
1

Usability of Programming Languages

MPhil in Advanced Computer Science
University of Cambridge Computer Laboratory

Lecture Notes – Lent Term 2014

Alan Blackwell

Introduction

This is a practical course, in which most of the learning will be achieved by the design and
execution of original research experiments. The purpose of these lecture notes is to give a broad
introduction to research in the field, both classic research (as collected in the Hoc, Green
Samurçay and Gilmore book Psychology of Programming – henceforth called ‘PoP’), and
contemporary research currently being carried out in the major world centres.

Lecture 1 describes the theoretical principles that might be applied in your experiments, including
the classic approaches covered in the PoP book, and also current trends in leading research.

Lecture 2 provides an overview of the candidate research methods for experimental work,
including their relative advantages and disadvantages, with references to those relevant chapters
of the PoP book and of the Cairns and Cox book on Research Methods for HCI that provide
more detailed introductions of specific methods.

Lecture 3 discusses the specific classes of user for which there are challenging issues in
programming language usability. The so-called ‘general purpose programming language’ as a
focus of computer science research has become relatively stabilised, but also serves a relatively
small segment of the population. This lecture considers the larger populations that can benefit
from more usable programming languages.

Lecture 4 will be directed by the specific research interests of the class. For this reason, detailed
lecture notes are not provided in advance. I include an outline of the topics that will be
addressed.

2

Reading List

 Online proceedings of the Psychology of Programming Interest Group (http://www.ppig.org)
note that PPIG 2012 is not yet online at the PPIG site, but a copy of the proceedings has been made
accessible via the course web page. http://www.cl.cam.ac.uk/teaching/1213/R201/ppig-2012.pdf

 Cambridge guidance for human participants in technology research (http://bit.ly/hptps-guide)

 Cairns, P. and Cox, A.L. (2008) Research Methods for Human-Computer Interaction. Cambridge
University Press.

 Hoc, J.M, Green , T.R.G, Samurcay, R and Gilmore, D.J (Eds.) (1990) Psychology of Programming.
Academic Press.

 Carroll, J.M. (Ed) (2003). HCI Models, Theories and Frameworks: Toward a multidisciplinary science.
Morgan Kaufmann.

3

Lecture 1: Principles of human factors in programming

Cognitive models of programming

When we consider the programming language as an ‘interface’ between the programmer and the
machine, a convenient engineering approximation could describe the two sides of that interface
in equivalent terms. In this view, the programmer has ‘I/O subsystems’ via which the interface is
connected (eyes and hands) controlled by a ‘central processor’ (the brain) that includes both
persistent and working storage (long term and short term memory). This convenient analogy
between human and computer can be a useful tool for straightforward engineering purposes. In
basic human-computer interaction, we can often measures of typical performance, for example
speed and accuracy of hand movement, or spatial resolution and scanning time of the eye. We
can also test the capacity and persistence characteristics of different kinds of memory – for
example 7 +/- 2 verbal ‘chunks’ like names and digits, or a single detailed visual scene. This kind
of data is sometimes described as ‘human factors’ or ‘ergonomics’ considerations. When we
invent new kinds of interaction devices or user interfaces, it is possible to make some
performance predictions on the basis of these mechanical analogies, and they make valuable
contributions to usability analysis of conventional user interfaces.

In the case of programming, the relatively simple action sequences that have been the target of
conventional HCI research are only one part of the problem. For most everyday user interfaces,
it is relatively clear what the ‘correct’ sequence of actions should be, if you know what the user is
trying to achieve, so a mechanical analogy to how machines might complete that sequence can be
useful. However in the case of programming, much of the challenge comes from thinking about
what you want to do. Improving the usability of systems for thinking is clearly more challenging
than systems that only involve seeing, choosing and pointing. The necessary theoretical approach
has been described as ‘cognitive ergonomics’. This refers to the field of cognitive science
(artificial intelligence is regarded as a subfield of cognitive science), which greatly extends the
‘computational theory of mind’ analogy that is implicit in simpler I/O oriented HCI.

The classic cognitive models of programming are recognizably derived from classic artificial
intelligence / cognitive science research. In this view, programming can be described in terms of
‘problem solving’, ‘planning’ and ‘knowledge representation’, all of which correspond to well-
established AI strategies and architectures. However, when these internal process descriptions
become more complex it becomes harder to draw conclusions about them, given that (unlike AI
systems) we can only directly observe external behaviour of human programmers. As a result, it is
easy to fall back on the assumption that the ‘internal’ representation of the problem in the
programmer’s head corresponds quite closely to the ‘external’ representation of the program that
he or she eventually creates.

With these critical cautions in mind, chapters 1.4 of the PoP book “Human Cognition and
Programming” gives an overview of programming as a problem solving and planning activity,
and chapter 3.1 “Expert Programming Knowledge: A Schema-based Approach” provide
thorough descriptions of how cognitive/AI theories can be used to characterize the human

4

reasoning processes that are involved in programming tasks. A more specialized view of
cognitive problem-solving, derived more closely from observations of human reasoning than
from computational simulations, is applied in chapter 2.3 “Language Semantics, Mental Models
and Analogy”. The core insight in this tradition is that humans often solve problems by analogy
to others that they have seen before. This applies to individual programming tasks (if you are
asked to write a program where you can use a similar structure to one that you have written
before, your previous solution would be a good starting point). But more dramatically, it applies
to the understanding of programming languages themselves – the argument here is that even if
you have no idea what programming is, you will understand it by analogy to things you’ve done
before – perhaps natural language, perhaps mathematics, or perhaps Lego bricks. This latter kind
of analogy to physical situations with similar structure is related to the principle of user interface
“metaphor”, where system function is presented by analogy to folders and filing cabinets, or
other physical apparatus for information processing.

Programming within the software development process

The cognitive science research tradition concentrates on individual humans who are solving
problems in controlled contexts – often experimental psychology laboratories. This corresponds
very well to the customary constraints of research programmes in AI (because robots are seldom
competent to act in complex social situations such as city streets or dance halls). In the
laboratory, the structure of the task, and the nature of the inputs and outputs, can be closely
constrained to suit the capabilities of a robot, or of a cognitive theory. For the same reasons,
most of the experimental investigations into cognitive models of programming (whether based
on schemas, plans, or analogy) tend to have been focused on individual programmers, under
observation in laboratories, addressing carefully constructed experimental tasks that probe
hypotheses related to the specific model being investigated.

In contrast to these experimental situations, many of the situations where software development
is of commercial relevance are more complex. They often involve as much understanding of the
“problem domain” as they do of the programming language itself. There may be opportunities
simply to avoid hard programming problems, by negotiating a change to the specifications. At an
early stage of the project, there may be many different ways of formulating which problem is to
be solved. These various tasks broaden the characterization of programming from a “problem-
solving” activity to a “design” activity. Design theorist Horst Rittel described a class of “wicked
problems”, in which conventional models of AI planning cannot be applied, because the goals
and criteria for success are under-specified, the constraints conflict with each other, the resources
are unknown or negotiable and so on.

A broader view of the tasks of programming is presented in Chapter 1.3 of the PoP book “The
Tasks of Programming”. A great deal of progress in cognitive accounts of design has been made
by PoP researcher Willemien Visser, who also contributed Chapter 3.3 of the PoP book “Expert
Software Design Strategies”. The broader organizational context of software development
requires whole theories of management science. This is outside the scope of this course – there is
a whole academic field of “Information Systems” that deals with it. However a useful
introduction, from a relatively familiar engineering perspective, can be found in Chapter 4.1 of

5

the PoP book, “The Psychology of Programming in the Large: Team and Organizational
Behaviour”. There has been rapid change in software development methods since the PoP book
was published, however. There are many recent studies published at the PPIG conferences that
have explored new practices such as the pair programming that is popular in some agile software
development methods. Pair programming is sufficiently well constrained that it can be studied in
a controlled manner, unlike large software development teams in a complex organizational
context. Studies of larger teams are more likely to be found in information systems or
management research literature.

Individual variation

Cognitive theories of human behaviour are intended to be general theories. The experimental
methods of experimental psychology (and of traditional HCI) are rather reliant on finding aspects
of human performance that are consistent, so that an experimental sample will be representative
of the wider population, and so that statistical arguments can be applied within a hypothesis
testing context. However, even casual observation of professional programming contexts makes
it clear that some programmers are far more productive than others. Furthermore, all
programmers are more productive in a language they know than one they don’t know. This
makes it difficult to test modifications to existing languages and tools, because it is necessary to
control for the previous experience of the individual programmers. Further complication comes
from the fact that programming performance appears to be correlated with other psychometric
variables, such as general intelligence, self-efficacy (personal confidence in one’s own ability) and
even some diagnostic tests for autism.

The most consistent interest in the PPIG research community, as in much traditional HCI, has
been in the contrast between “expert” and “novice” users. These should be treated as technical
terms, with care to avoid the potentially derogatory implications of calling somebody a “novice”.
The technical reference is to the psychology literature in problem-solving, which often tries to
characterize the knowledge that is necessary to solve a problem by comparing experimental
subjects who do know how to solve the problem (experts) to those who do not know how to
solve it in advance (novices). In the PPIG context, the same technique is often used to study
programming knowledge, via experimental comparisons of those who do have it to those who
don’t. In a controlled experiment, the “experts” might be people who have completed a training
course in a programming language (say second year undergraduates) while the “novices” are
people who have not (first year undergraduates). In the past, there was often great interest in
studying people who had never seen any kind of programming language before, who had no
expectations, or knowledge that might have ‘crippled’ or ‘mutilated’ their understanding of
programming (an accusation made by Dijkstra against the languages BASIC and COBOL). These
desirably virginal novices were often described as “naïve” users – another term that should be
used carefully, because it would be derogatory outside a technical context. These methodological
issues are discussed in chapter 1.5 of the PoP book.

However, there is also interest in studying people who are real experts, either to understand the
nature of their expertise better, help other people to become expert, or provide tools that better
support the needs of the expert practitioner. This kind of research into expertise is reviewed in

6

Chapter 2.1 of the PoP book: “Expert Programmers and Programming Languages”. The author
of the chapter Marian Petre, has also worked extensively in the study of expert designers in other
technical fields, work that is published in the Design Research literature. (Your lecturer has
collaborated with Petre in this area, and also publishes broader studies in design research).

Major research centres and programmes

Psychology of Programming research continues to be actively pursued and presented at the
Psychology of Programming Interest Group (PPIG), which holds an annual international
conference, and also an annual “Work in Progress” meeting (PPIG-WIP) for younger researchers
and practitioners who with to present experience reports rather than full academic studies. The
proceedings of the main PPIG conference are available online. The PPIG-WIP proceedings are
not published. Research in the field was previously carried out under the auspices of the
European Association for Cognitive Ergonomics (EACE), and the Empirical Studies of
Programmers foundation (ESP). Representatives from all of these groups contributed to the PoP
book. Since then, the remaining activities of ESP have effectively been merged with the IEEE
conference on Visual Languages and Human Centric Computing (your lecturer convened an ESP
symposium under that banner in Auckland 2003). The conference/workshop series on Program
Comprehension (ICPC, formerly IWPC) is a parallel body that has been running nearly as long as
PPIG. Psychology of programming research has always been a topic of peripheral interest at
major HCI conferences such as the ACM CHI series, and some leading figures in PPIG/ESP are
also leaders in HCI/CHI. The conference series on Evaluation and Assessment in Software
Engineering (EASE) tends to focus on larger-scale issues, but does include a number of
publications describing studies of programming languages and features. Smaller meetings are
regularly convened in association with programming technology conferences – for example
Cooperative and Human Aspects of Software Engineering (CHASE) in association with the
International Conference on Software Engineering 2014, or the Onward! Symposium on New
Ideas in Programming and Reflections on Software, held in association with the SPLASH
(previously OOPSLA) conferences.

In these notes, the research field as a whole is described for convenience as PPIG. However,
readers should be aware that PPIG itself is simply the longest-established venue in the field (and
one that has conveniently published a textbook, and made its research archives freely available
online). Many of the individual researchers described below would choose other venues as
representing their primary community.

 PPIG organization and conferences - http://www.ppig.org

 History of ESP - http://www.ppig.org/newsletters/2006-06.html#esp

 EACE - http://www.eace.net/

 EASE - http://www.scm.keele.ac.uk/ease/

 VL/HCC - https://sites.google.com/site/vlhcc2013/

 ICPC - http://www.program-comprehension.org/

 CHI - http://www.sigchi.org/

7

The largest programme of funded research in recent years has been the EUSES consortium
(End-Users Shaping Effective Software), funded by the American National Science Foundation.
This was managed by Margaret Burnett at Oregon State University, with collaborators at Penn
State (led by Mary Beth Rosson), Carnegie Mellon (led by Brad Myers), Drexel (led by Susan
Wiedenbeck), Nebraska (led by Gregg Rothermel) and Cambridge (your lecturer).

 EUSES consortium http://eusesconsortium.org/

 Margaret Burnett http://web.engr.oregonstate.edu/~burnett/

 Mary Beth Rosson http://mrosson.ist.psu.edu/

 Brad Myers http://www.cs.cmu.edu/~bam/

 Susan Wiedenbeck http://www.cis.drexel.edu/faculty/wiedenbeck/index.html

 Gregg Rothermel http://cse.unl.edu/~grother/

In the UK, senior members of the PPIG research community are currently active at Salford
(Maria Kutar – PPIG chair), Sheffield Hallam (Chris Roast), the Open University (Marian Petre
and Judith Segal), Sussex (Judith Good and Ben du Boulay) and Cambridge. There are strong
groups in Finland (Jorma Sajaniemi, Markku Tukiainen and Roman Bednarik at Joensuu), Ireland
(Jim Buckley at Limerick), Paris (Francoise Detienne and Willemien Visser at INRIA), as well as
many smaller groups that conduct occasional research projects in the field. There was a European
‘Network of Excellence’ on the theme of End-User Development, that had close links to the
EUSES consortium. Active members included Volker Wulf (Fraunhofer Institute/University of
Siegen) and Fabio Paterno (ISTI Pisa, the network convenor).

 Maria Kutar - http://www.business.salford.ac.uk/staff/mariakutar

 Chris Roast - http://extra.shu.ac.uk/crr/

 Marian Petre - http://mcs.open.ac.uk/mp8/

 Judith Segal - http://mcs.open.ac.uk/jas583/

 Judith Good - http://www.informatics.sussex.ac.uk/users/judithg/About_Me.html

 Jim Buckley - http://www.csis.ul.ie/staff/JimBuckley/

 INRIA Eiffel group - http://www.inria.fr/en/teams/eiffel

 Jorma Sajaniemi - http://cs.joensuu.fi/~saja/

 Volker Wulf’s group http://www.wiwi.uni-
siegen.de/wirtschaftsinformatik/mitarbeiter/wulf/index.html.en

Other active centres in the USA include the University of Colorado at Boulder (Gerhard Fischer
and Alexander Repenning), MIT Media Lab (Henry Lieberman), IBM Research (Rachel Bellamy
at TJ Watson, Allen Cypher at Almaden), and the Human Interactions in Programming (HIP
group in) Microsoft Research at Redmond (Rob DeLine, Gina Venolia and Andrew Begel).
Younger researchers who did their PhDs in these and related groups, are still active in the field,
but are now based at other locations include Rob Miller, Chris Hundhausen, Andrew Ko, Laura
Beckwith and many others.

 Gerhard Fischer - http://l3d.cs.colorado.edu/~gerhard/

8

 Alexander Repenning - http://www.cs.colorado.edu/~ralex/

 Henry Lieberman - http://web.media.mit.edu/~lieber/

 Rachel Bellamy - https://researcher.ibm.com/researcher/view.php?person=us-rachel

 Allen Cypher - https://researcher.ibm.com/researcher/view.php?person=us-acypher

 Microsoft HIP group - http://research.microsoft.com/en-us/groups/hip/

 Andy Ko - http://faculty.washington.edu/ajko/

Current areas of theoretical attention

The relationship between theory and research in HCI is complex, as discussed in Chapter 9 of
the Research Methods for HCI book. A great deal of HCI research does not in fact involve any
explicit theory at all – or if it does, those theories are borrowed from other disciplines
(psychology or sociology). The same is true of much PPIG research. In the past (as can be seen
in the PoP book), cognitive science theories were considered central, and the theory was
expressed in the form of cognitive models, of the kind described in chapter 4 of the Research
Methods in HCI book, and the chapter on GOMS in the Carroll book. The Carroll book
contains extended descriptions of most of the substantial theoretical perspectives in HCI. In
principle, any of these could be applied to programming languages and environments. However
there is only one that emerged explicitly from this field.

Cognitive Dimensions: The most influential framework in the field is the Cognitive
Dimensions of Notations framework, originally proposed by Thomas Green at the Cambridge
Applied Psychology Unit, and developed with substantial input originally from Marian Petre, and
then by your lecturer with various collaborators. The most widely cited publications are a tutorial
developed by Green and Blackwell, a short-form evaluation questionnaire by Blackwell and
Green, and an analysis of visual language usability by Green and Petre in the Journal of Visual
Languages and Computing. A special issue of JVLC, published ten years after that paper,
reviewed subsequent developments, including extensions of the framework outside the
programming context to tangible user interfaces and collaboration tools. All researchers in the
PPIG field must be aware of the CDs framework, but it might be an exaggeration to describe it
as a ‘theory’. This was certainly not the intention of Green (he says), since he presented the
framework as an informal source of advice for designers rather than a new piece of cognitive
science. Nevertheless, the framework does have a clear theoretical motivation, based on Green’s
conception of programming as interaction with an information structure (Chapter 2.2 of the PoP
book – although this does not specifically mention CDs, which was only nascent at the time).

The basic principle is that any visible ‘notation’ (in fact, any ‘information artefact’, whether a
programming language, a design notation, a recipe, novel, or a sales chart) encodes an
information structure. The information structure is considered to have different parts (which may
be components, modules, elements, entries and so on). These parts have a variety of relationships
to each other (membership, dependency, reference, equivalence, subsidiarity …). Visible
notations can also be analysed in terms of their graphical elements, and the graphical
relationships between those elements (see the entry in the online Interaction Design encyclopedia

9

on visual representation). Notations are used and interpreted in terms of the correspondence
between the visual structure and the information structure that it represents.

 http://www.interaction-design.org/encyclopedia/visual_representation.html

The individual dimensions such as viscosity (quick definition: a viscous system is one that is
difficult to change) are defined in terms of the relationship between what the user needs to do to
the information structure, and the tools that are provided to make the corresponding change to
the notation. The full set of dimensions is described elsewhere – in these notes I elaborate on a
couple of more subtle theoretical issues.

Notational Layers: It is often the case that one information structure is derived from another,
such that the parts and relationships in one of them can be viewed as arising from the parts and
relationships in the original. For example, the structure of an e-commerce web page is related to
the structure of the database application that generated that web page, which is related to the
structure of a design model for that application, which is related to the structure of the ideas in
the designer’s head, which is related to the structure of the company that commissioned the
design. It would be possible to express each of these information structures in a different visual
notation (a screen shot, a PHP program, a UML diagram, a whiteboard sketch, a business plan
respectively). These can be described as ‘layers’ of notation that combine to make up the whole
problem.

Notational Activities: The critical question for usability is what the user needs to do with this
information structure. Simply finding pieces of information within a familiar structure is quite
easy. Trying to understand the relationships in a structure you haven’t seen before is more
complex. Adding new pieces of information, if their relationship to the existing structure is
similar to other parts, may be easy. Changing the structure is likely to be more difficult. Creating a
new structure may be relatively easy if it is being derived from another layer, so that the new parts
and relationships are defined in terms that can be anticipated on the basis of the existing
structure. Creating a new structure when you don’t know beforehand what the appropriate parts
and relationships are is most difficult of all. These different activities are described in the CDs
framework as ‘search’, ‘exploratory understanding’, ‘incrementation’, ‘modification’,
‘transcription’ and ‘exploratory design’ respectively. There are many aspects of programming
work that can be related to these different activities. A recent paper by Blackwell & Fincher
considers CDs in terms of the user experiences that may be associated with notational activities,
by analogy to the ‘design patterns’ introduced in Architecture by Christopher Alexander, and
popularised in computer science by various authors.

The developing theoretical integration between the idea of the information structure and the way
this idea can be applied as a design tool is further explored in the chapter by Blackwell & Green
in the Carroll textbook, and Chapter 8 of the Research Methods for HCI book by Blandford &
Green.

 A variety of material related to CDs can be found from the following resource site:
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/index.html

10

Attention Investment: A programme initiated by Blackwell to create a more rigorous theoretical
characterization of interaction with information structures led to the development of the
“Attention Investment Model of Abstraction Use”, which has been extensively applied in
Cambridge, at Microsoft, and at Oregon State University. The main focus of Attention
Investment is to compare the amount of mental effort (for example, focused concentration) that
is required to carry out a programming task, to the amount of effort that would be saved (in
terms of automation) once the program has been created. This can be described as a cost-benefit
equation. However, there is a degree of risk associated with both the costs and the benefits. It
can be hard to anticipate the actual effort that will be involved in getting a program working. The
benefits are also uncertain, for example if the program has a bug – in fact a severe bug might
result in the program causing even more harm than it does good, so the net return on the
investment is negative!

The attention investment model predicts why people might be reluctant to engage in
programming, either because they over-estimate the costs involved, or over-estimate the risks of
a negative return. Some professional programmers, in contrast, under-estimate the costs, and
over-estimate the benefits. These kinds of bias can be understood in terms of the heuristics by
which humans make decisions on the basis of their previous experiences (as with problem-
solving by analogy, decision by heuristic biases is a better model of human reasoning than AI
systems that tend to have relatively little prior knowledge of the world, so reason from first
principles).

Well-designed programming environments should help reduce the two kinds of error that can
result from heuristic biases. One of the design objectives motivated by Attention Investment has
been described as a ‘gentle slope’ for programming tools, making simple things simple to do,
with gradually increasing difficulty for more complex tasks. Many systems fail to achieve this, so
that users face a ‘cliff’ of complexity when they need to do something slightly more complex (for
example, the transition from cell formulae to macro programming in Excel). Another application
developed by Margaret Burnett and colleagues at OSU is the ‘surprise, explain, reward’ strategy to
encouraging testing and debugging.

 Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-
10. http://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf

Gender HCI: Collaboration with Laura Beckwith at OSU led to attention investment being
integrated with self-efficacy theory to explain some gender differences in programming. That
programme of research continues under the name of “Gender HCI”, although its primarily
cognitive orientation sits uncomfortably alongside more recent research by Bardzell and others
that applies gender studies in an HCI context. Some work to reconcile the two can be found in
the work of Jennifer Rode, who initially worked on this in Cambridge, and is now based at
Drexel with Susan Wiedenbeck.

 Gender HCI - http://eusesconsortium.org/gender/gender.php

11

Programming by Example: There has been a long tradition of applying inference or machine
learning techniques to develop systems that can infer programs from examples of the required
output. This research is collected in two books, the first edited by Allen Cypher and the second
by Henry Lieberman. Ongoing research in Cambridge is exploring the relationship between this
work and Attention Investment.

 Watch What I Do (Ed. Cypher) http://acypher.com/wwid/

 Your Wish is My Command (Ed. Lieberman) http://web.media.mit.edu/~lieber/PBE/Your-Wish/

Natural Programming: Myers’ group at Carnegie Mellon have carried out a programme of
study to describe “natural programming”, by which they mean ways of describing algorithms and
data structures that are meaningful in natural language and everyday usage. The intention is that
the results should allow programming languages to be designed based on naïve or novice
understanding, rather than requiring more expert training. Some prototype systems based on this
idea have been developed by John Pane, Rob Miller, Andrew Ko and Christopher Scaffidi.

 Natural Programming Project - http://www.cs.cmu.edu/~NatProg/index.html

Variable Roles: There have been a number of productive studies in which aspects of
programmer behaviour are inferred from analysis of source code corpuses, in addition to
watching programmers at work. Research in Finland developed the conception of ‘variable roles’,
as a way of characterizing local programming strategies of using variables. These have become
useful as an inspiration for new design and visualization tools, and also as a guide for educators.
Many of the original publications can be found in proceedings of the PPIG workshops.

Collaboration and agile programming has been a significant focus of research at the PPIG
workshops in recent years. Experimental observation and analysis of the interaction between
people doing pair programming has been a particularly productive area of attention. At present,
this work has not been so directly related to the design of programming languages themselves,
and the theoretical orientation tends more toward sociology rather than psychology. Those topics
are out of the scope of the current course, but those who are interested can learn more by
exploring the field of Computer-Supported Collaborative Work (CSCW) rather than HCI.

Aptitude: The challenge of how to identify good programmers is of perennial concern at PPIG
and elsewhere. This is relevant to commercial contexts, of course, where good programmers are
commercially valuable, but not always easy to identify. It is also of interest to the academics who
write papers for PPIG, because they want to identify which students will show most talent, or are
most likely to need additional help. Measures of programmer aptitude are sometimes presented
without any serious theoretical explanation, but they can also build on a range of psychometric
characterisations of individual differences, such as cognitive style, personality measures, or even
diagnostic tools for autism spectrum conditions.

Development in organizational contexts: The Microsoft HIP group have carried out a
substantial number of long-term studies of professional programmers working in realistic team
contexts, and maintaining code bases on an industrial scale. This kind of research is generally

12

beyond the resources of academic research budgets, and relies on access to commercially
sensitive information. Despite this necessarily specialist community, the group engage actively
with academic researchers, and share their results widely.

Syntax and tools

As can be seen from the above examples, many of those who study the usability of programming
languages also develop new languages. In the past, programming was seen as an interesting object
of study in its own right, for example in the work of Green at the Applied Psychology Unit.
However, now that Cognitive Neuroscience has replaced most experimental psychology research,
it is difficult to conduct pure research into higher cognitive functions such as programming. As a
result, empirical studies of programmers are now carried out in computer science departments,
where there is also more desire and capacity to develop new experimental tools (even if many of
the senior researchers may have qualifications in psychology or cognitive science, so that they are
relatively unlikely to develop tools themselves). This means that most active research groups have
specialized interests not only in particular theories of human cognition and behaviour, but also in
particular kinds of language syntax, or particular kinds of software development tool. Some of
the most popular are:

Integrated development environments: Professional programming relies on availability of a
larger software environment that manages project modules, integrates editors with compilers,
provides debugging tools and so on. Some research is conducted by creating custom plug-ins for
IDEs such as Eclipse, but it seems that the novel interaction styles of most interest to
programming usability researchers are hard to achieve within the Eclipse architecture. Popular
educational tools such as BlueJ or Scratch have simplified IDEs at a level appropriate for their
intended audiences, but the effort of maintaining these for a large user base means that there is
little remaining resource to carry out experimental modifications. One exception is the CMU
Alice project, which Ko used as the experimental target for his ‘WhyLine’ debugging aid, and
Kelleher extended to explore the use of teaching strategies that incorporate storytelling. Burnett’s
Forms/3 has been developed over many years, with a number of experimental extensions, but
has not been deployed outside the research context.

Visual languages: The concept of a visual language is an old one, dating from ideas to make
executable flow charts, to Sutherland’s object-oriented graphical constraint system Sketchpad in
the early 60s, and David Smith’s Pygmalion in the 70s. Although much of this research was
motivated by the goal of improving usability, the idea of measuring or assessing the improvement
did not become well established until 1996, when keynote speakers at the annual VL conference
were HCI authority Ben Shneiderman, and Thomas Green, reporting both his recent Cognitive
Dimensions work and his studies of flow charts dating back to the 1970s. Your lecturer also
presented a critique of the (sometimes mistaken) implicit psychological assumptions that had
driven the field until then.

As noted above, there are now many visual languages, in education contexts and elsewhere.
Pioneering commercial products were the National Instruments LabVIEW system, and
Prograph, a commercial spinout from VL research by Philip Cox and Trevor Smedley at

13

Dalhousie. New visual languages are now being announced at a rapid rate, although often
described in ways that suggests the marketing people have never heard of the idea before.
Interesting recent examples include Yahoo Pipes, Microsoft Kodu, and Google Blockly. All of
these are relatively straightforward adaptations of previous academic systems, although few have
benefited either from sophisticated evaluation of the underlying theoretical assumptions, or
application of the Cognitive Dimensions framework.

Spreadsheets: The most widely used programming technology at present is the spreadsheet.
There have been many empirical studies of spreadsheet users, both using conventional
spreadsheets (Excel) and Margaret Burnett’s Forms/3, which allows cells to be arranged in a free
format. These studies have led to a wide range of usability improvements to spreadsheets,
including testing and debugging facilities, and type systems in the work of Erwig. Spreadsheets
were used as the experimental target for a number of experiments in Gender HCI, which led to
the characterization of ‘tinkering’ as a kind of programming behaviour that can be beneficial for
those with low self-efficacy, although problematic for users (often male) who are over-confident.
Burnett and Blackwell, with Haskell architect Simon Peyton-Jones, designed a functional
programming extension to Excel that allowed patches of spreadsheet to act as first class
functions.

 http://web.engr.oregonstate.edu/~erwig/units/

 http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/excel.pdf

Scripting languages: Many software users benefit from the capability to customize their tools,
and many advanced tools include facilities to let them do so, with scripting or macro languages.
Familiar examples include the use of Visual Basic in Microsoft Word, but more specialist
professional examples include LISP variants – in AutoCAD and the programmer’s editor
EMACS. Scripting languages often turn up in unexpected places, such as the programming tools
that can be used to create new behaviours in Second Life. Some sophisticated scripting
capabilities come and go, such as Apple Hypercard and Automator. Computer Lab researcher
Luke Church is the principle architect of a powerful new experimental scripting environment
from AutoDesk called DesignScript.

Research by Tessa Lau and Allen Cypher at IBM resulted in CoScripter, an intriguing system for
scripting repeated sequences of web navigation and form actions, extending programming by
example techniques. A future growth area may be the development of scripting languages for
home automation. Many of these systems are in principle intended to be accessible by users who
do not have professional programming training. This introduces both educational and usability
challenges – this topic will be discussed later in the course.

 http://designscript.org/

 http://acypher.com/coscripter/

14

Lecture 2: Research methods in the study of programming.

Ethical issues in research

All academic research involving human participants must consider any possible ethical concerns.
Detailed guidance has been compiled for research carried out in the Cambridge School of
Technology. This guidance is constantly extended and refined – please contribute any useful
observations that you might have to the site maintainers (coordinated by your lecturer). The
experiments that you will be carrying out for the practical element of this course must be
reviewed by the Computer Lab ethics committee.

 Cambridge Technology Ethics guide - http://bit.ly/hptps-guide

 Computer Lab Ethics committee http://www.cl.cam.ac.uk/local/committees/it-strategy/ethics.html

Controlled experimental methods

The classical cognitive approach to study of programming language usability uses controlled
experimental methods, in which a sample of ‘participants’ (or ‘subjects’ in old terminology)
completes an experimental ‘task’ while their ‘performance’ is measured – typically in terms of
speed and accuracy. (Comparison may be easier if only correct results are considered).
Participants may complete a number of trials, each involving a different task. Different
experimental ‘conditions’ involve manipulating the task in different ways – typically by modifying
the programming language, using different languages, or different features of the programming
environment. The ‘effect’ of those modifications can be assessed by comparing performance.
This must be done statistically, preferably ‘within subjects’ (each participant completes tasks
using all versions of the programming language), but if necessary ‘between subjects’ (some
participants use one version, and some use another).

This course assumes that you have had previous experience in the design and analysis of simple
hypothesis-testing controlled experiments with human participants. The ACS research methods
course included an exercise in which you will have carried out a simple experiment. The basic
approach used in that experiment (comparing speed and accuracy in two different conditions
with alternative technical designs) is directly applicable to simple experiments in the usability of
programming languages. However, this approach requires that a relatively straightforward
experimental task can be identified.

 A more detailed review of basic principles in experimental design is provided in the PoP book, Chapter
1.5: Methodological Issues in the Study of Programming.

15

Typical experimental tasks

Classic approaches to the study of natural language consider both production tasks (speaking or
writing) and comprehension tasks (understanding, interpretation or recall). Experimental studies
in psycholinguistics often measure only one of these at a time – the same is true in many studies
of computer programming languages. A combination of speed and accuracy seems to be directly
relevant to production (write a program that is correct, and write it quickly), while accuracy and
completeness, rather than speed, are more relevant to comprehension.

However, application to real world situations must recognize that competent language use
involves both production and comprehension. In the case of spoken natural language, this might
involve exchange with a conversational partner, but programming more often involves reading
back and modifying code that you have written yourself. This introduces the need for search
tasks – finding the place in the code that is responsible for a particular piece of functionality, or
that must be modified to correct a bug or add new behaviour. As I write this, it occurs that the
experimental tasks in PoP might reasonably be classified in terms of the six types of notational
activity defined in the CDs framework. As far as I am aware, this has not yet been attempted.

In conventional experimental psychology, standardized tasks are used as much as possible, in
order that the results of one experiment can be compared to another. A classic problem solving
task is the ‘Wason selection task’, and a classic planning task is the ‘Towers of Hanoi’ task. Each
of these is useful, from a cognitive science perspective, because they are well-formed (‘toy’)
problems where the correct solution is easily expressed as a computer algorithm.

 http://en.wikipedia.org/wiki/Wason_selection_task

 http://en.wikipedia.org/wiki/Towers_of_Hanoi

In the early days of ESP/PPIG research, specific kinds of experimental tasks were used in
multiple studies. Your lecturer compiled a list of the tasks that might be considered. These are a
useful reference source to see what kinds of task granularity might be used in a successful
experiment. Of course most of these tasks share the disadvantages of ‘toy problems’ in broader
cognitive science – that they do not often resemble real programming problems that a
professional programmer might encounter (although some of them do resemble student
exercises). This presents a problem of ‘external validity’, if you want to make claims that your
results are relevant to real programming. However, poor external validity is often associated with
good internal validity, as a general characteristic of experimental research, so this is a trade-off
that you may have to make.

 Section 2 of Chapter 1.5: Methodological Issues in the Study of Programming provides further
discussion of experimental tasks.

 Blackwell’s list of PoP tasks - http://www.cl.cam.ac.uk/~afb21/poptasks.html

16

Experimental manipulations of programming tools

If you wish to study the effect of a particular feature in a programming language or environment,
the most straightforward controlled comparison would be to compare a version with that feature
to another version without it. For some cases, it may be relatively straightforward to create two
versions of a new prototype, one that is complete, and one that has a crucial aspect disabled.
However, this strategy introduces a number of practical problems. Is it possible to make a
version that works without the new feature? Will the experimental task be meaningful if the
feature is disabled? In a within-subjects comparison, the experiment may seem illogical to
participants unless the ‘improved’ version with the new feature is presented in the second trial,
which means that the utility of the feature is conflated with an order effect (a problem of internal
validity). Finally, if your experimental system has been created specifically in order to support this
feature, then it may be comparatively poorly designed in other respects. As a result, the
comparison to other existing systems may not be fair, because performance with your
experimental system will not be representative of typical systems of the kind (a problem of
external validity).

Despite these problems, direct comparative studies of specific features can be valuable research
contributions, especially to estimate the productivity gain (experimental effect size) that could
result from a new invention. A more challenging ambition is to manipulate programming tools in
order to investigate some research question related to more fundamental debates among
advocates of different approaches to programming. Classical debates of past years have included
the debate between advocates of imperative and declarative programming paradigms, or between
textual and visual syntax. The problem here is that it is very difficult to create two languages that
are properly representative of the two alternatives, yet are also equivalent in other respects.
Furthermore, even if this has been achieved, it is hard to design experimental tasks that are
equally suited to different paradigms. As a result, attempts to settle this kind of debate via
controlled experiments with good internal validity have pretty much been abandoned.
Fortunately, other study techniques, many with better external validity, are still available.

The sheer complexity of programming tools provides a further obstacle to experimental
manipulation. There is the straightforward problem that a conceptually simple user interface
improvement may be computationally infeasible, or require years of development effort. A
slightly more subtle problem is that an existing system may provide so many essential features
that it is not feasible to duplicate them all to a sufficient level of functionality to support a
realistic experimental task. In conventional HCI research, it is normal to ‘cheat’ by evaluating
paper prototypes or screen mockups that simply simulate the appearance of the working system.
A Wizard of Oz (originally a ‘man behind the curtain’ as in the movie) can manually simulate the
system behaviour that would result in response to user actions. However, this manual simulation
is seldom feasible in programming research. One alternative proposed by Blackwell et al. is that a
mockup of the new feature can be overlaid on an existing product in a way that simulates a
proposed modification (that paper describes simulating the appearance of a rather fundamental
change to Excel, by pasting small gif images into the cells of a spreadsheet).

 Blackwell, A.F., Burnett, M.M. and Peyton Jones, S. (2004). Champagne Prototyping: A research
technique for early evaluation of complex end-user programming systems. In Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC04), pp. 47-54.

17

Measurement, observation and protocol analysis techniques

Classical controlled experiments in psychology and HCI measure speed (reaction time) and
accuracy (number of (non)errors). In the case of a production task, we might record how long
participants take to produce or modify a program after being given a specification, and whether
the resulting program or modification is correct. In simple reaction-time experiments, there is
often a trade-off between speed and accuracy, and the purpose of measuring both is to
compensate for that trade-off. In programming usability research, it is more often the case that
poor performance is characterized by both low accuracy and long task completion times. This
generally makes analysis easier, because two measures are available as estimators of task
complexity. Nevertheless, correlation between speed and accuracy should usually be tested, to
confirm whether this is the case.

Task completion: For practical reasons, it is sometimes necessary to stop an experimental task
after a fixed amount of time, rather than waiting for participants to complete it. If this is the case,
then an alternative speed measure can be derived from the proportion of the overall task that was
completed, for example, number of bugs fixed, or number of function points implemented. If a
wide range of performance is expected, this can be useful for management of experiments – it is
not desirable for experimental sessions to last longer than 1-2 hours. However, repeating large
numbers of relatively trivial tasks may be uninteresting for experimental participants, and also
provide relatively poor external validity.

Subjective self-report of ease of use can be a useful research tool. This is justified on both
applied and theoretical grounds. The applied justification is that new technology products must
ultimately appeal to market consumers (whether commercial customers, or a research audience).
If a new language seems easy to use at first sight, it is more likely to be successful in the market,
so assessing this at an early stage in research can provide valuable information. The theoretical
justification is that reported ease of use may provide an estimate of factors such as ‘cognitive
load’ that are detrimental to task performance.

However, there is significant danger of bias in self-report measures. Subjective impressions of
task performance do not always correspond accurately to real task performance. Furthermore,
they are highly subject to ‘experimental demand’ – people who have volunteered to participate in
experiments want to be helpful to the experimenter, and this can include overly generous
feedback on the quality of the experimenter’s work. Because they want to be nice, they will often
respond to questions about desirability and ease of use in a way that is biased in favour of the
experimental system. In order to avoid this, it can be useful to disguise which manipulation is the
novel one, or for the experimenter to distance him or herself from the system (e.g. “We are
trying to evaluate this new system that someone has proposed, but we don’t know whether it is
any good or not”).

Despite the well-established techniques for controlled comparison of human performance, there
are many important aspects of programming that are hard to measure quantitatively. Speed and
accuracy are certainly of interest to programming language users, but they are even more likely to
be concerned with whether a new language helps programmers to understand their problem
better, allows them to be more creative, makes people more enthusiastic to learn programming

18

and so on. All of these questions can be formulated in self-report questionnaires (‘on a scale of 1
to 5, how creative would you say you are feeling now’), but this approach is highly subject to bias,
and poor reliability. An alternative is to collect ‘richer’ data by observing people as they use
programming systems, and asking them to talk about their experiences. Observations might
consist of screen-capture from programming sessions, perhaps supplemented with video
recording (or entries in an observer’s notebook) to capture use of reference materials other than
screen content.

A common strategy is to ask participants to think-aloud, describing everything that passes
through their mind as they are carrying out the task (sometimes called ‘concurrent verbalization’).
However, this has two problems. One is that, if the task is hard, it becomes even harder if you
have to do it while speaking aloud. The other is that during the most intense periods of problem
solving or insight, participants simply stop talking, so you fail to capture information about the
periods that are of most interest. One way around this problem is to make a screen recording or
video recording of the experimental sessions, then play this back to the participant who makes a
retrospective verbal report of what they were doing.

It is also possible to use eye-tracking to gather more information about which part of the screen
the programmer is looking at as they complete the task. This can either be processed
automatically, to infer information about the task strategy, or the eye-tracking trace can be used
for retrospective verbalization. Bednarik in Finland has reported on a series of eye-tracking
studies at PPIG workshops. Similar techniques can be used without an eye-tracker, by blurring
parts of the screen and requiring the user to mouse over them. This ‘restricted focus view’ (RFV)
approach was developed by Blackwell & Jansen, and has been used in studies of programming
reported at PPIG and elsewhere by Romero and Cox.

 Chapter 4 of the research methods in HCI book: ‘Eyetracking in HCI’ – gives a great deal more
information about the practicalities of using eyetracking methods.

 Bednarik’s comparison of RFV to eyetracking: http://www.ppig.org/papers/16th-bednarik.pdf

If rich, verbal, non-numerical or ‘qualitative’ data has been collected, then the data analysis
process becomes a far more central element of the research. The usual starting point is to
transcribe the recorded data, so that you have a record of every word the participant said –
probably correlated with the aspects of the task that they were working on at the time. This is
described as a ‘verbal protocol’. (It is also possible to make detailed analyses of video recordings,
which are then called ‘video protocols’). There are two broad strategies for analysis. The first is to
treat the protocol as representing those aspects of human behaviour about which you had a prior
hypothesis. A ‘coding frame’ is created, defining the different categories of behaviour that you
are concerned with. The protocol is segmented into episodes, utterances or phrases, and each of
these is classified into a relevant category. The behaviour of different groups of participants, or in
different experimental conditions can then be compared statistically. It is also reasonably
common to use this technique to study the time course of how people approach tasks,
comparing the frequency or order in which different episodes occur over time (as in work by
Pennington). Interpretation of episode categories can often be ambiguous, and is subject to
experimenter bias, so it is important to recruit multiple independent ‘raters’, and carry out ‘inter-
rater reliability analysis’.

19

An alternative strategy for the analysis of qualitative data is grounded theory, in which the
researcher starts by carrying out ‘open coding’, observing patterns in the verbal data as he or she
goes along. This is even more interpretive, and potentially open to bias, so a carefully controlled
analytic process is recommended. Open coding is followed by a sequence of thematic grouping
and generalization strategies, undertaken together with ‘constant comparison’ to ensure that the
interpretations being developed are still compatible with the actual words used by participants.

 Chapter 7 of the research methods in HCI book: ‘A qualitative approach to HCI research’ – gives a good
introduction and overview of the ground theory approach.

Experiment design

The ‘experiment design’ in a controlled experiment refers to the combination of participants
(perhaps in groups), tasks (perhaps in blocks of trials), conditions and measures, and the
hypothesized effects of the manipulation conditions on your chosen measures.

Statistical significance testing requires you to demonstrate that the difference in means that you
observe between the two groups or manipulation conditions is unlikely to occur by chance. In
order for this to be shown, the size of the difference between the means for each condition (the
effect size) should be relatively small when compared to the variance within each group. This is
the primary reason why within-subjects experiment designs are preferred in psychology of
programming tasks, because there is so much variation between people in programming
performance. In a between-subjects design, that individual variation will almost certainly be large
relative to your effect size, so a statistically significant result becomes unlikely.

However, there is a major challenge in the use of within-subjects designs for psychology of
programming. ‘Order effects’ mean that whichever condition the participant carries out second
will benefit from the fact that they have learned how to use the system, so will appear to be faster
and more accurate. A further order effect results from task familiarity – you cannot ask
participants to carry out the same programming task twice, because they will already know how
to do it. You can use a different task in each condition, but it is very hard to calibrate tasks so
that they are precisely equivalent, without actually being the same problem. It is therefore
necessary to ‘balance’ the different experimental conditions with order, and with task, so that
each version of the programming language is used with each task, and each combination is
presented in both the first and second position in the experiment. For two conditions, two tasks,
and two orders, a ‘latin square’ balanced design requires multiples of four participants.

 Chapter 1 of the research methods in HCI book describes experiment design and latin squares.

Experiments should always be designed with an understanding of how the data is going to be
analysed. If at all possible, you want your quantitative data to be normally distributed, so that you
can make statistical tests using a t-test, ANOVA, or Pearson correlation. If it seems in advance
that this might not happen, it might be wise to consider a different design. Distributions of task
completion times are often skewed, with a ‘long tail’ of a small number of individuals who
complete the task quite slowly. In traditional psychological experiments, those individuals are

20

sometimes excluded form analysis as ‘outliers’ who are not of interest because they are atypical.
However, in programming, we often observe that some individuals have a lot of difficulty with
programming tasks – we would like to create systems that benefit them, not exclude them. For
this reason, it can be preferable to use a log transform of time values, which are usually found to
be normally distributed for human reaction times, and make the outlier values in the tail of the
distribution more directly comparable to the rest of the population.

Subjective preference ratings are almost never normally distributed. In this case, a chi-square test,
or a ‘non-parametric’ comparison of means must be used to test whether two conditions or
groups are significantly different.

 Chapter 6 of the research methods in HCI book: ‘Using statistics in usability research’ - provides a more
thorough discussion of these issues

An alternative approach to the study of user interfaces is simply to ‘evaluate’ or ‘explore’ the
usability of a system. The findings from evaluation or exploration studies can help inform the
design of programming languages and environments, either in a ‘formative’ way (a study carried
out early in the design process, in order to choose between or identify new design options) or a
‘summative’ way (identifying usability problems in a system you have already built). In
conventional user-centred design processes, user studies are carried out within an iterative design
process, allowing a system under development to be successively refined on the basis of
evaluation or exploration results. However these kinds of study are relatively weak contributions
to research literature, because they do not usually make any direct contribution to theory. The
results can be of relevance to the specific product under development, but may not be more
generally relevant to other research in future. Of course, the same considerations mean that these
kinds of study are relatively popular in commercial contexts.

 Chapter 1.5 of the PoP book discusses these issues further.

One important proviso for your future research careers is the significance of evaluation when
publishing in broader technology research venues. There are many conferences for which the
apparent purpose is to improve the efficiency or effectiveness of software development (e.g.
ICSE, OOPSLA/SPLASH etc). Many presentations at these conferences propose new tools or
methods that are claimed to result in improvements. Some of those presentations make their
claims without any evidence to support them. This has been considered acceptable until recently,
but it is increasingly common for papers at these conferences (especially the prize-winning papers
at ICSE that are written by EUSES members) to include evidence from evaluation of the new
tools. This trend is likely to increase, as the tendency at other conferences in the past has been
for evidence-based research to drive out purely technical demonstrations. Sometimes, new
conferences emerge to host research by people who do not wish to get involved in evaluation
(e.g. the VLC conference that was created in reaction to VLHCC – they just removed the
‘human-centred’ part of the name!). However, an orientation toward claims without supporting
evidence tends to result in such venues having a relatively poor reputation.

 ICSE - http://www.icse-conferences.org/

 OOPSLA/SPASH - http://splashcon.org/

21

Field study methods

If one wishes to study the organizational context of software development, or the way that
software development teams interact with each other, or even realistic behaviour of individual
programmers in the actual contexts where they work, it becomes necessary to go to them, rather
than bring them to a laboratory. Field study methods are reasonably often encountered in PPIG
research, possibly in combination with analysis of design documentation or source code
repositories, for example in the work of the Microsoft HIP group. Field research can extend to
interview studies (individual ‘contextual inquiry’ interviews, or structured ‘focus group’
discussions), ‘case studies’ of specific projects or organisations, or ‘ethnographic’ field work in
which the researcher becomes immersed in the situation as a participant-observer for extended
periods of time.

All of these methods result in the collection of qualitative data, often recorded and transcribed,
and often analysed using a grounded theory approach. Chapter 2 of the research methods in HCI
book provides an introduction to the use of interviews and focus groups. Detailed considerations
of case study research and ethnographic field studies are beyond the scope of this course, as you
will not have time to carry out studies of this kind.

22

Lecture 3: Special classes of programming language use

Educational Languages

There have always been close connections between the PPIG community, and the field of
Computer Science Education, which aims to improve the syllabus, teaching methods, and tools
that are used when teaching programming. Early PPIG and ESP meetings included contributions
from well known CS educators such as Elliott Soloway. In the UK, a series of researchers at the
Open University have reported experimental evaluations of OU course material, and special
teaching languages developed for OU students. Sally Fincher at Kent is currently a UK and
international leader in CSE.

However, there is also a long-standing tradition in the construction of special programming
languages for use by children, not necessarily restricted to a formal educational context. Famous
early examples include Papert’s Logo and Kay’s Smalltalk. Smalltalk rapidly grew beyond the
scope of use by children, but Logo has been a longstanding focus of educational research, for
example by Richard Noss and Celia Hoyles at the London Institute of Education. More recent
languages developed for children have been Alexander Repenning’s AgentSheets from Boulder,
Allen Cypher and David Smith’s Kidsim/Cocoa/StageCast Creator from Apple, Ken Kahn’s
ToonTalk (now at Oxford), Michael Kolling’s Greenfoot (now at Kent, but developing his
previous work on BlueJ for older students), the Alice project at Carnegie Mellon and the Scratch
project at MIT.

 http://www.agentsheets.com/

 http://www.stagecast.com/

 http://www.toontalk.com/

 http://www.greenfoot.org/

 http://www.alice.org/

 http://scratch.mit.edu/

Many of these recent projects use visual language techniques, to overcome the problems with
syntax that are often experienced by children. There is some debate over the educational
consequences, with an argument that since syntax is one of the aspects of programming that
seems to be hard to learn, it is either ‘cheating’ to avoid teaching it, or perhaps deferring
problems until later. As a counter-argument, many of these systems are primarily concerned with
motivating children to engage with programming, by making it easy for them to build programs
that interest them (typically videogames, or animations).

 Chapter 2.5 of the PoP book: ‘Programming Languages in Education’ describes these different
perspectives as ‘learning to program’ versus ‘programming to learn’.

This is a core debate in the design and evaluation of educational programming languages. On one
side, a ‘user-centred’ design philosophy would focus on creating languages that allow children to

23

achieve the things they want to do. On the other, a ‘curriculum-centred’ philosophy would
concentrate on the principles that you want children to learn, and would focus on creating
languages that illustrate those principles. The first is more typical of research in the USA, which
tends to recruit participating children via after-school clubs or summer camps. The second is
more typical of research in the UK and Europe, which tends to introduce experimental systems
into classrooms within the context of a lesson. These contrasts are discussed in the following
paper:

 Rode, J.A., Stringer, M., Toye, E., Simpson, A.R. and Blackwell, A. (2003) Curriculum focused design. In
Proceedings ACM Interaction Design and Children, pp. 119-126.

A further debate that has deep impact on the development of educational languages is the
question of what theoretical principles are considered most important for the teaching
curriculum. Often the academic advocates of particular programming paradigms are influenced
by research trends at the time. At the time the PoP book was written, as can be seen from
chapter 2.5, the popularity of AI research had led to advocates of Prolog as a first programming
language. The ToonTalk language, although a purely educational language, is also influenced by
Prolog-style models of AI research. In Cambridge and Edinburgh, there are strong advocates of
ML as a first programming language. The educational goals of the BlueJ system are made quite
clear in the title of the associated textbook, ‘Objects First with BlueJ’. Debate continues at the
time I am writing this, and probably will do for years to come – especially in Cambridge, where
the success of the Raspberry Pi as a platform for educational computing has drawn us into the
centre of national debates about how that education should be achieved.

In my own opinion, the design of environments whose goal is ‘programming to learn’ should be
led by educational specialists, who have experience of teaching a range of subjects to children of
the appropriate age. Unfortunately educationalists can seldom find innovative computer science
researchers who are sufficiently able to look beyond their own personal opinions and
assumptions to create and evaluate good tools for use by educators. Creating programming
languages that some children will enjoy, on the other hand, without necessarily requiring them to
be educational, is great fun. But perhaps this has more in common with the next topic of end-
user programming.

End-user Programming

The term ‘end-user’ comes from the Information Systems field, where there is a convention of
referring to the business organization that has commissioned a software development project as
the ‘user’. However the people within that customer organization who become actively involved
in the project are often IT professionals themselves (systems analysts, project managers or even
programmers). This can cause problems for usability, because the judgments of those IT
professionals with regard to what they consider usable often doesn’t correspond to the experience
of the person who eventually gets to operate the system every day. The phrase end-user therefore
refers to the person who will actually use the program once it is finished. An ‘end-user
programmer’ is thus a person who is not only writing the program, but who will also be the
person that uses it.

24

The IS field also refers to ‘end-user development’ (EUD) and ‘end-user customisation’ (EUC), to
refer to tools and strategies that allow end-users to become more involved in software
development, and to have more control over the behaviour of their software. However ‘end-user
programming’ is a particularly provocative term, because it implies a person who is actually doing
programming, despite the fact that he or she is not a programmer (or any other kind of IT
expert). From an IS perspective, that is almost a contradiction in terms.

There are three things that make EUP a topic of special interest for PPIG researchers. The first is
that the years of research into ‘novice’ programmers gave us a reasonably good understanding of
how their knowledge and strategies differ from experts. This means that we already know quite a
lot about how to help this group of users. The second is that as computers become more
ubiquitous, there are more and more people who would like to use computers for their own
purposes. There simply aren’t enough programmers to go around, so it is a good thing if ordinary
users can look after their own programming needs. Finally, professional programmers are
remarkably uncomplaining about the user interfaces that they have to use themselves. In a
‘cobbler’s children’ scenario, programming tools are often the least usable among all software
categories. Furthermore, programmers have become so accustomed to the usability shortcomings
of their tools, that they even claim to like them that way (which could result either from
Stockholm Syndrome, or professional protectionism, depending which side you look at it).
Despite this general lack of interest in usability, if we focus on people who clearly have a usability
problem, even professional programmers may benefit from the resulting improvements.

Bringing all of these concerns together, EUP is usually defined to refer to a person who has not
trained as a programmer, is not primarily employed as a programmer, and does not program for
its own sake, but as a means to an end. A regular example is a schoolteacher writing a
spreadsheet to calculate grades from a mark-book. However, a successful end-user programmer
may find that his or her programs start to be used by other people, in which case they are no
longer an ‘end-user’ in the original sense. That situation, and situations in which people creating
business-critical software while not having professional training in software development, has led
to the recent research interest in end-user software engineering (EUSE), which is focused on
tools to help improve the quality of software created by end-users, for example by assisting them
with testing and debugging.

Some of the most successful end-user programming languages have been created for use by
people who, although they may be ‘novices’ in programming, are really experts in their own field,
and may be clever enough to acquire basic programming skills very quickly. These end-users can
benefit greatly from languages that are designed specifically for use in their own problem domain
– a class described naturally as ‘domain-specific languages’. Good domain-specific languages,
such as National Instruments LabView, can easily become popular well beyond the originally
intended audience, for the simple reason that they have been designed with usability in mind. In
future, it seems likely that domain-specific languages will become increasingly common. Just take
a look at the specialized languages and paradigms in the Windows Presentation Framework –
these are sufficiently complex to be a domain-specific language for the user interface
development domain.

25

Creative mashups and composition

Early generations of digital technology were created for military, industrial and bureaucratic
applications. These are all domains in which organisations are well structured, and there are
ample resources. As a result, it has always been clear who should specify new technology, who
should design and build it, who should use it, and who should tell them all what to do. However
over the past 20 years, digital technologies have extended into all other areas of life, including
leisure, media and the arts. People use these systems because they want to, not because someone
is telling them what to do. It seems plausible that the development approaches for these
‘discretionary-use’ systems ought to be different to the bureaucratic and technocratic design
processes of the past. Programming languages are now evolving to suit the new environment and
broader applications of digital technology. Languages intended for use in agile development
environments are one example, as are AJAX tools, that support applications with increased
control and interactivity for website users.

 James Noble and Robert Biddle (2002). Notes on postmodern programming. In Proc. OOPSLA 02, ,
pages 49-71. http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-02-9.abs.html

 Why’s (poignant) guide to Ruby. http://www.rubyinside.com/media/poignant-guide.pdf

If we consider these trends from the perspective of end-user programming, there are much wider
audiences of interactive digital media creators who could benefit from the power of
programming languages. These are often derived from the ‘collaging’ nature of digital media,
where sampling and mash-ups allow new kinds of artist (possibly without conventional arts
training) to make new works. Video mashups are a popular YouTube genre, and sampling in
popular music is ubiquitous. Prize-winning open source documentary Rip! A Remix Manifesto
illustrates these trends with the work of Girl Talk, a musician who does not use any original
sound at all in his performances. All of these trends are informing programming styles that
similarly rely on creative open source communities. The Scratch language was named after
turntable scratching, with the intention that it should allow children to make creative digital
mashups. Interactive web mashups require programming, but can be created with tools such as
Yahoo! Pipes.

 Rip! A Remix Manifesto - http://ripremix.com/

 Yahoo! Pipes - http://pipes.yahoo.com/pipes/

At present, there are very few programming languages developed specifically for creative
contexts. The most popular programming language for music is Max/MSP, a visual dataflow
language (like Yahoo Pipes, though the resemblance probably ends there). The most popular
language in visual arts is currently Processing. Max/MSP is regularly used for other time-based
media, such as video (with the Jitter plug-in). More advanced musical capabilities are provided by
the SuperCollider environment and programming language. Many of these systems are used
within a broad context of sampling and mashup artworks, for example Nick Collin’s BBcut
library for SuperCollider, which uses sophisticated audio algorithms for beat-matching to help
users extract breakbeats from music tracks.

 Max/MSP - http://cycling74.com/

26

 Processing - http://processing.org/

 SuperCollider - http://supercollider.sourceforge.net/

Current research in the Computer Lab is exploring several relevant directions, including the
creation of new programming languages for use in dance improvisation (with Wayne McGregor
and Random Dance) and for musicians who compose directly to MIDI (Chris Nash), or who
carry out live coding – writing sound synthesis software in front of an audience (Sam Aaron’s
Improcess). Your lecturer has previously collaborated with the BBC controller of research to
express how end-user programming could be combined with open source and mashup principles
to transform public engagement with broadcast media.

 Random Dance research - http://www.randomdance.org/r_research

 Church, L., Rothwell, N., Downie, M., deLahunta, S. and Blackwell, A.F. (2012). Sketching by
programming in the Choreographic Language Agent. In Proceedings of the Psychology of Programming
Interest Group Annual Conference. (PPIG 2012), pp. 163-174.
http://www.cl.cam.ac.uk/~afb21/publications/PPIG-2012.pdf

 Chris Nash’s reViSiT - http://www.nashnet.co.uk/english/revisit/

 Aaron, S., Blackwell, A.F., Hoadley, R. & Regan, T. (2011). A principled approach to developing new
languages for live coding. In Proceedings of NIME'11.

 Blackwell, A.F. and Postgate, M. (2006). Programming culture in the 2nd-generation attention economy.
Presentation at CHI Workshop on Entertainment media at home - looking at the social aspects.
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellPostgate_CHI06.pdf

This is an expanding application area, and needs serious attention to programming language
design. There are many iPad and Android apps that support personal creative media creation, but
few of them benefit from a sophisticated understanding of the relationship between
programming notations and compositional notations such as music and dance notation.
Furthermore, the ‘user experience’ of programming in these discretionary and creative fields
suggests that we need a set of programming tools that is very different to those for traditional
bureaucratic systems. An active research topic for our group in Cambridge is how we can create
tools that have the power of programming languages, while also supporting the psychological
creative experiences of serendipity and ‘flow’.

 Church, L., Nash, C. and Blackwell, A.F. (2010). Liveness in notation use: From music to programming.
In Proceedings of PPIG 2010, pp. 2-11.

 Blackwell, A. and Collins, N. (2005). The programming language as a musical instrument. In Proceedings
of PPIG 2005, pp. 120-130. http://www.ppig.org/papers/17th-blackwell.pdf

Domestic automation

Digital home technologies are increasingly capable of exchanging data, raising the possibility that
they might also exchange control information. However, facilities for programming home
appliance behaviour have been notoriously poorly designed. Many people are unable to program
the controls of their home heating systems. For many years, programming the VCR was the
canonical example of a home task that was unfeasibly hard (HRH Prince Philip has expressed his

27

frustration on this topic to design advocacy venues such as the RSA). Now the configuration of
social media systems to optimize privacy or pricing, and monitoring and modification of energy
usage patterns seem to be acquiring the same status. Perspectives from PPIG provide ways of
addressing these problems that are challenging for conventional HCI.

However, the level of interest in this kind of technical engagement is very low among home-
owners themselves. A new ‘domestic economy’ will be necessary, perhaps drawing on existing
models of specialist trades (the ‘software plumber’), or extending models of personal competence
(‘software DIY’). For those who have a significant interest in home automation as a hobby
pursuit, technical standards such as X10 already provide the capability to create integrated control
systems using power line communications, and have done since the 1970s. Yet these have hardly
been popular among the general population. Despite increasingly ubiquitous home networking
(e.g. WiFi, Zigbee), it seems unlikely that everybody will want to program integrated home
controls. Nevertheless, there is huge room for expansion, whether we consider the relative size of
the DIY market, or the need for tools to be used by relatively unskilled professionals.

The ‘gentle slope’ approach to end-user programming, by which programming languages allow
simple things to be done with relatively low effort, but allow scalability to more complex
applications with gradually increasing effort, seems to be ideally suited to the domestic
automation domain. For this reason, applying the attention investment model to very simple
home programming tasks seems to be an important first step. Investigations along these lines
have been carried out in the Cambridge group, and a novel tangible programming language
‘MediaCubes’ was designed as an extension of the standard infrared remote control.

 Blackwell, A.F., Rode, J.A. and Toye, E.F. (2009). How do we program the home? Gender, attention
investment, and the psychology of programming at home. International Journal of Human Computer
Studies 67, 324-341.

 Rode, J.A., Toye, E.F. and Blackwell, A.F. (2005). The domestic economy: A broader unit of analysis for
end user programming. In proceedings CHI'05 (extended abstracts), pp. 1757-1760

 Blackwell, A.F. (2004). End user developers at home. Communications of the ACM 47(9), 65-66.

 Rode, J.A., Toye, E.F. and Blackwell, A.F. (2004). The Fuzzy Felt Ethnography - understanding the
programming patterns of domestic appliances. Personal and Ubiquitous Computing 8, 161-176.

 Blackwell, A.F., Hewson, R.L. and Green, T.R.G. (2003) Product design to support user abstractions. In
E. Hollnagel (Ed.) Handbook of Cognitive Task Design. Lawrence Erlbaum Associates. ISBN 0-8058-
4003-6, pp. 525-545.

 Blackwell, A.F. and Hague, R. (2001). AutoHAN: An Architecture for Programming the Home. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp.
150-157.

28

Lecture 4: Planning practical empirical studies.

The goal of this lecture is to prepare you for the design of your first experimental study. The
lecture itself will follow the actual research interests of the class. Although the first three lectures
proceeded from theories of programming, to experimental methods, then specific users and
programming technologies, our discussion will follow the reverse order, in order to establish
connections to the rest of the MPhil curriculum.

Candidate programming languages/tools

We will discuss specific technical platforms and programming paradigms that are of interest to
the class. These might be drawn from your own personal research (for example the topic of your
MPhil dissertation), from other research that you have encountered while working with
Cambridge research groups or in other lecture courses, from recent product releases of new
programming systems, or from research prototypes that have been developed elsewhere. If you
do not already have a system that you wish to investigate, a number of candidates are available
from product announcements on the PPIG and Computing at School mailing lists, or prototypes
developed by collaborators of the Rainbow Group.

In order to investigate usability, it is necessary to have an idea of who the intended user is – what
is the target audience of the system that you are interested in? What will these users typically be
trying to achieve by using the system?

Representative tasks and measures

You will need to identify what kind of user activities you plan to observe, whether these are tasks
that you assign explicitly (in a controlled experiment) or that will arise from a user goal (in an
observational study). Will these activities allow you to explore an interesting research question or
experimental hypothesis that is relevant to your system? What measures are relevant to that
question or hypothesis? Will qualitative data analysis be necessary, or is the question sufficiently
simple that quantitative measures will suffice? Will this combination of task, measure and analysis
result in a threat to external validity?

Review of study design options

Do you wish to carry out a comparison, an evaluation, or an open exploratory study? If you plan
to conduct a controlled experiment, will it be possible to use a within-subjects design? What data
analysis method will you use? What would you need to do in order to complete a pilot study?
What ethical issues are raised by your planned research?

29

Theoretical goal

What do you expect to learn from conducting your study? What contribution will it make to the
research literature relevant to usability of programming languages? Where would you publish the
results?

Course structure

The remainder of the course follows the steps leading to a complete research contribution,
building on the topics discussed in this lecture.

Assignment A: background to a proposed study, including description of the target language,
paradigm, tool or environment, a review of the relevant theoretical literature and previous
empirical studies.

Assignment B: structure of the experimental design, detailed protocol of the proposed study, and
outline of analytic methods to be used.

Assignment C: full experimental report, building on final versions of assignments A and B, and
presenting data analysis and findings in a format suitable for publication at a specialist research
venue such as the psychology of programming interest group.

Session 3 and 4: presentation and feedback on study proposals.

Session 7 and 8: presentation and discussion of research study findings.

