Object Oriented Programming
Dr Robert Harle

|A CST, PBS (CS) and NST (CS)
Michaelmas 2013/ 14

The OOP Course

" Last term you studied functional programming (ML)

* This ferm you are looking at imperative
programming (Java primarily).

—You-already have-afewweeksof Java

—experence

= This course is hopefully going to let you separate
the fundamental software design principles from
Java's quirks and specifics

" Four Parts
" From Functional to Imperative
" Object-Oriented Concepts
" The Java Platform
" Design Patterns and OOP design examples

Java Practicals

= This course is meant to complement your
practicals in Java

= Some material appears only here
= Some material appears only in the practicals

= Some material appears in both:
deliberately™

* Some material may be repeated unintentionally. If so | will claim it was deliberate.

Books and Resources |

= OOP Concepts

* Look for books for those learning to first program in an OOP
language (Java, C++, Python)

= Java: How fo Program by Deitel & Deitel (also C++) /
* Thinking in Java by Eckels 7

= Java in a Nutshell (O' Reilly) if you already know another OOP “
language

= Java specification book: http://java.sun.com/docs/books/jls/
= Lofs of good resources on the web

= Design Pafterns
» Design Patterns by Gamma et al.
* | ots of good resources on the web

Books and Resources |l

= Also check the course web page
» Updated notes (with annotations where possible)
» Code from the lectures
= Sample tripos questions

1314+
http://www.cl.cam.ac.uk/teaching/1#*2/00Prog/

Lecture 1;:
Types, Objects and Classes

Types of Languages

* Declarafive - specify what 1o do, not

how to do It. I.e.

= E.g. HIML describes what should appear on a web
page, and not how it should be drawn to the screen

* E.g. SQL statements such as “select * from table” tell a
program fo get information from a database, but not
how to do so

* |Imperative - specify both what and how

* E.g. "double x™ might be a declarative instruction
that you want the variable x doubled somehow.
Imperatively we could have “x=x*2" or "Xx=x+x"

ML as a Functional Language

" Functional languages are a subbset of
declaratfive languages

= ML is a functional language

" [t may appear that you tfell it how 1o do
everything, but you should think of it as
providing an explicit example of what should
happen

* The compiler may optimise i.e. replace your
iImplementation with something entirely
different but 100% equivalent.

Types and Variables

= We write code like:

ﬂ&uﬁ\ S
I intx =512; " el K
int y = 200; NI
int z = x+y;

" The high-level language has a series of primifive
(built-in) types that we use to signify what's in the
memory

* The compiler then knows what to do with them
= E.g. An “int” is a primifive type in C, C++, Java and many
languages. It's usually a 32-bit signed integer

" A variable is a name used in the code to refer to @
specific instance of a type

" X,y,z are variables above
= They are all of type int

= “Primitive” types are the built in ones.

* They are building blocks for more complicated types that
we will be looking at soon.

= pboolean - 1 bit (true, false)
ﬁar - 16 @
= pyte - 8 bits as a S|gned Integer (-128 to 127)
= short - 16 bits as a signed integer L5
= int - 32 bits as a signed integer Lohap vt
* |long - 64 bits as a sighed integer
= float - 32 bits as a floating point number
* double - 64 bits as a floating point number

See Workbook 1

Immutable to Mutable Data

Sk forerer~
ML
- val x=5;
> valx=5:int S‘
-x=7;
> val it = false : bool X

- val x=9;
‘ > valx =9 :int \/ q \

Arrays
byte[] arraydemo = new byte[6];
byte arraydemo?2[] = new byte[6]
— - Mwtory

OX1AC594 AP Erses

Ox1AC595

Gt R -
74 0x1AC596 O(\\ tnes
— f’ Ox1AC597
J/_M
—UF —= 0x1AC598 | _oreabel me 0

0x1AC599 P neo SR

Ox1AC5A0

0x1AC5A1 2 pelete o0 o)

0x1AC5A2 ()

Function Profotypes

* Functions are made up of a profotype
and a body

* Prototype specifies the function name,
arguments and possibly refurn type

* Body is The actual function code
et Bod

fun myfqn(&_@} =
(@myfun(int a, int@@
/

pehom
'i:y:&

Overloading Functions

= Same function name
= Different arguments
* Possibly different return type M Yfan (6,2))

iInt myfun(int a, int b) {...}4——/,”‘3 lkm[éo,w

float myfun(float a, float b) {...}
double myfun(double a, double b) {...}«J

= But not just a different return type

int myfun(int a, intb) {...}
float myfun(igt a, intb) {...} X

Function Side Effects

= Functions in imperative languages can use
or alter larger system state = procedures

Maths: m(Xx,y) = xy

ML. fun m(x,y) = x*y;
Java: iInt m(int x, inty) s{x*y;i
linty =7;) mlz) 1
int m(x) { m(z) 1€
return x*y;

volid Procedures

" It now makes sense for a procedure o
return nothing, just manipulate some
iINnfernal state

= Keyword is void and only applies to the
return type

Int count=0;

foling —voidHaddToCount() {

_count=count+1; s Ae ofFecF

b > Mﬁmi}uk

Custom Types
datatype 'a seq = NIl
— | Cons of 'a * (unit -> 'a seq);

"

(lesses = coshm é:)("e’s
public class Vector3lz{

float x;
float y; Conbsin =
float z; 2 floaly

State and Behaviour

—
datatype 'a seq = Nil
| Cons of 'a * (unit -> 'a seq);

t fun hd (Cops(x,)) = @

e

public class VectorBDQ
float x;
float y;] I
float z;

void add(float vx, float vy, float vz) { 9@\,@\,.,

X=X+VX; ({V\ CL\J"‘% oscl'\‘“j
y=y-+vy; " (B3
z=24+VZ; AN O § >

@}

Classes, Instances and Objects

* Classes can be seen as templates for representing
various concepts

" We create instances of classes in a similar way.
e.g.

| el MyCoolClass m = new MyCoolClass(); { ¢ {f
54 MyCoolClass n = new MyCoolClass(); olojed-s
(bpe)

" An instance of a class is called an object

makes two instances of class MyCoolClass.

Loose Terminology (againt)

State Behaviour
Fields Functions
Instance Variables Methods
Properties Procedures
Variables

Members

Parameterised Classes

" ML's polymorphism allowed us to specify functions that could
be applied to multiple types

> fun self(x)=x;
val self =fn:'a->"'a

" |In Java, we can achieve something similar through Generics;

C++ through templates
* Classes are defined with placeholders (see later lectures)

= We fill them in when we create objects using them

—

LinkedLigtilnteger> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

Inferpreter 1o Virfual Machine

= Java was born in an era of internet connectivity. SUN
wanted to distribute programs to infernet machines

= But many architectures were attached o the internet
— how do you write one program for them all?

= And how do you keep the size of the program small
(for quick download)?

* Could use an interpreter (—» Javascript). But:
= High level languages not very space-efficient

* The source code would implicitly be there for anyone
fo see, which hinders commercial viability.

= Went for a clever hybrid interpreter/compiler

Java Bytecode |

= SUN envisaged a hypothetical Java Virfual Machine
(JVM). Java is compiled info machine code (called
byftecode) for that (imaginary) machine. The bytecode
IS then distributed.

* To use the bytecode, the user must have a JVM that has
been specially compiled for their architecture.

* The JVM takes in bytecode and spits out the correct
machine code for the local computer. i.e. is a bytecode
interpreter

Java Bytecode |l

]l . y
You Developer Madlare oL
‘J G r«:,ﬂ,ea(ch
Source Code ———3p Java Compiler Bytecode
TSR e —
5&0'\
Y Jirhaad
JVM for JVM for JVM for M A
x86/Linux x86/win ARM (g:‘ lecada.
* * oodk’b\
Machine Machine Machine Madming.
code code code
Unix User Win User Android User

Java Bytecode |l

+ Bytecode is compiled so not easy 1o reverse
engineer

+ The JVM ships with tons of libraries which makes
the bytecode you distribute small

+ The foughest part of the compile (from
human-readable to computer readable) is done by
the compller, leaving the computer-readable
bytecode to be franslated by the JVM (= easier job
— faster job)

- Still a performance hit compared to fully compiled
("native”) code

Lecture 2:
Pointers, References and Memory

Shac ke ‘ ’

annw

L__OC.A\ Vwﬁb(e-ﬁ
Qo o O\O&MSS

The Call Stack: Example

1 int twice(int d) return 2*d;§ Defn

2 int triple(int d) return 3*d;

3 int a=50;

4 int b = twice(a); § S e e A
55 int ¢ = triple(a); b
> 0

1 IDD}’

} 0%{ =

Nested Functions

int quadruple(int d) retur
int a=50;
int b = quadruple(a)

b wWNBRE

Recursive Functions

int pow (int x, inty) {
(if (y==0) return 1;)
int p = pow(x,y-1); e
return x*p;

}
int s=pow(2,7);

NOoupbh WNB

’ .

Tail-Recursive Functions |

G\CCM% a "

int pow (int x, int y(int t)){
if (y==0) re ;
return pow(x,y-1, t*x);

} ol
int s = pow(2,7,1); E{.ix

4

oOoulh, WN -

_%.
[0][o]

Tail-Recursive Functions Il

1 int pow (int x, inty, intt) {

2 if (y==0) return t;

3 return pow(x,y-1, t*x);

4 } .

5 int s = pow(2,7,1); W(L g1 5%
6 O(\\ S

Control Flow: for and while
for(@') Y4 = 12 ¥

for (int i=0; i<8; - —> = (=1

int j=0; for(; j<8; j++) ...

for(int k=7;k>=0; j--) ...

while(boolean_expression) V\)\"’: Lo O.;\,M/»e.)

int i=0; while (i<8) { i++; ...}

int j=7; while (j>=0) { j--; ...}

The Heap

. é’—» At Vo

INt[1{X) = new int[3];

public void ize(int size) {
e MB=X; Nt €7
Xx=new int[size];
for (int=0; i<3; i++)

X[i]=tmpli];
}

resize(5):

AN =V

Stack

Memory and Pointers

* |n reality the compiler stores a mapping from
variable name to a specific memory address, along
with the type so it knows how to interpret the
memory (e.g. "xis an inf so it spans 4 bytes starfing
af memory address 435267).

= Lower level languages offen let us work with
memory addresses directly. Variables thaf sfore
memory addresses are called pointers or sometimes
references

* Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks

* et it wrong and the program ‘crashes’ .

Pointers: Box and Arrow Model

= A pointer is just the memory address of the first
memory slot used by the variable

* The pointer type tells the compiler how many
slots the whole object uses

int x = 72; xpt ” §
) T .3@"5 add v

,,9_|_rl_t_j<xptr1 - éﬁr 2F »c A
int *xptr2 = xptri; J

xptr2

Example: Representing Strings |

= A single character is fine, but a text string is of variable length -
how can we cope with that?

= We simply store the start of the string in memory and require it fo
finish with a special character (the NULL or ferminating
character, aka '\0)

" SO Nnow we need to be able to store memory addresses = use

pointers margrd,

78910@12131415161718

c s R UL EsW

1 4 (heop) /ji)
|

nt RO

= We think of there being an array of characters (single letters) in
memory, with the string pointer pointing to the first element of
that array

Example: Representing strings

o 1 T 5
char letterArray[] = {'h','e",'I','I','0","\O"}; h e | |

N
char *stringPointer = &(letterArray[0]); i O

printf(“%s\n”,stringPointer);

(IetterArray[3]='\®

printf(“%s\n”,stringPointer);

References

* Pointers are useful but dangerous

» References can be thought of as
restricted pointers
= Still just a memory address
= But the compiler limits what we can do fo it

= C, C++: pointers and references
= Java: references only
" ML: references only

References vs Pointers

Represents a memory
address

Can be arbitrarily assigned

Can be assigned to
established object

Can be tested for validity

Pointers

Yes

Yes

Yes

References

Yes

References Example (Java)

mtl{1,2,3,4};
Int[] ref2 = refl;

—_—

—

refl[3]=7;
ref2[1]=6;

o ——

{1,2,3,4}

-

{1,6,3,7}

Fbw/ {0\\1 a

P Vi \ I
Nou ((pvoavarmmec) mospulele _nb,
ANV / I F’Da’q
QV\M\\V{S J\/;V‘Cc"(t/‘ ul
‘ J
t'gfe/f\/\'“«}(\q @\% \om N.,(:q,r-tr\L,Q Pl obd ec3
U J ¥, oo (o S
[ht f—"’Q
r_D°"\ 0\ = N bm(}
.
|

Argument Passing

* Pass-by-value. Copy the object info a new

value in the stack
i

" Pass-by-reference. Create a reference to the
object and pass that.

void test(int x) {...}
int y=3;
test(y);

void test(int &x) {...}
int y=3;
test(y);

Passing Procedure Arguments In Javao

frimbive " lop
class Reference { 1/]f"gc:nuj _ .
Cpublic statityvoid update(int(D int[}atray l W{?Q/ AN
T+ //”/: (22
array[0]++; -~ —)
/ MEAN \‘\ Fest- :“'.MQ"
public static void y L teshoc e | J
. inttest i = 1; /
/___lnt[]test 147 . " 7
update < ;/ 7
System.out. prmtln(tes_t_l) 7
System.out.printin(test_array[0]); 4_"2 " g | g A~
}
\’\&%‘0

Passing Procedure Arguments In C

| Jeferen—_
void update(lntl m@lré‘?/@t]
i++;

iref++;
}

int main(int argc, char** argv) {

int a=1;
int b=1i?‘)
update(a,b);

printf("%d %d\n",a,b); |2
}

oublic static void myfunction2(int x, int[] a) { =
X=X+1;
a = new int[1{1}; l%
al0]=a[0]+1;
| alo1=alo] N
= \ _)l
public static void main(String[] arguments) {
int num=1;

int numarray[] = {1};

myfunction2(num, numarray);
System.out.printin(num+" "+numarray[0]);

} ’]\ f

; A 11
\ B. 122 2

C.“21 _

D. 22"

Lecture 3:
Creating Classes

What not to Do

" Your ML has doubtless been one big file
where you threw together all the functions
and value declarations

" Lofs of C programs look like this :-(

" We could emulate this in OOP by having one
class and throwing everything into it

" We can do (much) better

ldentitying Classes

" We want our class to be a grouping of
conceptudally-related state and behaviour

" One popular way to group is using grammar
" Noun — Object/dass
" Verb — Method

“A simulation of the Earth's orbit around
the Sun”

UML: Representing a Class Graphically

MyFancyClass

. - W\’*@/
/ - age : int <€ State W\o\-e}

“-” means
private access + SetAge(age: int) : void

ha Behaviour
V\/[,Lﬁ&,bk&s

“4+” means
public access

The has-a Association
College <1 @ Student %

" Arrow going left to right says “a College has zero or more
students”

" Arrow going right to left says “a Student has exactly |
College”

" What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that
references a College object.

" Note that we are only linking classes: we don't start
drawing arrows to primitive types.

Anatomy of an OOP Program (Java)

Class name

* Access modifier
public class MyFancyClas ,
Class state (properties

public int someNumber-/ that an object has such as

public String someText; colour or size)

public void someMethod() { «— — Class behaviour (actions
an object can do)

}

— 'Magic' start point

public static void mamtrlng[] args) { for the program
MyFancyClass ¢ = new (named main by

Myg#ncyClass(); convention)
} \
Create an object of

Create a reference to a _
MyFancyClass object type MyFancyClass in
and call it ¢ memory

Anatomy of an OOP Program (C++)

Class name

* Access modifier
class MyFancyClass {
| Class state
pUbIlC: /
int someNumber;
HBA% String someText;

Class behaviour
void someMethod() { /

'‘Magic' start point

}: for the program
void main(iht argc, char **argv) { Create an object of
MyFancyClass c; < type MyFancyClass and
call it cc
MyFancyClass *cp = new MyFancyClass()
,/' \ Create an object of
} Create a pointer to a type MyFancyClass and

MyFancyClass object and call it cp return a reference to it

OOP Concepts

" OOP provides the programmer with @
number of important concepts:

" Modularity

" Code Re-Use
" Encapsulation _\

" Inheritance Wex "

* Polymorphism 2 lechve s

" Let's look at these more closely...

You've long been taught to break down
complex problems into more fractable
sub-problems.

Each class represents a sub-unit of code that (if
written well) can be developed, tested and
updated independently from the rest of the
code.

Indeed, two classes that achieve the same
thing (but perhaps do it in different ways) can
be swapped in the code

Properly developed classes can be used in
other programs without modification.

Encapsulation |

class Student {
Int age;

s

void main() {
Student s = new Student();
s.age = 21;

Student s2 = new Student();
s2.age=-1;

Student s3 = new Student();
s3.age=10055;

Encapsulation |l

class Student {
private int age;

boolean SetAge(int a) {
If (a>=0 && a<130) {
age=a;
return true;

}

return false;

}

int GetAge() {return age;}
}

void main() {
Student s = new Student();
s.SetAge(21);

}

Encapsulation |

class Location { class Location {

private float(X

private float V; private Vector2D v;

float getX() {return x;} — float getX() {return v.getX();}

float getY() {return y;} float getY() {return v.getY();}
void setX(float nx) {x=nx;} void setX(float nx) {v.setX(nx);}
void setY(float ny) {y=ny;} void setY(float ny) {v.setY(ny);}

}
Jo g7
a7 | ion
e

Access Modifiers

Immutabllity

= Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of

advantages:
= Easier fo consfruct, fest and use
"= Can be used in concurrent contexts
= Allows lazy instantiation

= \WWe can use our access modifiers to create
iImmutable classes

Creating Parameterised Types

* These just require a placeholder type

Q(mce_fm\M
VARVY
class Vector3D<T> {
private T Xx;
private T y;

T getX() {return x;}
/T getY() {return y;}

void setX(F nx) {x=nx;}
void setY(T ny) {y=ny;}
}

Complex Example

Complex

- ml: float
-mR : float

+ Complex(i:float, r:float)
+ Im() : float

+ Re() : float

+ Add(Complex v) : void

Class-Level Data and Functionality |

= A static field is created only once in the program's execution,
despite being declared as part of a class

Ao
public class Shgpltem { One of these created

—= private float mVATRate; «— every timg a hew
private static float sVATRate; Shopltem is

- Instantiated. Nothing
} T keeps them all in
sync.

Only one of these created
ever. Every Shopltem object
references it.

Shbc o Skle o biide of Sptafic o\o;yec“sj

Class-Level Data and Functionality |I

0.2 = .
: * Auto synchronised
— - ACross instances
= Space efficient
-

(lok m T b dhah€ syprmie
= Also static methods:

public class Whatever {
public static void main(String[] args) {

.=
}

Why use Static Methods?

= Easier to debug (only depends on static state)
= Self documenting
* Groups related methods in a Class without requiring an object

= The compiler can produce more efficient code since no
specific object is involved

public class Math { public class Math {
public float sqrt(float x) {...} public static float sqgrt(float x) {...}
public double sin(float x) {...} public static float sin(float x) {...}
public double cos(float x) {...} public static float cos(float x) {...}
} }
VS
Math mathobject = new Math(); Math.sqrt(9.0);
mathobject.sqrt(9.0);](N

¢S
4/\« 2

Lecture 4;:
Inheritance

Inheritance |

class Student {
public int age;
public String name;
public int grade;

}

class Lecturer {
public int age;
public String name;
public int salary;

}

There is a lot of duplication here

Conceptually there is a hierarchy that
we're not redlly representing

Both Lecturers and Students are people
(no, really).

We can view each as a kind of
specialisation of a general person

" They have all the properties of a
person

" But they also have some extra stuff
specific to them

(I should not have used public variables here, but | did it to keep things simple)

Inheritance |

class Person { . " We create a base class (Person)
pugll]c gntt_age; | and add a new notion: classes
’\P“ 'C String hame; can inherit properties from it

" Both state and functionality

class Student[extends Persoﬁ{

public int grade; We say:
! " Person is the superclass of
class Lecturer extends Person { Lecturer and Student
) public int salary; » | ecturer and Student subclass

Person

Representing Inheritance Graphically

Also known as an “is-a

n

As in “Student is-a Person”

]E] Ferson relation
4 p . nam
t_i/‘l 'A ‘/\‘5‘-0\ .B
C ".IS—O\” A_ :w
)
2
&
)
C
)
O Student

osl|eldads

eXam_score

name and age

inherited if not

private

* Many languages support fype casfing
between numeric types

inti=17;

float f = (float) i; // f==7.0
double d = 3.2;
inti2=(int)d; //i2==3

= With inheritance it is reasonable to type
cast an object to any of the types
above it in the inheritance tree...

Person = Student is-a Person
* Hence we can use a Student
ZF object anywhere we want a
Person object
>tudent * Can perform widening
conversions (Up the tree)
P — —\
== —
Student s = new Student() public void print(Person p) {...}
Person p = (Person) s; Student s = new Student();
- / print(s);
“Casting”

Implicit cast

Narrowing

Person = Narrowing conversions move
down the tree (more specific)
ZF * Need to take care...
—)
Student l s\w\u\‘\’ Yeron l

5 5& |
Pﬂ—ékﬂﬁ P S"/\

Person p = new Person(); Student s = new Student(); -
Person p = (Person)s; -

Student s = (Student) p: Students s2 = (Student) p;
FAILS. Not enough info OK because underlying object
In the real object to represent really is a Student

a Student

Fields and Inheritance

class Person { Student inherits this as a

public String mMName; <& public variable and so
protected int mAge;

canh access it
private double mHeith;\
} Student inherits this as a

protected variable and so
can access it

class Student extends Person {

public void do_something()

N ="Bob"; . _ _
mAgénf& ° Student inherits this but

@hhlj@ as a private variable and
T g SO cannot access it

Vg not directly

Fields and Inheritance: Shadowing

class A { publicint x; }

class B extends A {
public int x;

}

class C extends B {
public int x;

public void action() {
// Ways to set the x in C_
X = 10;
this.x = 10;

/| Ways to set the x in B
super.x = 10;

(B)this).x = 10; &

/| Ways to set the x in A
((A)this.x = 10; &~

Methods and Inheritance: Overriding

= We might want to require that every Person can dance. Buf
the way a Lecturer dances is not likely to be the same as the
way a Student dances...

class Person .
{ Person defines a

public void dance() { ‘default’
h jiggle_a_bit(); implementation of

} dance()

}

class Student extends Person { .
public void dance() { Student overrides

[body pop(); - the default
}

} |

Lecturer just

class Lecturer extends Person { inherits the default
\/}P - implementation and
jiggles

Abstract Methods

Sometimes we want to force a class to implement @
method but there isn't a convenient default behaviour

* An abstract method is used in a base class to do this
" |t has no implementation whatsoever

class abstract Person { 5 (),2 L))
public abstract void dance(); Fevsrn f= re

} = =
class Student extends Person {

public void dance() { (' S <
body_pop();] S&W&M gw
}

}

class Lecturer extends Person {
public void dance() {
jiggle_a_bit();

} —
}

o

Abstract Classes

= Note that | had to declare the class abstract too.
This is because it has a method without an

Implementation so we can't directly instantiate a
Person.

class Person
public abstract class Person { {

public abstract void dance(){) virtual void dance()£0:
} ’

Java ;dffﬁ } C++

= All state and non-abstract methods are inherited as
normal by children of our abstract class

* |nterestingly, Java allows a class to be declared
abstract even if it contains no abstract methods!

Representing Abstract Classes

f Person
N\ Iltalics indicate the
+{dance(}><

class or method is
1+ dankO) \ abstract

Student Lecturer

+ dancel() + dancel()

£ cMess ox nd's Ob; ect
e J
- rJ Liect |
T
Pnl;i:c c(mss fevson 2, Peson
< /
S A

S

2

Lecture 5:
Polymorphism and Multiple Inheritance

7 2

N

S_;‘\‘« CM’\ * })

.

S~

.Ji

heal owtr
M

o
T

-z

‘Q(,l; eve
S “ ('(;\S";V\

Cl)/

|

be.

4

)J

| mMeHaoA S

[8
Q ™ (O

Lo §

v

(S¢

S

'
-

(

\Y/
24

= M\QeD

O

'3

N

+
D

%

|

h

) 1'{3

N

ﬁ(A

r 49 A ’ L\ N r\\ \
shwwz\en V) [P Vv’

-~
&

Ayerno\e

_ [wlnen

KNG A 0 i{'

4

Me DA\

A

O

[ev<on

\J

yora

/\

\zeent]

A Hor [AMa
OVe ¢ qa&. ne,

win

(0 DvernaAL

N\
AL

ST~AMATT ¢

Polymorphic Methods

Student s = new Student(); = Assuming Person has a
Person p = (Person)s; default dance() method,
p.dance(); what should happen here??

" General problem: when we refer to an object via a
parent type and both types implement a particular
method: which method should it run?

Polymorphic Concepfts |

= Static polymorphism
* Decide at compile-time

* Since we don't know what the true type of the
object will be, we just run the parent method

* Type errors give compile errors

Student s = new Student();: ™ Compiler says “p is of type
((Person p = (Person)s; Person”
p.dance(); = So p.dance() should do the
= default dance() action in
Person

I
\

ZA

C\

Led

Qe)

&N D

N

>

— | "
S
- ol
¥ -
a\ P T
- ly\ l._
s 5
— (' .
) m > . 3 m~
N ha ;L Q) 12
—TW D A -~ B Y
< W\ 5 =L 1 0 Vi Q
& &Y
\u \ ~

N
/

Polymorphic Concepfs |l

] . “ sub %p&
* Dynamic polymorphism ol mivplis

= Run the method in the child

" Must be done at run-time since that's when we
know the child's fype

* Type errors cause run-fime faults (crashes!)

v

Student s = new Student(); = Compiler looks in memory
Person p = (Person)s; and finds that the object is
p.dance(); really a Student

' Lok ' meaw™ = So p.dance() runs the

Figure omE m bﬁwod dance() action in Student

) 250

The Canonical Example |

= A drawing program that can draw
circles, squares, ovals and stars

" |t would presumably keep a list of all
the drawing objects

Circle " Option 1
+ draw() = Keep a list of Circle objects, a list of
Sguare objects,...
jz:sre * [terate over each list drawing each
object in turn
Oval = What has fo change if we want to
+ drawd) add a new shape?
Star
+ draw()

The Canonical Example |

Shape = Option 2
* Keep asingle list of Shape references

* Figure out what each object redlly is,
A narrow the reference and then draw()

Circle ~

+ draw()

for every Shape s in myShapelList

If (s is really a Circle)
Circle c = (Circle)s;
c.draw();

else if (s is really a Square)
Square sq = (Square)s;
sqg.draw();

else if...

Square

+ draw()

Oval

+ draw()

Star

+ draw()

* What if we want to add a new shape?

The Canonical Example I

= Option 3 (Polymorphic)

Shape
- x_position: int = Keep asingle list of Shape
) references
+ draw()
A * Let the compiler figure out what to
. do with each Shape reference
Circle
+ draw()
For every Shape s in myShapelList
Square s.draw();
+ draw()
Oval
+ draw()
* What if we want to add a new
Star shape?

+ draw()

Implementations

= Java

= All methods are dynamic polymorphic.
" Python

= All methods are dynamic polymorphic.
= C++

* Only functions marked virfual are dynamic
polymorphic

= Polymorphism in OOP is an extremely important
concept that you need to make sure you understand...

Harder Problems

* Given a class Fish and a class DrawableEntity, how do
we make a BlobFish class that is a drawable fish?

I DrawableEntity I
|
le | DrawableEntity |$| BlobFish Ié Fish
| | | , | | |
| Fish |
' ? ! X Conceptually wrong
BlobFish

X Dependency
between two
independent

concepts

Multiple Inheritance

Fish

DrawableEntity

+ swim()

+ draw()

N\

N\

BlobFish

+ swim()
+ draw()

* |f we multiple inherit, we
capture the concept we want

= BlobFish inherits from both and
is-a Fish and is-a

DrawableEntity
" C++:
class Fish {...}

class DrawableEntity {...}

class BlobFish : public Fish,
public DrawableEntity {...}

= But...

Multiple Inheritance Problems

Fish DrawableEntity * What happens here? Which of
the move() methods is
+ move() + move() inherited?
A A * Have to add some grammar
tfo make it explicit
= C++:

BlobFish *bf = new BlobFish(); .
bf->Fish::move();
bf->DrawableEntity::move();

BlobFish

" Yuk.
77?777

Tg‘r./LLSM an AN
L4 y

+ C‘,‘\/wg{ Too VV‘\M i"() Ol'(

A

|

.p!,‘vx'.“"-‘:‘u- &&*\MM
. . Al
M erepTaotccn ¢ ey Toorive
Ay T 3
P[\Am‘o EV:K;M
%

Fixing with Absfraction

Fish orawaicenty | m- Actyadlly, this problem
+ move() || +mover goes away if one or
JAN JAN more of the conflicting

methods Is abstract

BlobFish

+ move()é// ianplemnt”

Java’'s Take on it: Interfaces

* Classes can have at most one parent. Period.

* But special ‘classes that are totally albstract can
do multiple inheritance — call these interfaces

Interface Drivable {

<<interface>> <<interface>> pUbI!C vo!d turn(); QXMA ==
Drivable Identifiable } public void brake(); class
+ turn() + getldentifier() . | Mp lenun x’
+ brake() Interface Identifiable { L ple

public void getldentifier(); i er foreed
class Bicycle implements Drivable {
public void turn() {...}
public void brake() {... }

Bicycle Car }
IEurrrIL()() it)ur;nlg() class (;ar implements Drivable, Identifiable {
ake + getldentifier() public void turn() {...} 'T

public void brake() {... }

public void getldentifier() {...} M l’wr/k
}

—

%imt\PM??) \ Tdesm an [<-<6:§:L:;-‘:\;> L

A0 { o+ — — ~

N ,&,‘AL{’_@-\L{(} > 4 ChegelgpMuc) | ?F\'XL\gL\h ig

A I YA ————
valk 'K j— .
I ||]
xlanke - sl O) —/

~ / N\

\. —) \ / ~—]AJ \

Mplemen ‘T B Hapleren > l

\J\V\.Mb n Chon) \ /

\ @.'Y'\/Cgi'l{mo 4\\\\ //

S‘D?./)M/ova‘\QM

v/

C
~ A

| cc
LAY O

[
'["VLQ(—c/ b o C(o\SS l’oz\ 2 ?v\l’/‘efc,

Lml’ retein s S’F—ec}a(:wa’{ be honsour

nlefeces
(bwa ’Wr\o\ '\) Sw"’ oF‘
, ~ o , (a\\ LGV
A (QAAC!‘\'OHS o€ GLS&V‘*CE 2 o Sol\f{

-(V\\'\Qf\ bn Ce_

Lecture 6:
Lifecycle of an Object

Constructors

Calli
MyObject m = new(WObject(); Can(g}iﬁch:

= You will have noticed that the RHS looks rather like a
function call, and that's exactly what it is.

" It's a method that gets called when the object is
constructed, and it goes by the name of a constructor
(if's not rocket science). It maps to the datatype
constructors you saw in ML,

= We use constructors to initialise the state of the class in a
convenient way

= A constructor has the same name as the class
= A constructor has no return type

* Moa coN oV\\Aﬁ Ca\u ¢4 LOV\}(:V\/\C,M(usi“\j URAN,

Constructor Examples

VXS] P&/Son%’\iw e Java C++
& Neme
public class Person { class Person {
private String mName; private:

std::string mName;
/] Constructor

' - public:
puﬂlﬁaprigsfggit]ghg name) { Person(std::string &name){
} a ’ mName=name;
}

public static void main(¥

String[] args) {

Person p = int main (int argc,

new Person(“Bob”);«— char ** argv) {

} () Person p (“Bob”); =— sbt

} chs*on ¥p = Nu\)ﬂfusor\ (ﬂz"é’ U) /

lﬂ;\‘ﬁa\i Sm‘n'm o1 et

Qm\o\ic C/.\a\‘”ss T est {‘

prvibe e x= 3, { lnhaler Llock
onblic Tea V() &)

‘ ?{\:X/: (@A&M\\ﬂ

3 3

—

Default Constructor

public class Person {

private String mName;

WL\‘;C_ f)exsm“? —_
public static void main(String[] args) {

3 Person p = new Person();
} —
}

" If you specify no consfructor at all, Java
fills iIn an empty one for you

" Here it creates Person() for us

" The default constructor takes no
arguments (since it wouldn't know what

to do with them!)

Multiple Constructors

public class Student { " You can SpeCify as many
private String mName; consfructors as you like.

private int mscore; " Fach constructor must
have a different
signature (argument list)

I\I\Q,‘(\'/\OCQ W\OO‘OL‘AS

public Student(String s) {
mName=s;
mScore=0;

}

public Student(String s, int sc) {
mMName=s; —— N
mScore=sc;

}

public static void main(String[] args) {
Student s1 = new Student("Bob");
Student s2 = new Student("Bob",55);
} creabe o

} X (€

P nd (meaedebilibg

~

nal nf X Once sef i

%D/\Lo\}c ‘Q

:> SefF n ’GAL ‘I'\r|(7;0\(r‘w 10(0('/[‘{“

o

—_—

% Qc}g' NS COV\SH\M/LDF

Co*r\,\p;(,-(,(s(nops) AN Mo\uy\c‘ QMT'LL/ Cj/\mg’,e_j
— ' J a

| g~ Cufecne LE
DAY ate fal BlobHi sl L_ﬁ/ Linal oY
l — 4/ \7\1_ O\qul/{/
0 L 2 =h
N | — '\1L =
| i é,t 0

:m\ N C/(asgcs w\o\ Mb*Laa(S

eSS =

E/\ai C

> C&w\ 'ﬂ-
e

R] / .
sub closs (ue_x‘*ﬁno(;

> Cea'l

oV r ke

‘ﬂ{mo.\ V\/\LH'@O(

Constructor Chaining

* When you construct an object of a type with
parent classes, we call the consfructors of all of
the parents in sequence
l 2} tudent s = new Student();

>
7 Animal \ 1. Call Animal() L‘:(l/ (/ :Z
% lig\w& J’U"“‘/ An et

% Person

T

4 Student 3. Call Student()

2. Call Person()

Chaining without Default Constructors

= What if your classes have explicit consfructors that take
arguments? You need to explicitly chain

= Use super in Java:

— public Person (String name) {
*/ mName=name;
-mName : String

+Person(String name) }

N\

Student
+Student()

public Student () {
super(“Bob”);

- f

= Most OO languages have a notion of a destructor too
= Gets run when the object is destroyed

= Allows us to release any resources (open files, etc) or
memory tThat we might have created especially for the

object
class FileReader { int main(int argc, char ** argv) {
public:
// Construct a FileReader Object
// Constructor FileReader *f = new FileReader();
FileReader() {
f = fopen(“myfile”,"r"); // Use object here
C++ }
)
// Destructor // Destruct the object
~FileReader() { @ete f; ‘J
fclose(f);
}—:__—— }
private :
FILE *file;

}

Cleaning Up

= A typical program creates lots of objects, not all of which need to
stick around all the time

= Approach 1: C*_,,

= Allow the programmer 1o specify when objects should be
deleted from memory

* Lots of control, but what if they forget to delete an object?
= A "memory leak”

= Approach 2:
" Delete the objects automatically (Garbage collection)

= But how do you know when an object will never be used again
and can be deleted??

Cleaning Up (Java) |

= Java reference counts. i.e. it keeps track of how many
references point fo a given object. If there are none,

the programmer can't access that object ever again so
It can be deleted

Person object Person object Deletabl
ref =) 4ref 20 | Deletable

——

— rl = null;
r2 = null;

rl rl >

r2 ———/ r2 >

&' f, Lsferenee \oop

B — 1
\\ L
B\ —
3 ,
..\.WN\ / —\
(T it /
/ i mil /
/ < ™ .
_ AT TN\ I
)
/
\U
I\
/4
)
! L \\\\
[N N \
W\
\
| [
)
.\/ ” \
S) _ |
Jl J \ \
S L/
> | C /
UA
Soofo 4o

Cleaning Up (Java) i

" Actual delefion occurs through a garbage collector

* A separate process that periodically scans the
objects in memory for any with a reference count of
zero, which it then deletes.

* Running the garbage collector is obviously noft free. If
your program creates a lot of short-term objects, you
will soon notice the collector running

» Gives noticeable pauses o your application while
It runs.

= But minimises memory leaks (it does not prevent
them...)

One problem with GC is we have no idea when an
object will actually be deleted. The GC may even
decide to defer the deletion until a future run.

This causes issues for destructors — it might be ages
before a resource is closed and available again!

Therefore Java doesn't have destructors

It does have finalizers that gets run when the GC
deletes an object

= BUT there's no guarantee an object will ever get
garbage collected in Java...

* Garbage Collection = Desfruction

Lecture /:
Error Handling

Return Codes

* The fraditional imperative way to handle errors is to

return a value that indicates success/failure/error
{*é/[wvx valae

publi€ int/divide(double a, double b) {
if (b==0.0) return -1; // error
doubl& result = a/b;)
return O; // success

}

if (divide(x,y)<0) System.out.printin(“Failure!!”);
" Problems:
= Couldignore the return value

* Have to keep checking what the return values are
meant to signify, etc.

" The actual result often can't be returned in the same
way

Deferred Error Handling

= A similar idea (with The same issues) is to set some state
INn the system that needs to be checked for errors.

= C++ does this for streams:

ifstrea@ "test.txt"):
if (file.g ())

{
}

cout << "An error occurred opening the file" << endl;

= An exception is an object that can be thrown or raised by
a method when an error occurs and caught or handled
by the calling code

* Example usage:

try { _
double z = divide(x,y); } T Lloelk
}

catch(DivideByZeroException d) {
—> // Handle error)(ere Caleln

}

\/\,v.ma/\
rendable

Flow Control During Exceptions

* When an exception is thrown, any code leff to run in the
fry block is skipped

double z=0.0;
boolean failed=false;
try {
z = divide(5,0); —
mi:(— Z = 10,
o }
catch(DivideByZeroException d) {

failed=tr

ue, F—
} ‘ \ A gt parnesalor()
z=3.0;

System.out.println(z+"” “+failed);

Creating Exceptions

= Just extend Exception (or Runtimekxception if you need it to be
unchecked). Good form to add a detail message in the
constructor but not required. Conghncde Haok

volees o Shan j

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
public ComputationFailed(String msq) {
super(msg);
}

}

" You can also add more data to the exception class o provide
more info on what happened (e.q. store the numerator and
denominator of a failed division)

Throwing Exceptions

= An exception is an object that has Exception as
an ancestor

= SO you need to create it (with new) before
throwing

double divide(double x, double y) throws DivideByZeroException {
If (y==0.0) throw new DivideByZeroException();
else return x/y;

} aekk"f/k{, DLJCCJ' .
—

Multiple Handlers

= A try block can result in a range of different exceptions.
We test them in sequence

try {
FileReader fr = new FileReader(“somefile”);

Int r = fr.read();
}
catch(FileNoteFound fnf) {

// handle file not found with\FileReader

}
catch(lOException d) {

// handle read() failed
}

Excepftion Hierarchies

* You can use inheritance hierarchies (15)/@1’%7\

—

public class MathException extends Exception {...
public class InfiniteResult extends MathException {...}
public class DivByZero extends MathException {...}

= And catfch parent classes

try

—

}

— catch(InfiniteResult ir) { //\V 7

// handle an infinite result

}
—p catch(MathException me) {

// handle any MathException or DivByZero
}

i
s
Q)
Reipln § T T
o < |
P B
g s _ S
J T
e
g ribast ™
S8 < S S
. .1U N\ K
—~ VR s - R Y
- < -/) N jEs
U f\— . ¢
< \ NI ¢ d
LR HE R
QL
LS S 2
V D w / ._
i N -+
3) oo b
S 3O £1 el Top =
< . .vw '\ﬂ ” M L
C\U N/ ’ - P °|J
Y == L Y
\ 3 Y-
A ra¢
(\
[\ /1)
N X
S -
- A\ S
>
Iy =2
s J .
1 . M\ Q
| = _Ia
S|
2 S Y
(Q|
J < ,Q P \l.\
N7 \NVARVA

Checked vs Unchecked Exceptions

" Checked: must be handled or passed up. ¢, (5.4
= Used for recoverable errors Ey u,oko "

= Java requires you to declare checked exceptions that
your method throws

= Java requires you to catch the exception when you call
the function

double somefunc() throws SomeException {}

* Unchecked: not expected to be handled. Used for
programming errors Bﬁk“‘)‘ .
= Extends RuntimeException ,QM};W,EM«P" o
* Good example is NullPointerException

finally

= With resources we often want to ensure
that they are closed whatever happens

try {
fr,read(); -

fr.close(); -

}

catch(lIOException ioe) {
// read() failed but we must still close the FileReader
fr.close();

}

>

finally |

* The finally block is added and will always
run (affer any handler)

try {
fr,read(); hj {
} Lo e)
catch(IOException ioe) {
// read() failed 5
} .
finally { Al {
fr.close();
}

b

Evil |I: Exceptions for Flow Control

= Afsome level, throwing an exception is like a GOTO
= Tempting tfo exploit this

1 /&W(’i’_g A W\JHA \

for (inti=0;; i++) {
System.out.printin(myarraylil);

}

}
catch (ArrayOutOfBoundsException ae) {

// This is expected

= This is not good. Exceptions are for exceptional
circumstances only

* Harder to read
* May prevent optimisations

Evil ll: Blank Handlers

* Checked exceptions must be handled

= Constantly having to use try...catch blocks to do this can be
annoying and the tfemptation is to just gaffer-tape it for now

try {

FileReader fr = new FileReader(filename);
}
catch (FileNotFound fnf) {

= ...buf we never remember to fix it and we could easily be

missing serious errors that manifest as bugs later on that are
extremely hard to track down

Advantages of Exceptions

= Advantages:

* Class name can be descriptive (no need to look up error
codes)

= Doesn't interrupt the natural flow of the code by requiring
constant tests

* The exception object itself can contain state that gives
lots of detail on the error that caused the exception

= Can't be ignored, only handled

_\}1
LN
Eb

38

YN

-

>~

o, €

T~

—

Q

~
2 AY
~
'
~_
N
— —
N N » i
~_ 7\ A
~——
J”l .W
Q.
S
-
S
wO
- o >§s / "\ll\
\ \ «~) T~ .\l/ W\
42 N =T\ ~n T3
IR e 005
S—=p > = ._.u % ’M
— 2 b > —
ﬂ 4 m o) S
lv\ 2 Aw V
gt R ;
iy)
AN ¢

0 /‘ I L I l. P
S . [\ouping || I1erenn ahng MONS
d A
F H) r I
00 tAn iz (2 lhw & ar ¢) «a I
U

=1

~

Lecture 8:
Copying Objects

Cloning |

= Sometimes we redlly do want to copy an object

Person object
(name =
MBOb")

= Java calls this cloning

-

Person object
(name =
MBob")

Person object
(name =
"BOb") L/

* We need special support for it

I Copy

el

/ G |
<
. 2 =
o S £
d <))
(&) =
g = L] and B PGS
L ~ — :luH 7/
. <
'D / ~ \ / I (X
o NN R
N\ uﬁl/\ \\
5 v
7
/) ﬂ Q / \4
(V4 .m IW / AW
7 2 Ul
S N H
X % N A \
r - - \Ml ﬂ pw V)
v% INENE N . V)
) 9 IG) Y
= 3 ARG
74 — ° L
o T 3
L IS o 22
) [- 0O < <
) W M\u fm-I .IU A P vl
S|/ N —
" < 0
N /AW .Ilrw a :
. I S
.rm T S-¢
A u . t ¥l ¥
S a9, 2
.M a ol F.“.I. M ”hu)
%, Q) - 9) Vi = WY e
§ = =P
)
Vg B .
2= A A N
= 'V’J
<] .\V < ™\
¥R o)
(@) ‘ N

Cloning |I

* Every class in Java ultfimately inherits from the
Object class

* This class contains a clone() method so we just
call this fo clone an object, right?

= This can go horribly wrong if our obbject contains
reference types (objects, arrays, etc)

0srele.

.
)

_ . g
!, N]
T KN Q
¥ 1)
n [M 'M l'%
S R s
\) -3
n \
@ c Jv«
C S
5 S 7 ~> 2
.% N — Q
- - — a <
\ i ,)IO o) N .IV
\V ...\4 Y - =
- y) s nm _
- = o L </
< § s 2
N, | N
< D
: = 3 _
S) (\
S — \ ST
P NI 2
<D \ @) o
Ilfl IIIT PA
S N S S
¢ W S [v - Q
Al
Py C a—\,
2 .IMW & ayv >
— n\ \-M N\ M
\
.L : .
S ™ ¢
N N

N y Ve \\\ N
S /T N\
. m\. 7 —
O Q- ~ .A ~
Aw = .(/ /.l. \ w
L) IRV Y At e IR
5 \ '3 A 5 I
2 \ === . S
3 Y e Nl
® 4 —Z : \ L J i
Y,
‘M _ -m- o 3
M-U
.W \) (0% d AN P
S — 1 .f < ru\.
3 S o 'V S S
N ==l [=
o = o~ S)
| S /)",
— ~ I - .r) /
O < T
>
)
% = SES Z
< { N N ~
S 2 0 —= |3 >
M bl =) A > <<
. i N\ < \|| .
v R S
M Y I~ {
— (ER
) = Y I
2 o |11 N N R =
o > N~ . - g’ = >
= X — 2 iy
) N - <

Ly —

ol —t \Y y J —
~_ e .f_ Z7 T =
| e -

®) s
) —9
S s ~ oA
—) (&)
(ND) ﬁ
u

Shallow and Deep Copies

public class MyClass {

}

private MyOtherClass moc;

Copyns

/

MyClass
object

Y

MyOtherClass

object

Matornble. ~

MyClass
object

MyClass
object

\ MyOtherClass /

object

MyClass
object

Y

‘__Msefm(1
MyClass
object

MyOtherClass
object

Y

MyOtherClass

object

Java Cloning

= So do you want shallow or deep?

" The default implementation of clone() performs a shallow
Ccopy

= But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

= Java has a Cloneable interface

= |[f you call clone on anything that doesn't extend this
interface, it fails

\lk .
—) &(DQF\ISL\
o :M] ‘,‘, -0]
J/gu{)df{.rrk() a&oes ‘M/ig . _

{

Tl /

Clone Example |

public class Velocity {
public float vx;
public float vy;
public Velocity(float x, float y) {
VX=X;
VY=Y,
}
&

public class Vehicle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
b

Clone Example |l

public class Vehicle implements Cloneable {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
return super.clone();

}
};

Clone Example |l

public class Velocity implement Cloneable {

public Object clone() {
return super.clone();

}
}

public class Vehicle implements Cloneable {
private int age;
private Velocity v;
public Student(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone();
return cloned;

}
}

Cloning Arrays

= Arrays have build in cloning but the
contents are only cloned shallowly

|
K int intarray[] = new int[100]; / g B /

Vector3D vecarray = new Vector3D[10];

A

O
: g intintarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone(); [)
CLOMQ‘

1S
’:M ’[’ ¢hallis

==
S

Y

Covariant Refurn Types

* The need to cast the clone return is annoying

publig Objecs clone() {
tete cloned = (Vehicle) super.clone();

cloned.vel = (Velocity)vel.clone();
return cloned,

}

* Recent versions of Java allow you to override a
method in a subclass and change ifs return type to
a subclass of the original's class

class C {
class A {} A mymethod() {}

}

class B extends A {}

class D extends C {
B mymethod() {}

N

Marker Interfaces

If you look at what's in the Cloneable interface, you'll find it's
empty!l What's going on?

Well, the clone() method is already inherited from Object so it
doesn't need to specify it

This is an example of a Marker Interface

= A marker interface is an empty interface that is used to
label classes

* This approach is found occasionally in the Java libraries

Lecture 8:
Java Collections

oD ~Q Clhhoan-_
T |
. LV em omn
\
/ N O Y. A’W Y. -
© . TO* [0, S \VANN VA= B (AN rv-—\ \
S)
N L:\ f el
Q. CXocvpre LS
4 One a W !(- JL D S
\)
~ |
< / (e e T U)
- .
[C o A)(J#
O TS On VAT &
N_J

Java Class Library

= Java the platform contains around 4,000
classes/interfaces

" Data Structures

" Networking, Files

* Graphical User Interfaces

= Security and Encryption

" Image Processing

" Multimedia authoring/playback
= And more...

= All neatly(ish) arranged into packages (see API docs)

<<interface>>
Iterable

~

<<jnterface>>
Collection

Important chunk of the class library
A collection is some sort of grouping of
things (objects)

Usually when we have some grouping we
want to go through it (“iterate over it")

The Collections framework has two main
Intferfaces: lterable and Collections. They
define a set of operations that all classes in
the Collections framework support

add(Object o), clear(), isEmpty(), efc.

<<interface>> Set
= A collection of elements with no duplicates . '-u‘
that represents the mathematical notion of ((»° '
a set ‘en

* TreeSet: objects stored in order

*(_HashSet) objects in unpredictable order but
fast to operate on (see Algorithms course)

TreeSet<Integer> ts = new TreeSet<Integer>();
ts.add(15); T

ts.add(12); {__;SO(LQOQ
ts.contains(7); // false

ts.contains(12); // true
ts.first(); // 12 (sorted)

<<interface>> List

= An ordered collection of elements that may
contain duplicates

" LinkedLlst: linked list of elements E
= Arraylist: array of elements (efficient access) «

" Vector: Legacy, as Arraylist but ’rhreodscfe (/ \L

I’Qm&]
s \eEz/Esfﬂ Raiini

Li¥ LinkedList<Double> Il = new LinkedList<Double>();
I[.add(1.0);
Il.add(0.5);
Il.add(3.7);
Il.add(0.5);
Il.get(1); // get element 2 (==3.7)

Queues

<<interface>> Queue Veart
= An ordered collection of elements that may contain

duplicates and supports removal of elements from the \(/7

head of the queue

= offer() to add to the back and poll() to take from the C
front

= LinkedlList: supports the necessary functionality A

" PriorityQueue: adds a notion of priority to the queue so B

more important stuff bubbles to the top

627“:”“%"‘”\‘q P/ :L,'ifz fecce .
7\l

LinkedList<Double> || = new LinkedList<Double>();
Il.offer(1.0); ‘
Il.offer(0.5): Dov\\f' =
I1.poll(); // 1.0 Deqee = &

Il.poll(); // 0.5 B

<<interface>> Map

Like dictionaries in ML
Maps key objects to value objects
Keys must be unique

Values can be duplicated and
(sometimes)null. sl .- V. Semenn

TreeMap: keys kept in order //7"03 ’\)

HashMap: Keys not in order, efficient __ — p ()
(see Algorithms)

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();
tm.put(“A”’,1);

tm.put(“B”,2);

tm.get(“A”"); // returns 1

tm.get(“C"”); // returns null

tm.contains(“G”); // false

" for loop

LinkedList<Integer> list = new LinkedList<Integer>();

for (int i=0; i<list.size(); i++) {
Integer next = list.get(i);

}

" foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
Prethiel
for (Integeri : list) {

}...

lterators

= What if our loop changes the structure?

for (int i=0; i<list.size(); 1++) {
If (i==3) list.removel(i);
} —_—
= Java introduced the lterator class

lterator<Integer> it = list.iterator();

—

whiIe(it.hasNeth)) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}
= Safe to modify structure

while(it.hasNext()) {
it.remove();

}

The Origins of Generics

/| Make a TreeSet object " The original Collections framework
TreeSet ts = new TreeSet(); just dealt with collections of

// Add integers to it Objects

ts.add(new Integer(3)); = Everything in Java "is-a”

Object so that way our

// Loop through collections framework will

iterator it = ts.iterator();

while(it.hasNext()) { apply to any class

Object o = it.next(); = But this leads to:

Integer i = (Integer)o; * Constant casting of the
} result (ugly)

" The need to know what the
return type is

= Accidental mixing of types
iIn the collection

The Origins of Generics

/[Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {

Going to fail for the
second element!

Object o = it.next(); _gee= (gt it will compile:

Integer i = (Integer)o;

the error will be at
runtime)

The Generics Solution

" Java implements type erasure

= Compiler checks through your code to make sure you
only used a single type with a given Generics object

* Then it deletes all knowledge of the parameter,
converting it fo the old code invisibly

LinkedList<Integer> Il = LinkedList Il =
new LinkedList<Integer>(); new LinkedList();
for (Integeri: Il) { l for (Objecti: Il) {

do_sthing(i); do_sthing((Integer)i);
} }

The C++ Templates Solution

= Compiler first generates the class definitions from
the template

class MyClass_float {
float membervar;

b

class MyClass int {
iInt membervar;

class MyClass<T> {
T membervar;

¥

1 —

b
class MyClass_double {
NN double membervar;

¥

Generics and SubTyping

Animal // Object casting
Person p = new Person(); [/

4 Animal o = (Animal) p;

// List casting
Person List<Person> plist = new LinkedList<Person>()]
X

List<Animal> alist = (List<Animal>)plist;

So a list of Persons is a list of Animals, yes?

«lisk. o\&“("w M“m);
a\.‘s_‘ AM(W P@ngwﬂ()))

-
[\, v
2 . g
A e A ~ .
‘l\a i w Mu 0& n.- \
S IR s : v $
O IC LI = ?
PRI -
Pl 91-“ \; fb\. 'm
O —= o L S|
SR O > IR
VAN ~ 0 ° /v 9 .W
TR % S v
O z)
/ S 0 nyv v Vn. A .‘\“W A. ﬁ
; s D
I— \'/ 1|\——
) BN ,0
Y] N -
% . U =
S RN
Q w \v- _
- \) s
m e M I 9
B I JI s
P12 |/) NI i
‘ 4 N It n
S v _ R T H
< Q, $, > %
N S Q) WV T
N RN I EEE: = ,
D) Y] P, \
Of A— /,\ m o~
= . -\ Y2 g g
1 w " <N g Tk
Ky \ : —=| Ol g | .7
’ d g S o
£ = £
ot g -5 ~\ sO—=
J — rM AVQI
~
D <€

Lecture 10:
Comparing Objects

/f

<

Y
Z I\
n\J e
— S
2 -
I
B AR
NEEA“EN
Y N
el L
N Ra:
L /
\
Y —
© <
‘1
) 3
S <
Sl
g}
Y
< <
S
Pl -
= By
3 : =%
SE AN
-5 Y
Q .1\
~ am -
v\ s _
< ¢ .w /,\ (
D) M A
Ilv - 5 P
£ et s © Q
-3 - ~ /r -4
- C | s ///4 ¢ S

A

/
C

\
O\ME (

Comparing Primifives

> Greater Than
>= Greater than or equal to

== Equal fo Aomble A= ;".r’

=60
= Not equal to Jonble At /
< Lessthan (0\=fa\2>

<= Less than or equal to

" Clearly compare the value of a primitive
" But what does (refl==ref2) do<e?
* Test whether they point to the same object?

" Test whether the objects they point to have the
same statee

Reference Equality

" rl==r2, r1!l=r2
" These test reference equality

" j.e. do the two references point ot the same chunk

f e
of memory T (/1

Person pl = new Person(“Bob");
Person p2 = new Person(“Bob”);

False (references differ)

(pll=p2); = True (references differ)

Value Equality

= Use the equals() method in Object

= Default implementation just uses reference equality
(==) so we have to override the method

public EqualsTest { @/\M‘\SES}‘ e 2 rew t%uq(ﬁal-()
public int x = 8; ‘
@Override
ublic boolean equals(Object o
P q (ODbj) { ¢ (o nshoaceof

——+* EqualsTest e = (EqualsTest)o;) —& -
return (this.x==e.x); /,Zx)fq,qabled‘) £
}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest(); rc’h"ﬂ F"M
EqualsTest t2 = new EqualsTest();
System.out.printin(tl==t2);
System.out.printin(tl.equals(t2));

Aside: Use The Override Annotation

" |t's so easy to mistakenly write:

public EqualsTest {
public int x = 8;

public boolean equals(EqualsTest e) {
return (this.x==e.x);
}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
Object 01 = (Object) t1;
Object 02 = (Object) t2;
System.out.printin(tl.equals(t2));
System.out.printin(ol.equals(02));

Aside: Use The Override Annotation |l

= Annotation would have picked up the mistake:

public EqualsTest {
public int x = 8;

4/ @Override
public boolean equals(EqualsTest e) {
return (this.x==e.x);
}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
Object 01 = (Object) t1;
Object 02 = (Object) t2;
System.out.printin(tl.equals(t2));
System.out.printin(ol.equals(02));

Java Quirk: hashCode()

" Object also gives classes hashCode()

" Code assumes that it equals(a,b)
returns frue, then a.hashCode() is the
same as b.hashCode()

= So you should override hashCode() at
the same tfime as equals|)

l((ﬁ-‘ftwls(éD _—) o Loy b (o Az
(/\asbx(od("—

H

)

J

N—""

vl

|

\h—/,

N

(
N\

|

QW

Comparable<T> Interface |

int compareTo(T obj);

* Part of the Collections Framework

* Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

" Returns aninteger, r: [10ng ZC ok 2K T'U,»e>
o
= <0 This object is less than obj orf
= ==(This object is equal to obj 2 D n LL . &
= >0 This object is greater than obj L)\ c |\
wo it T
P Cow\‘eo\hﬁ | (o]

Comparable<T> Interface I

public class Point implements Comparable<Point> {
private final int mX;
private final int mY;
public Point (int, inty) { mX=x; mY=y; }

/] sort by y, then x
public int compareTo(Point p) {
if (MY>p.mY) return 1;
else if (mMY<p.mY) return -1;
else {
if (mX>p.mX) return 1;
else if (mX<p.mX) return -1;
else return 0.
}
}
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Comparator<T> Interface |

INt compare(T objl, T obj2)

" Also part of the Collections framework and
allows us to specify a specific ordering for a
particular job

" E.g. a Person might have natural ordering that
sorts by surname. A Comparator could be
written to sort by age instead...

Comparator<T> Interface |I

public class Person implements Comparable<Person> {
private String mSurname;
private int mAge;
public int compareTo(Person p) {
return mSurname.compareTo(p.mSurname);

}
} —

public class AgeComparator implements Comparator<Person> {
public int compare(Person pl, Person p2) {
return (pl.mAge-p2.mAge);
}
}

ArrayList<Person> plist = ...;

Collections.sort(plist); // sorts by surname —

Collections.sort(plist, new AgeComparator()); // sorts by age
y S

Operator Overloading

* Some languages have a neat feature that
allows you to overload the comparison
operators. e.g. in C++

class Person { ,QMA’; 9 NoT
puinC: 0 ()@/&t(/lbf
Int mAge N
bool operat erson &p) {
return (p.mAge==mAge); j’pr\} A

%

} (NE)

Person a, b;
b ==a; // Test value equality

Lecture 11:
Design Patterns

Design Patterns

= A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

" Coined by Erich Gamma in his 1991 Ph.D. thesis

* QOriginally 23 patterns, now many more. Useful 1o
look at because they illustrate some of the power of
OOP (and also some of the pitfalls)

= We will only consider a subset

\)
%
¢
- \Wn -5
@) O3 s
= 8 3
§ g X &
| . Y J
.m LH.. \
RIS \
.)v X
’ A
Dp o
et H e
J |
wN ’ U)
w -V \J .. o | =
X = J [L J -
Wl S5,k ; “
—— - .U — e ;
/\ D—| llm _.
_ M PaSEENY T 4
= A A Y =S
Y —-~
la NV 9
Y _ A . Wi
S 212y J S
>
¥
Q
)
Q
/) o
J -
A 3 3
o ¢ <& K LT
ﬂM) o N
— n\M. v N i |—.“
o S|~ [19
....1\—) 2 J \ﬂ
\ \ <<
\
~J
<
-

The Open-Closed Principle

Classes should be open for extension but
closed for modification

" i.e. we would like to be able to modifty the
behaviour without touching its source code

* This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

Decorator

Abstract problem: How can we add
state or methods at runtimee

Example problem: How can we
efficiently support gift-wrapped books
IN an online bookstore®e

Decorator in General

" The decorator pattern
adds state and/or

Componen€ functionality to an object
+operation() Cj)/r7C]f77iC:CJ”)/
ConcreteComponent Decorator |, btente
+operation() +operation(d-{-- -1

::nntents.uperatinn{} :a

StateDecorator FunctionDecorator

#'Ext l"'ﬂSt ﬂt'E "|'U'I:IE ra-tiun {]ﬂ- -------- -
+operation() +extraBehaviour() super.operation();

extraBehaviour();

Abstract problem: How can we ensure
only one instance of an object s
created by developers using our codee

Example problem: You have a class that
encapsulates accessing a database
over a network. When instantiated, the
object will create a connection and
send the query. Unforfunately you are
only allowed one connection at a time.

Singleton in General

" The singleton pattern
ensures a class has only one
Singleton instfance and provides

-instance: static global access to it
+QEtI“5tEnEE{]: static

#Singleton() Q

if (instance==null) instance=new Singleton();
return instance;

Abstract problem: How can we let an
object alter its behaviour when its
Infernal state changes?

Example problem: Representing
academics as they progress through the
rank

State iIn Generdl

" The state pattern allows

Contex- S[state] an object to cleanly alter
its behaviour when
A'lk internal state changes

Statel| |State2

Strategy

Abstract problem: How can we select
an algorithm implementation at runtime®e

Example problem: We have many
possible change-making
Implementations. How do we cleanly
change between them?

Strategy in General

" The strategy pattern allows us to cleanly interchange
between algorithm implementations

Strategy

Context >

+algorithm()

A

ConcreteStrategyA ConcreteStrategyB

+algorithm() +algorithm()

Abstract problem: How can we freat a
group of objects as a single object?

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%

discount

/
N
ey
Al
]
N —~
-,
R
- { (.
A | .. ®)
~ - 9 - 3| <
..\/ S ¢ ..W.. .% =N .“1 O
— 1 &> z = S x
= ia o
<
e
S
o g%
| A&
.
e < z
I
1
< X
DS ﬁw.
J,

\

~

N2\

Composite in General

= The composite pattern
lets us treat objects and
groups of objects

T‘ 0 uniformly

Component |<—*

+operation()

Leaf . Composite _ | e
+operation() #children \ s
+operation (g

L]
for (Component ¢ : children)
c.operation();

Observer

Abstract problem: When an object
changes state, how can any
Intferested parties knowe

Example problem: How can we write
phone apps that react to accelerator
eventse

\. W |.N I
dTA 5 §
TaL INEEE
N - ~< |
LS @ SN
I, e W
NG S
K
A <
A Q
]
/
<
Q
=
.f p)
J
0] "
< L S
_..M \\
/" \ |
S
el .’l¢
& /T (K N4
T [.M > s
S : 2l e
i) ~J D)
m lm -m
b _ %
NI
~) N\ ON M @I —
1] < [1S ,,.M ~ L ==
I S fU« 2~)5
\ YIS W 2%
= e LT 8 I
L3 L | A SRS
Q) \m ;) uﬂll ’v ﬂ <
S < B 3 S
,w K ~) R
) - — - T

Observer in Generaql

" The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents
automatically.

Subject {B' .1
#state > Observer
#observers s

5

+attach(Observer))
+detach{ﬂhserver]n*., #subject
+getState() +undatei?
+notify() o " :

- .] E
r§t§t2=suhject.get5tatei};

L]
-
L]

B

L B R .

for [ﬂbserve? o :

observers.add(observer)
observers)
o.update();

