.1) ability to automatically failover a call between net-
work interfaces when one is disconnected. Instantaneous
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Figure 8: Mbps transfer vs. the number of sinks.

packet rate (expected 50 pps) is shown during the course of
a VoCCN call between two hosts connected via two separate
network interfaces (links A and B). The CCN strategy layer
actively probes and measures the performance of multiple
paths to a given destination. It dynamically selects the best
available interface through which to send packets, adapting
to changes in network performance. The call initially sends
most of its packets over link B, but at 15 seconds into the call
it spontaneously switches to link A in reaction to some small
variance in measured response time, switching back to link
B at 40 seconds. At 45 seconds into the call, link A is dis-
connected with no impact on packet throughput. At approx-
imately 82 seconds into the call, link B is disconnected. The
packet rate drops precipitously, until the CCN strategy layer
discovers the other link automatically, and then increases to
catch up. At 95 seconds into the call, link B is restored, with
no measurable impact. At 120 seconds, link A is discon-
nected, and the CCN strategy layer switches the call back
to link B. There is one more spontaneous switch at 160 sec-
onds, and the call terminates at approximately 165 seconds.

There is no VoCCN-specific strategy code in our Linphone
client to handle failover; this behavior arises entirely out
of the CCN transport itself. The small delay for the third
failover reflects the preliminary state of our current imple-
mentation; it is interesting to note that after failing over the
client is able to retrieve the missing conversation data from
CCN; packets are not lost, just delayed.

6.2 Content Distribution
We evaluate the network throughput and caching efficiency

of CCN in the context of basic content distribution.

6.2.1 Throughput and Caching
To measure throughput, we compared the total time taken

to retrieve multiple copies of a large data file simultaneously
over a network bottleneck using CCN and TCP. The test con-
figuration had a data source node connected over a 10 Mbs
shared link to a cluster of 4 data sink nodes all intercon-
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nected via 1 Gbs links. We used a 10 Mbs link as the bot-
tleneck to clearly show saturation behavior, even with only
a small number of nodes. For the TCP tests, the sink nodes
pulled the data individually from the source. For the CCN
tests, nodes were arranged in a 2-hop hub and spoke topol-
ogy, with the first node pulling data across the 10 Mbs link,
and the others pulling data from it. The source node and
two of the sinks were G5 Macs running Mac OS X (source,
10.4, sinks 10.5); the other two sinks were AMD and Intel
machines running FreeBSD 7.1.

The source node was pre-loaded with an approximately 6
MB data file. For our TCP control condition this file was
made available via a standard web server on the source, and
retrieved by the sinks using curl or fetch. For the CCN
test, this file was fragmented into 6,278 individually named,
signed Data blocks of 1 kB each, representing approximately
1350 bytes on the wire. Prior to each test, the data blocks
were loaded into the ccnd of the data source node. For each
test, the contents of the entire file were retrieved by 1, 2, 3
or 4 sink nodes simultaneously, and we recorded the elapsed
time for the last node to complete the task. Multiple trials
were run for each test configuration, varying the particular
machines which participated as sinks.

Median times are shown in Figure 8. With a single sink,
TCP retrieves the data in slightly less time than CCN. As the
number of sinks increases, TCP’s performance dramatically
declines, and it rapidly saturates the link. CCN’s perfor-
mance, on the other hand, is largely independent of the num-
ber of sinks participating – its built-in content caching ability
allows the network to avoid sending any repeated copies of
the same content, thus dramatically increasing throughput.

6.2.2 Pipelining and Overhead
We evaluated the ability of our CCN implementation to

pipeline requests together by expressing multiple Interests
simultaneously, increasing throughput much as the variable
window size does in TCP (see Section 3.1). We measured
data throughput (payload content, not packet size on the wire)

HTTP CCN/UDP CCN/ETH
App Payload 6429 6429 6429
Packets Out 9 3 8
Bytes Out 723 325 811
Avg. Size Out 80.33 108.33 101.38
Packets In 9 5 6
Bytes In 7364 6873 8101
Overhead In 14.54 % 6.91 % 26.01 %
Avg. Size In 818.22 1374.6 1350.17

Table 1: Comparing CCN and HTTP

HTTPS CCN/UDP CCN/ETH
App Payload 16944 16944 16944
Packets Out 16 5 16
Bytes Out 1548 629 1791
Avg. Size Out 96.75 125.8 111.94
Packets In 22 14 14
Bytes In 21232 18253 20910
Overhead In 25.31 % 7.73 % 23.41 %
Avg. Size In 965.09 1303.79 1493.57

Table 2: Comparing CCN and HTTPS

as a function of window size between the two Linux hosts
used in Section 6.1, transferring the 6 MB file used above
over a 100 Mb link. Pipeline size in TCP was defined as the
TCP window size/1460 (a window size of 1 is a TCP win-
dow size of 1460 bytes), controlled with the SO SNDBUF
and SO RECVBUF socket options; reads and writes were
done in multiples of 1460 bytes.

Results can be seen in Figure 9. While the throughput of
our (unoptimized) CCN implementation is not quite as good
as that of TCP, it is close, and reasonably close to saturating
the link. The 10% difference between TCP throughput and
the theoretical link bandwidth is due to the overhead of the
TCP headers; our prototype CCN implementation shows an
additional 22% overhead in comparison with TCP.

A potentially more useful comparison can be seen in ta-
bles 1 and 2, which compares the overhead of CCN to that
of HTTP and HTTPS. These tests retrieve a single HTML
file (i.e., the result of a single HTTP GET), not the the many
different components (e.g., images) that must be retrieved
to render most web pages. In Table 1, we show retrieval
of Google’s home page, and in Table 2, we show retrieval
of the larger home page of Wells Fargo over HTTPS. For
web retrievals, the limiting factor affecting observed per-
formance is generally the bandwidth of the return path, as
that is the direction in which the largest quantity of data is
flowing. The upstream bandwidth required for the ACKs,
or Interests in the case of CCN, is much lower, so we show
it separately. In the first CCN alternative (CCN/UDP col-
umn), we used UDP encapsulation with a large block size
(7656 bytes), to amortize the cost of CCN names and sig-
natures over a significant amount of content. In the second
CCN alternative (CCN/ETH column), we considered direct
encapsulation of CCN packets in Ethernet frames. Here we
chose a much smaller block size (1230 bytes) so the result-
ing packets would fit but mostly fill the frames.
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The results show that CCN does not necessarily add sig-
nificant overhead compared to conventional web access for
single retrievals, in either round-trips or packet sizes in the
all-important data download direction. With UDP encapsu-
lation and a large block size, we avoid overhead associated
with a TCP conversation and effectively amortize the cost of
signatures and multiple copies of names to achieve a total
overhead lower than standard HTTP.

7. RELATED WORK
It is widely recognized that combining identity and loca-

tion information into a single network address is not meet-
ing the demands of today’s applications and mobile environ-
ments. Proposed remedies implement functionality above
the current Internet architecture, replace it in a “clean slate”
approach, or combine aspects of both. Like CCN, these pro-
posals aim to switch from host-oriented to content-oriented
networking to meet data-intensive application needs.

Previous work on content-oriented networking is domi-
nated by the use of unstructured, opaque, usually self-
certifying content labels. The challenge these systems face is
first efficiently routing queries and data based on these “flat”
names, and second, providing an indirection mechanism to
go from user-meaningful names to these opaque labels.

The Data-Oriented Network Architecture [21] replaces
DNS names with flat, self-certifying names and a name-
based anycast primitive above the IP layer. Names in DONA
are a cryptographic digest of the publisher’s key and a poten-
tially user-friendly label – however, that label is not securely
bound to the content, allowing substitution attacks. Unlike
CCN, data cannot be generated dynamically in response to
queries – content in DONA must be first published, or regis-
tered with a tree of trusted resolution handlers (RHs) to en-
able retrieval. Each resolution handler must maintain a large
forwarding table providing next hop information for every
piece of content in the network. Once the content is located,
packets are exchanged with the original requester using stan-
dard IP routing. If the location of a piece of content changes,
new requests for it will fail until the new registration prop-
agates through the network. CCN, in contrast, can forward
requests to all the places a piece of content is likely to be.

A number of systems make use of distributed hash tables
(DHTs) to route queries for opaque content names. ROFL
(Routing on Flat Labels) evaluates the possibility of routing
directly on semantic-free flat labels [6]. A circular names-
pace is created to ensure correct routing (as in Chord [33]),
but additional pointers are added to shorten routes. In a sim-
ilar approach, i3 [32] separates the acts of sending and re-
ceiving by using a combination of packet identifiers and a
DHT. Receivers insert a trigger with the data identifier and
their address into the DHT. The trigger is routed to the ap-
propriate sender, who fulfills the request by responding with
the packet containing the same id and the requested data.
SEATTLE [20] utilizes flat addressing with a one-hop DHT
to provide a directory service with reactive address resolu-

tion and service discovery. Unlike CCN, all of these systems
require content be explicitly published to inform the DHT of
its location before it can be retrieved. Also unlike CCN, this
retrieval is largely free of locality – queries might retrieve
a cached copy of data along their routed path, but are not
guaranteed to retrieve the closest available copy.

Instead of routing end-to-end based on an identifying
name, the PSIRP project [31] proposes using rendezvous as
a network primitive. Each piece of data has both a public
and private label used for verifying the publisher and making
routing decisions. Consumers receive content by mapping
the desired, user-friendly name to an opaque public label via
an insecure directory service. The label is then used to sub-
scribe to the piece of data, triggering the system to locate
and deliver the corresponding content. Though motivated
by the same problems as CCN, PSIRP suffers from its use
of unstructured identifiers and lack of strong cryptographic
binding betwen user-meaningful names (or currently, even
their opaque labels) to content.

The 4WARD NetInf project [26] has similar goals to CCN
but focuses on higher level issues of information model-
ing and abstraction. It currently uses DONA-style names
for Data and Information Objects and provides a publish/-
subscribe style of API. The NetInf Dictionary infrastructure
uses a DHT for name resolution and location lookup.

TRIAD [7], like CCN, attempts to name content with user-
friendly, structured, effectively location-independent names.
TRIAD uses URLs as its names using an integrated direc-
tory to map from the DNS component of the URL to the
closest available replica of that data. It then forwards the re-
quest to that next hop, continuing until a copy of the data is
found. Its location is returned to the client, who retrieves it
using standard HTTP/TCP. TRIAD relies on trusted directo-
ries to authenticate content lookups (but not content itself),
and suggests limiting the network to mutually trusting con-
tent routers for additional security.

Research into content-aware routing protocols also
attempts to improve delivery performance and reduce traffic
overhead. For example, Anand et. al [4] studied the bene-
fits of large-scale packet caching to reduce redundant con-
tent transmission. In this work, routers recognize previously
forwarded content and strip the content from packets on the
fly, replacing the content portion with a representative fin-
gerprint. Downstream routers reconstruct the content from
their own content cache before delivering to the requester.

8. CONCLUSIONS
Today’s network use centers around moving content, but

today’s networks still work in terms of host-to-host conver-
sations. CCN is a networking architecture built on IP’s engi-
neering principles, but using named content rather than host
identifiers as its central abstraction. The result retains the
simplicity and scalability of IP but offers much better secu-
rity, delivery efficiency, and disruption tolerance. CCN is
designed to replace IP, but can be incrementally deployed as
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an overlay – making its functional advantages available to
applications without requiring universal adoption.

We have implemented a prototype CCN network stack,
and demonstrated its usefulness for both content distribution
and point-to-point network protocols. We intend to release
this implementation as open source.5
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