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The Course

The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative 

programming (Java primarily). 
 You already have a few weeks of Java 

experience
 This course is hopefully going to let you separate 

the fundamental software design principles from 
Java's quirks and specifics

 Four Parts
 From Functional to Imperative
 Object-Oriented Concepts
 The Java Platform
 Design Patterns and OOP design examples

So far in this term you have been taught to program us-
ing the functional programming language ML. There
are many reasons we started with this, chief among
them being that everything is a well-formed function,
by which we mean that the output is dependent solely
on the inputs (arguments). This generally makes un-
derstanding easier, especially since it directly maps to
what you have called maths so far in your studies.
In fact, if you try any other functional language (e.g.
Haskell) you’ll probably discover that it’s very similar
to ML in many respects and translation is very easy.
This is a consequence of functional languages having
very carefully defined features and rules.

However, if you have any experience of programming
outside this course, you’re probably aware that func-
tional programming remains a niche choice. It is grow-
ing in popularity, mainly due to the fact it’s easier to
deal with concurrency issues. Nevertheless, the dom-
inant paradigm is undoubtedly imperative program-
ming. Unlike their functional equivalents, imperative
languages can look quite different to each other, al-
though as time goes on there does seem to be more
uniformity arising. Imperative programming is much
more flexible1 and, crucially, not all imperative lan-
guages support all of the same language concepts in
the same way. So, if you just learn one language
(e.g. Java) you’ll probably struggle to separate the un-
derlying programming concepts from the Java-specific
quirks. Consequently jumping ship to C++ is a bit
tricky...

1some would say it gives you more rope to hang yourself with!

The ‘examinable’ OOP language for IA Computer Sci-
ence is Java, and you won’t be expected to program
in anything else. However, Java doesn’t support ev-
erything we’ll be looking at (yet) so other languages
will be used to demonstrate certain features. For those
of you continuing in the Natural Sciences Tripos next
year, you’ll probably need to get to grips with C++,
so I will make that a nominal second language here
(albeit not examinable). We may also find time to try
out Python and some other popular languages.

Java Practicals

 This course is meant to complement your 
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both: 

deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate. 

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP 

language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly)  if you already know another OOP 
language

 Java specification book: http://java.sun.com/docs/books/jls/
 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.
 Lots of good resources on the web
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Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1112/OOProg/

There is no shortage of books and websites describing
the basics of OOP. The concepts themselves are quite
abstract, but most texts will use a specific language to
demonstrate them. The books I’ve given favour Java
but you shouldn’t see that as a dis-recommendation
for other books. In terms of websites, SUN produce a
series of tutorials for Java, which cover OOP: http:
//java.sun.com/docs/books/tutorial/

but you’ll find lots of other good resources if you
search. And don’t forget your practical workbooks,
which do not assume anything from these lectures (al-
though the deeper knowledge gained from this course
may help you with your ticks!)
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Lecture 1

Types, Objects and Classes

1.1 Functional → Imperative

Types of Languages

 Declarative ­ specify what to do, not 
how to do it. i.e. 
 E.g. HTML describes what should appear on a web 

page, and not how it should be drawn to the screen
 E.g. SQL statements such as “select * from table” tell a 

program to get information from a database, but not 
how to do so

 Imperative – specify both what and how
 E.g. “double x“ might be a declarative instruction 

that you want the variable x doubled somehow. 
Imperatively we could have “x=x*2” or “x=x+x”

Moving from ML to Java is fundamentally a shift from
functional programming to imperative programming.
Functional languages are a subclass of what is called
declarative languages and we can summarise the dif-
ferences here:

Declarative languages specify what should be done
but not necessarily how it should be done. In a
functional language such as ML you specify what
you want to happen essentially by providing an
example of how it can be achieved. The ML com-
piler/interpreter can do exactly that or something
equivalent (i.e. it must give the same output or
result).

Imperative languages specify exactly how something
should be done. You can consider an imperative
compiler to act very robotically—it does exactly
what you tell it to and you can easily map your
code to what goes on at a machine code level;

ML as a Functional Language

 Functional languages are a subset of 
declarative languages
 ML is a functional language
 It may appear that you tell it how to do 

everything, but you should think of it as 
providing an explicit example of what should 
happen

 The compiler may optimise i.e. replace your 
implementation with something entirely 
different but 100% equivalent.

Although it’s useful to paint languages with these
broad strokes, the truth is today’s high-level languages
should be viewed more as a collection of features. ML
is a good example: it is certainly viewed as a func-
tional language but it also supports all sorts of imper-
ative programming constructs (e.g. references). Simi-
larly, the compilers for most imperative languages sup-
port optimisations where they analyse small chunks of
code and implement something different at machine-
level to increase performance—this is of course a trait
of declarative programming1. So the boundaries are
blurred, but ML is predominantly functional and Java
predominantly imperative.

1Note that we need a way to switch off optimisations because
they don’t always work due to the presence of side effects in
functions. Tracking down an error in an optimisation is painful:
the ‘bug’ isn’t in the code you’ve written..!
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1.2 Types

Types and Variables

 We write code like:

 The high-level language has a series of primitive 
(built-in) types that we use to signify what’s in the 
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many 

languages.  It’s usually a 32-bit signed integer 

 A variable is a name used in the code to refer to a 
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

In ML you created values of various type (real, int,
etc). Sometimes you specified the type directly, but
generally you tried to avoid specifying the types: oc-
casionally you had to but you knew that if you could
keep it general then you could use polymorphism to
avoid writing separate functions for integers, reals, etc.
ML’s type inference is a nice feature to have “baked
in”, although I acknowledge that ML’s error messages
about types could be a little less... cryptic.

In imperative languages, however, it is more normal
to manually specify the type of variables. There are
imperative languages where you can still avoid speci-
fying the type and rely on polymorphism (Python or
Javascript for example) but they are more the excep-
tion than the norm. Java is characterised by:

• every value has a type assigned on declaration;
and

• every function specifies the type of its output (its
‘return type’) and the types of its arguments.

E.g. int x declares x to be an integer;
float get(int y) declares a function get that takes
an integer and returns a floating point value.2

2Later in the course we meet Generics, where the type is left
more open. However, there is a type assigned to everything,
even if it’s just a placeholder.

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types that 

we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 bits as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

See Workbook 1

These are the primitive types in Java3. For any
C/C++ programmers out there: yes, Java looks a
lot like the C syntax. But watch out for the obvious
gotcha — a char in C is a byte (an ASCII character),
whilst in Java it is two bytes (a Unicode character).
If you have an 8-bit number in Java you may want to
use a byte, but you also need to be aware that a byte
is signed..!

You do lots more work with number representation
and primitives in your Java practical course. You do
a lot more on floats and doubles in your Numerical
Methods course.

1.3 Mutable Data

Immutable to Mutable Data

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5;
x=7;

int x=9;

Java

ML

Note that imperative languages are all about manipu-
lating explicit state. Hence we must move from ML’s
immutable values to mutable variables (immutable
means cannot be changed once set).

3See workbook 1
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1.4 Arrays

Arrays
byte[] arraydemo = new byte[6];
byte   arraydemo2[] = new byte[6];

0x1AC594

0x1AC595

0x1AC596

0x1AC597

0x1AC598

0x1AC599

0x1AC5A0

0x1AC5A1

0x1AC5A2

ML features tuples and lists as first class citizens of
the language4. However, imperative languages feature
arrays instead. An array is a set of values stored se-
quentially in a single chunk of memory and maps di-
rectly to the ML Array you have met, with the same
properties:

• O(1) element access;

• efficient storage—the next element is implicitly
found in the next memory slot so no space wasted
with pointers/references;

• inflexible sizing. Expanding an array involves cre-
ating a new (bigger) array in memory, copying
over the elements from the old one, and then free-
ing up the memory associated with the old one.
This is costly.

When you create an array, you specify the size:
float farray[] = new float[21];. Please note the
two ways an array can be declared in Java: either by
putting the square brackets on the type (int[] m) or
on the variable (int m[])5.

1.5 Function Prototypes

Type inference meant that when you wrote a function
ML you didn’t specify much about the function in your
opening part. e.g.

fun myfun(a,b,c) = ...;

defines a function called myfun that takes three argu-
ments. Without reading the full definition, we can’t

4See workbook 3
5See workbook 3

know whether the argument types are restricted, and
we don’t know what the possible types of the return
value is. Of course, if we try using myfun incorrectly,
the compiler will throw up a (cryptic!) error.

Function Prototypes

 Functions are made up of a prototype 
and a body
 Prototype specifies the function name, 

arguments and possibly return type
 Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

In imperative programming, it is more normal to see
full function prototypes (the bit before the actual code
for the function, which is called the body) such as:

int myfun(int a,int b,int c) {...}

This tells us that it takes three integers as arguments
and returns an integer as a result. But what if we also
want it to work on floats? One option is to give a
separate function prototype:

Overloading Functions

 Same function name
 Different arguments
 Possibly different return type

 But not just a different return type

int myfun(int a, int b) {…}
float myfun(float a, float b) {…}
double myfun(double a, double b) {...}

int myfun(int a, int b) {…}
float myfun(int a, int b) {…} x

The compiler can easily choose the correct function to
run based on the arguments you supply when you call
it. This approach is called overloading (because the
name myfun has been in some sense overloaded). The
obvious down side to is that you have to write out the
function multiple times, one for each type! A better
alternative is to parameterise the code—we’ll return to
that in a moment. Note that just changing the return
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type does not provide the compiler with a way to know
which implementatation to run, so can’t be allowed.

1.6 Function Side Effects

Function Side Effects

 Functions in imperative languages can use 
or alter larger system state   → procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: int m(int x, int y) = x*y;

int y = 7;
int m(x) {

y=y+1;
return x*y;

}

Strictly speaking, a function maps directly to the same
notion in mathematics: its output is solely dependent
on the supplied arguments and there can be no side
effects of calling it. By this we mean that calling it
with the same arguments will always produce precisely
the same result. e.g.

fun add(x,y)=x+y;

add(1,2);

will always output 3 regardless of the statements be-
fore or after it. In imperative programming, however,
we have explicit system state and we could potentially
use and change that state within a function. So:

int z=0; // this is some global state

int addimp(int x, int y) {

‘z=z+1;

return x+y+z;

}

addimp(1,2); // 4

addimp(1,2); // 5

addimp(1,2); // 6

Although terminiologies differ, I call addimp a proce-
dure. The output from a procedure can depend on
program state that is not supplied in the arguments
and it can also modify that external state. This is a
side effect because, given only the procedure name and
its arguments, we cannot predict what the state of the
system will be after calling it without reading the full

procedure definition and analysing the current state of
the computer.

Health warning: Most common languages today are
imperative and many of them use the word ‘function’
as a synonym for ‘procedure’. Even in these lectures
I will use ‘function’ loosely. You will have to use your
intelligence when you hear the words. Similarly, many
people think of ‘procedural programming’ as a syn-
onym for ‘imperative programming’.

Procedures are much more powerful, but as that awful
line in Spiderman goes, “with great power comes great
responsibility”. Now, that’s not to say that impera-
tive programming makes you into some superhuman
freak who runs around in his pyjamas climbing walls
and battling the evil functionals. It’s just that it in-
troduces a layer of complexity into programming that
might make the results better but the job harder.

void Procedures

 It now makes sense for a procedure to 
return nothing, just manipulate some 
internal state

 Keyword is void and only applies to the 
return type

int count=0;

void addToCount() {
   count=count+1;
}

It now makes sense for a procedure not to return any-
thing at times—it may simply manipulate the external
state in some way (this makes no sense in ML). In this
case we label the return type void:

If you turn back to the discussion of functional and
imperative, you can hopefully see that a function with
side effects (i.e. a procedure) is much harder for a
functional compiler to deal with since it is ambiguous
what the function does (it doesn’t have one nicely de-
fined return value for a given argument). Hence func-
tional languages do not allow side effects, sticking with
proper functions.
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1.7 Custom types, Classes and
Objects

Custom Types

datatype 'a seq = Nil 
                           |  Cons of 'a * (unit -> 'a seq);

public class Vector3D {
   float x;
   float y;
   float z;
}

Sooner or later, using just the built-in primitive types
becomes restrictive, You saw this in ML, where you
could create your own types. This is also possible in
imperative programming and is, in fact, the crux of
object oriented l0 programming.

Let’s take a simple example: representing 3D vectors
(x,y,z). We could keep independent variables in our
code. e.g.

float x3=0.0;

float y3=0.0;

float z3=0.0;

void add_vec(float x1, float y1, float z1,

float x2, float y2, float z2) {

x3=x1+x2;

y3=y1+y2;

z3=z1+z2;

}

Clearly, this is not very elegant code. Note that, be-
cause I can only return one thing from a function, I
can’t return all three components of the answer. In-
stead, I had to manipulate external state. In fact, you
see a lot of this style of coding in procedural C coding.
Yuk.

We would rather create a new type (call it Vector3D)
that contains all three components, as per the slide. In
OOP languages, the definition of such a type is called
a class.

1.8 State and Behaviour

State and Behaviour

datatype 'a seq = Nil 
                           |  Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;                   

public class Vector3D {
   float x;
   float y;
   float z;

   void add(float vx, float vy, float vz) {
      x=x+vx;
      y=y+vy;
      z=z+vz;
   }
}

What we’ve done so far looks a lot like procedural pro-
gramming languages such as C. Here you create cus-
tom types to hold your data or state, then write a ton
of functions/procedures to manipulate that state, and
finally create your program by sequencing the various
procedure calls appropriately. ML was similar: each
time you created a new type (such as sequences), you
also had to construct a series of helper functions to ma-
nipulate it (e.g. hd(), tail(), merge(), etc.). There was
an implicit link between the data type and the helper
functions, since one was useless without the other. In
OOP, the link is sxplicit since the class holds both the
type and the helper functions that manipulate it.

OOP goes a step further, making the link explicit by
having the class hold both the type and the helper
functions that manipulate it. OOP classes therefore
glue together both the state (i.e. variables) and the
behaviour (i.e. functions or procedures).
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1.9 Classes, Instances and Ob-
jects

Classes, Instances and Objects

 Classes can be seen as templates for representing 
various concepts 

 We create instances of classes in a similar way. 
e.g.

makes two instances of class MyCoolClass.
 An instance of a class is called an object

MyCoolClass m = new  MyCoolClass();
MyCoolClass n = new  MyCoolClass();

Whenever we create an instance of a class, we call it
an object. The difference between a class an an object
is thus very simple, but you’d be surprised how much
confusion it can cause for novice programmers. Classes
define what properties and procedures every object of
the type should have (a template if you will), whilst
each object is a specific implementation with partic-
ular values. So a Person class might specify that a
Person has a name and an age. Our program may
instantiate two Person objects—one might represent
40-year old Bob; another might represent 20 year-old
Alice. Programs are made up of lots of objects, which
we manipulate to get a result (hence “object-oriented
programming”). e.g.6

// create an object of type Vector3D

Vector3D v1 = new Vector3D();

v1.x=3.5f; // set the x component

// create another object of type Vector3D

Vector3D v2 = new Vector3D();

v2.x=2.0f;

To summarise: Our classes group primitive variables
and functions that operate on them to form a more
complex, custom type. They act as templates to create
specific objects.

6Note that we have just added a keyword to our repertoire:
new is used to instantiate objects. We follow it with what looks
like a function—this is actually the constructor for the type as
we will see shortly.

Loose Terminology (again!)

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Having made all that fuss about ‘function’ and ‘pro-
cedure’, it only gets worse here: when we’re talking
about a procedure inside a class, it’s often called a
method.

In the wild, you’ll find people use ‘function’, ‘pro-
cedure’ and ‘method’ interchangeably. Thankfully
you’re all smart enough to cope!

1.10 Parameterised Types

Parameterised Classes

 ML's polymorphism allowed us to specify functions that could 
be applied to multiple types

 In Java, we can achieve something similar through Generics; 
C++ through templates
 Classes are defined with placeholders (see later lectures)
 We fill them in when we create objects using them

> fun self(x)=x;
val self = fn : 'a -> 'a
        

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

In ML, the type inference allowed you to write poly-
morphic functions; that is to write functions that could
operate on different types. e.g. Your lists and se-
quences etc functioned for integers, reals, etc.

Many of the imperative/OOP languages did not have
this ability originally, because they support a different
type of polymorphism that we’ll come to in a later lec-
ture. It turned out, however, there are still advantages
to having the ML-style polmorphism and that has been
added to some OOP languages, notably C++ (where it
is called templates and Java (where it is called Gener-
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ics). Initially, you will most likely encounter Gener-
ics when using Java’s built-in data structures such as
LinkedList, ArrayList, Map, etc. For example, say you
wanted a linked list of integers or of Vector3D objects.
You would declare:

LinkedList<Integer> lli = new LinkedList<Integer>();

LinkedList<Vector3D> llv = new LinkedList<Vector3D>();

This was shoe-horned into Java relatively recently,
so if you are looking at old code on the web
or old books, you might see them using the
non-Generics versions that ignore the type e.g.
LinkedList ll = new LinkedList() allows you to
throw almost anything into it (including a mix
of types). The astute amongst you may have
noted that I used LinkedList<Integer> and not
LinkedList<int>—it turns out that, in order to keep
old code working, we can’t use primitive types in
Generics classes. We will be looking at how it all works
later on in the course. For now, just be aware that ev-
ery primitive type has an (immutable) associated class
that holds a variable of that type.
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Lecture 2

Pointers, References and Memory

Imperative languages manipulate state held in system
memory. They more naturally extend from assembly
and it is useful for us to consider how most imperative
compilers make use of memory.

2.1 The Call Stack for Functions

The Call Stack

Remember the way the fetch-execute cycle handles
procedure calls: whenever a procedure is called we
jump to the machine code for the procedure, execute
it, and then jump back to where it was before and
continue on. This means that, before it jumps to the
procedure code, it must save where it is.

We do this using a call stack. A stack is a simple
data structure that is the digital analogue of a stack
of plates: you add and take from the top of the pile
only1. By convention, we say that we push new entries
onto the stack and pop entries from its top. Here the
‘plates’ are called stack frames and they contain the
function parameters, any local variables the function
creates and, crucially, a return address that tells the
CPU where to jump to when the function is done.
When we finish a procedure, we delete the associated

1See Algorithms next term for a full analysis

stack frame and continue executing from the return
address it saved.

The Call Stack: Example
1 int twice(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a=50;
4 int b = twice(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

In this example I’ve avoided going down to assembly
code and just assumed that the return address can be
the code line number. This causes a small problem
with e.g. line 4, which would be a couple of machine
instructions (one to get the value of twice{) and one
to store it in b). I’ve just assumed the computer mag-
ically remembers to store the return value for brevity.
This is all very simple and the stack never gets very
big—things are more interesting if we start nesting
functions (i.e. calling functions from within another
function):
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Nested Functions

0 0
a=50

0
a=50

d=50
5

0
a=50

d=50
5

d=50
2

100

0
a=50

d=50
5

d=100
2

200

0
a=50

d=50
5

a=200

0
a=50

b=200

1 int twice(int d) return 2*d;
2 int quadruple(int d) return twice(twice(d));
3 int a=50;
4 int b = quadruple(a);
5 ...

And even more interesting if we start processing re-
cursively:

Recursive Functions
1 int pow (int x, int y) {
2 if (y==0) return 1;
3 int p = pow(x,y-1);
4 return x*p;
5 }
6 int s=pow(2,7);
7 ...

0

y=7
4

x=2

0

y=7
4

x=2

0

y=6
4

x=3

y=7
4

x=2

0

y=6
4

x=2

y=7
4

x=2

0

y=6
4

x=2

...

y=5
4

x=2
y=5

4

x=2

y=4
4

x=2

y=7
4

x=2

0

y=6
4

x=2

y=5
4

x=2

p=16

y=7
4

x=2

0

y=6
4

x=2

p=32

...

0
s=128

We immediately see a problem: computers only have
finite memory so if our recursion is really deep, we’ll be
throwing lots of stack frames into memory and, sooner
or later, we will run out of memory. We call this stack
overflow and it is an unrecoverable error that you’re
almost certainly familiar with from ML. You know that
tail-recursion does better, but:

Tail­Recursive Functions I
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

...

128

t=1
y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

128

128

0
s=128

If you’re in the habit of saying tail-recursive functions
are better, be careful—they’re only better if the com-
piler/interpreter knows that it can optimise them to
use O(1) space. Java compilers don’t...2

Tail­Recursive Functions II
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

t=1

0 0

y=5

3

x=2

t=4

0
s=128

y=6

3

x=2

t=2
y=4

3

x=2

0

t=8

0 0

y=2

3

x=2

t=32
y=3

3

x=2

t=16

0

y=1

3

x=2

t=64

2.2 Control Loops

However, optimised tail-recursion is equivalent to iter-
ation and imperative languages support explicit itera-
tion through the use of constructs such as while (as per
ML) and for3. The following examples iterate exactly
eight times.

2Language designers usually speak of 1tail-call optimisation’
since there is actually nothing special about recursion in this
case: functions that call other functions may be written to use
only tail calls, allowing the same optimisations.

3See Workbook 2

12



Control Flow: for and while

for( init; boolean_expression; step )

while( boolean_expression )

for (int i=0; i<8; i++) …

int j=0;  for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0;  while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

You may like to look up the other constructs and key-
words for looping4. In particular, look at the ‘do...
while’ and ‘enhanced for’ loops, and the ‘break’ and
‘continue’ keywords.

2.3 The Heap

There’s a subtlety with the stack that we’ve passed
over until now. What if we want a function to create
something that sticks around after the funtion is fin-
ished? Or to resize something (say an array)? We talk
of memory being dynamically allocated rather than
statically allocated as per the stack.

Why can’t we dynamically allocate on the stack? Well,
imagine that we do everything on a stack and you have
a function that resizes an array. We’d have to grow the
stack, but not from the top, but where the stack was
put. This rather invalidates our stack and means that
every memory address we have will need to be updated
if it comes after the array.

We avoid this by using a heap5. Quite simply we allo-
cate the memory we need from some large pool of free
memory, and store a pointer in the stack. Pointers are
of known size so won’t ever increase. If we want to
resize our array, we create a new, bigger array, copy
the contents across and update the pointer within the
stack.

4See workbook 2
5Note: you meet something called a ‘heap’ in Algorithms: it

is NOT the same thing

The Heap
int[] x = new int[3];
public void resize(int size) {
     int tmp=x;
     x=new int[size];
     for (int=0; i<3; i++)
 x[i]=tmp[i];
}
resize(5);

0

x

size=3

0

x

size=3
5 7 9

5 7 9 0

x

size=5

Heap

Stack

For those who did the Paper 2 O/S course, you should
realise that the heap gets fragmented : as we create
and delete stuff we leave holes in memory. Occasion-
ally we have to spend time ‘compacting’ the holes (i.e.
shifting all the stuff on the heap so that it’s used more
efficiently.

2.4 Pointers and References

Memory and Pointers

 In reality the compiler stores a mapping from 
variable name to a specific memory address, along 
with the type so it knows how to interpret the 
memory (e.g. “x is an int so it spans 4 bytes starting 
at memory address 43526”).

 Lower level languages often let us work with 
memory addresses directly. Variables that store 
memory addresses are called pointers or sometimes 
references

 Manipulating memory directly allows us to write fast, 
efficient code, but also exposes us to bigger risks
 Get it wrong and the program 'crashes' .

The compiler must manipulate the computer’s mem-
ory, but the notion of type doesn’t exist at the lowest
level. Memory is simply a vast sequence of bits, split
up (usually) into bytes, and the compiler must manu-
ally specify the byte it wants to read or change by it’s
memory address. This is little more than a number
uniquely identifying that byte. So when you ask for
an int to be created, the compiler knows to find a 4-
byte chunk of memory that isn’t being used (assuming
ints are 32 bits) and change the bytes appropriately.

Some languages allow us, as programmers, to move
bayond the abstraction of memory provided by explicit
variable creation. They allow us to have variables that
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contain the actual memory addresses and even to ma-
nipuate them. We call such variables pointers and the
traditional way to understand them is the “box and
arrow” model:

Pointers: Box and Arrow Model

 A pointer is just the memory address of the first 
memory slot used by the variable

 The pointer type tells the compiler how many 
slots the whole object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example: Representing Strings I

 A single character is fine, but a text string is of variable length – 
how can we cope with that? 

 We simply store the start of the string in memory and require it to 
finish with a special character (the NULL or terminating 
character, aka '\0')

 So now we need to be able to store memory addresses   use →
pointers

 We think of there being an array of characters (single letters) in 
memory, with the string pointer pointing to the first element of 
that array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18

Example: Representing Strings II

stringPointer

h e l l o  char letterArray[] = {'h','e','l','l','o','\0'};
  
  char *stringPointer = &(letterArray[0]);

  printf(“%s\n”,stringPointer);

  letterArray[3]='\0';

  printf(“%s\n”,stringPointer);

  

\0

In FoCS you encountered references, which were (sen-
sibly back then) equated to pointers. Here, we will
be a bit stricter and distinguish between pointers and
references.

Pointers are simply variables whose value is a mem-
ory address. We can arbitrarily modify them either
accidentally or intentionally and this can lead to all
sorts of problems. Although the symptom is usually
the same: program crash.

References

 Pointers are useful but dangerous
 References can be thought of as 

restricted pointers
 Still just a memory address
 But the compiler limits what we can do to it

 C, C++: pointers and references
 Java: references only
 ML: references only

References6 can be seen as a fix for some of the more
dangerous aspects of pointers. They are still just vari-
ables holding memory addresses, but the compiler (not
the computer) will prevent us from doing certain op-
erations on it to make things safer.

References vs Pointers

Pointers References

Represents a memory 
address

Yes Yes

Can be arbitrarily assigned Yes No

Can be assigned to 
established object

Yes Yes

Can be tested for validity No Yes

The last point is particularly important. A pointer
points to something valid, something invalid, or null

(a special zero-pointer that indicates it’s not ini-
tialised). References, however, either point to some-
thing valid or to null. With a non-null reference, you
know it’s valid. With a non-null pointer, who knows?

For those with experience with pointers, you might
have found pointer arithmetic rather useful at times
(e.g. incrementing a pointer to move one place forward
in an array, etc). You can’t do that with a reference

6See workbook 3
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since it would be a technique to create an invalid, non-
null reference.

Sun decided that Java would have only references and
no explicit pointers. Whilst slightly limiting, this
makes programming much safer (and it’s one of the
many reasons we teach with Java). Java has two
classes of types: primitive and reference. A primitive
type is a built-in type7. Everything else is a reference
type, including arrays and objects8.

References Example (Java)

{1,2,3,4}
ref2

ref1

{1,6,3,7}
ref2

ref1

int[] ref1 = null;
ref1 = new int[]{1,2,3,4};
int[] ref2 = ref1;

ref1[3]=7;
ref2[1]=6;

In this example, we create a reference and set it to
null. Then we create a new array (using the new

keyword) and assign the reference to point to it. Then
we create another reference with the same value as
ref1. i.e. we have two references pointing to the same
array in memory.

Thus, when we dereference ref1 and make a change,
the change will also affect ref2. We will return to this
shortly.

7See Workbook 1
8See Workbook 3

2.5 Pass-by-value and Pass-by-
reference

Argument Passing

 Pass­by­value. Copy the object into a new 
value in the stack

 Pass­by­reference. Create a reference to the 
object and pass that.

y=3

x=3
void test(int x) {...}
int y=3;
test(y);

y=3

xvoid test(int &x) {...}
int y=3;
test(y);

Note I had to use C here since Java doesn’t have a
pass-by-reference operator such as &.

Pass-by-value. The value of the argument is copied
into a new argument variable (this is what we as-
sumed in the call stack earlier)

Pass-by-reference. Instead of copying the object
(be it primitive or otherwise), we pass a reference
to it. Thus the function can access the original
and (potentially) change it.

When arguments are passed to java functions, you may
hear it said that primitive values are “passed by value”
and arrays are “passed by reference”. I think this is
misleading (and technically wrong).

Passing Procedure Arguments In Java

class Reference {

   public static void update(int i, int[] array) {
      i++;
      array[0]++;
   }

   public static void main(String[] args) {
      int test_i = 1;
      int[] test_array = {1};
      update(test_i, test_array);
      System.out.println(test_i);
      System.out.println(test_array[0]);
   }

}

This example is taken from your practicals9, where
you observed the different behaviour of test i and

9See workbook 3
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test array—the former being a primitive int and the
latter being a reference to an array.

Let’s create a model for what happens when we pass
a primitive in Java, say an int like test i. A new stack
frame is created and the value of test i is copied into
the stack frame. You can do whatever you like to this
copy: at the end of the function it is deleted along
with the stack frame. The original is untouched.

Now let’s look at what happens to the test array vari-
able. This is a reference to an array in memory. When
passed as an argument, a new stack frame is created.
The value of test array (which is just a memory ad-
dress) is copied into a new reference in the stack frame.
So, we have two references pointing at the same thing.
Making modifications through either changes the orig-
inal array.

So we can see that Java actually passes all arguments
by value, it’s just that arguments are either primitives
or references. i.e. Java is strictly pass-by-value10.

The confusion over this comes from the fact that many
people view test array to be the array and not a refer-
ence to it. If you think like that, then Java passes it
by reference, as many books (incorrectly) claim. The
examples sheet has a question that explores this fur-
ther.

Check...

A. “1 1”
B. “1 2”
C. “2 1”
D. “2 2”

public static void myfunction2(int x, int[] a) {
x=1;
x=x+1;
a = new int[]{1};
a[0]=a[0]+1;

}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

myfunction2(num, numarray);
System.out.println(num+" "+numarray[0]);

}

10Don’t believe me? See the Java specification, section 8.4.1.

Passing Procedure Arguments In C

void update(int i, int &iref){
  i++;
  iref++;
} 

int main(int argc, char** argv) {
  int a=1;
  int b=1;
  update(a,b);
  printf("%d %d\n",a,b);
}

Things are a bit clearer in other languages, such as
C. They may allow you to specify how something is
passed. In this C example, putting an ampersand (‘&’)
in front of the argument tells the compiler to pass by
reference and not by value.

Having the ability to choose how you pass variables
can be very powerful, but also problematic. Look at
this code:

bool testA(HugeInt h) {

if (h > 1000) return TRUE;

else return FALSE;

}

bool testB(HugeInt &h) {

if (h > 1000) return TRUE;

else return FALSE;

}

Here I have made a fictional type HugeInt which is
meant to represent something that takes a lot of space
in memory. Calling either of these functions will give
the same answer, but what happens at a low level is
quite different. In the first, the variable is copied (lots
of memory copying required—bad) and then destroyed
(ditto). Whilst in the second, only a reference is cre-
ated and destroyed, and that’s quick and easy.

So, even though both pieces of code work fine, if you
miss that you should pass by reference (just one tiny
ampersand’s difference) you incur a large overhead and
slow your program.

I see this sort of mistake a lot in C++ programming
and I guess the Java designers did too—they stripped
out the ability to specify pass by reference or value
from Java!
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Lecture 3

Creating Classes

3.1 Identifying Classes

What not to Do

 Your ML has doubtless been one big file 
where you threw together all the functions 
and value declarations

 Lots of C programs look like this :-(
 We could emulate this in OOP by having one 

class and throwing everything into it

 We can do (much) better

Having one massive class, MyApplication perhaps,
with all the state and behaviour in it, is a surpris-
ingly common novice error. This achieves nothing (in
fact it just adds boilerplate code). Instead we aim to
have multiple classes, each embodying a well-defined
concept.

Identifying Classes

 We want our class to be a grouping of 
conceptually-related state and behaviour

 One popular way to group is using grammar
 Noun → Object
 Verb → Method

“A simulation of the Earth's orbit around 
the Sun”

Very often classes follow naturally from the problem
domain. So, if you are making a snooker game, you

might have an object to represent the table; to repre-
sent each ball; to represent the cue; etc. Identifying
the best possible set of classes for your program is more
of an art than a science and depends on many factors.
However, it is usually straightforward to develop sen-
sible classes, and then we keep on refining them on
them (“refactoring”) until we have something better.

A helpful way to break your program down is in
term of tangible things—represented by the nouns you
would use when describing the program. Similarly, the
verbs often map well to the behaviour required of your
classes. Think of these as guidelines or rules of thumb,
not rules.

UML: Representing a Class Graphically

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The graphical notation used here is part of UML (Uni-
fied Modeling Language). UML is a standardised set
of diagrams that can be used to describe software in-
dependently of any programming language used to im-
plement it.

UML contains many different diagrams (touched on in
the Software Design course for those doing Paper 2).
In this course we will only use the UML class diagram
such as the one in the slide.

17



The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more 
students”

 Arrow going right to left says “a Student has exactly 1 
College”

 What it means in real terms is that the College class will 
contain a variable that somehow links to a set of Student 
objects, and a Student will have a variable that 
references a College object.

 Note that we are only linking classes: we don't start 
drawing arrows to primitive types.

Note that the arrowhead must be ‘open’. It is normal
to annotate the head with the multiplicity, but some
programmers are lax on this (for examination pur-
poses, you are expected to annotate the heads). I’ve
shown a dual-headed arrow; if the multiplicity value is
zero, you can leave off the arrowhead and annotation
entirely.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties 
that an object has such as 
colour or size)

Class behaviour (actions 
an object can do)

'Magic' start point 
for the program 
(named main by 
convention)

Create an object of 
type MyFancyClass in 
memory

Create a reference to a 
MyFancyClass object 
and call it c

Access modifier

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

MyFancyClass *cp = new MyFancyClass() 

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour 

'Magic' start point 
for the program 

Create an object of 
type MyFancyClass and 
call it cc

Access modifier

Create an object of 
type MyFancyClass and 
return a reference to it

Create a pointer to a 
MyFancyClass object and call it cp

3.2 OOP Concepts

OOP Concepts

 OOP provides the programmer with a 
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Let’s be clear here: OOP doesn’t enforce the correct
usage of the ideas we’re about to look at. Nor are
the ideas exclusively found in OOP languages. The
main point is that OOP encourages the use of these
concepts, which we believe is good for software design.

3.2.1 Modularity and Code Re-Use

Modularity and Code Re-Use

 You've long been taught to break down 
complex problems into more tractable 
sub-problems.

 Each class represents a sub-unit of code that (if 
written well) can be developed, tested and 
updated independently from the rest of the 
code.

 Indeed, two classes that achieve the same 
thing (but perhaps do it in different ways) can 
be swapped in the code

 Properly developed classes can be used in 
other programs without modification.

Modularity is extremely important in OOP. It’s a com-
mon Computer Science trick: break big problems down
into chunks and solve each chunk. In this case, we
have large programs, meaning scope for lots of cod-
ing bugs. By identifying objects in our problem, we
can write classes that represent them. Each class can
be developed, tested and maintained independently of
the others. Then, when we sequence hem together to
make our larger program, there are far fewer places
where it can go wrong.

There is a further advantage to breaking a program
down into self-contained objects: those objects can be
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ripped from the code and put into other programs.
So, once you’ve developed and tested a class that rep-
resents a Student, say, you can use it in lots of other
programs with minimal effort. Even better, the classes
can be distributed to other programmers so they don’t
have to reinvent the wheel. Therefore OOP strongly
encourages software re-use.

As an aside, modularity often goes further than the
classes/objects. Java has the notion of packages to
group together classes that are conceptually linked.
C++ has a similar concept inthe form of namespaces.

3.2.2 Encapsulation and Information
Hiding

Encapsulation I

class Student {
   int age;
};

void main() {
   Student s = new Student();
   s.age = 21;

   Student s2 = new Student();
   s2.age=-1;

   Student s3 = new Student();
   s3.age=10055;
}

This code defines a basic Student class, with only one
piece of state per Student. In the main() method we
create three instances of Students. We observe that
nothing stops us from assigning nonsensical values to
the age.

Encapsulation II
class Student {
   private int age;
   
   boolean SetAge(int a) {
      if (a>=0 && a<130) {

age=a;
return true;

      }
      return false;
   }

   int GetAge() {return age;}
}

void main() {
   Student s = new Student();
   s.SetAge(21);
}

Here we have assigned an access modifier called private
to the age variable. This means nothing external to the

class (i.e. no piece of code defined outside of the class
definition) can read or write the age variable directly1.

Another name for encapsulation is information hiding
or even implementation hiding in some texts. The ba-
sic idea is that a class should expose a clean interface
that allows full interaction with it, but should expose
nothing about its internal state. The general rule you
can follow is that all state is private unless there is a
very good reason for it not to be.

To get access to the age variable we define a getAge()
and a setAge() method to allow read and write, re-
spectively. On the face of it, this is just more code
to achieve the same thing. However, we have new op-
tions: by omitting setAge() altogether we can prevent
anyone modifying the age (thereby adding immutabil-
ity!); or we can provide sanity checks in the setAge()
code to ensure we can only ever store sensible values.

Encapsulation III

class Location {
   private float x;
   private float y;
   
   float getX() {return x;}
   float getY() {return y;}

   void setX(float nx) {x=nx;}
   void setY(float ny) {y=ny;}
}

class Location {

   private Vector2D v;
   
   float getX() {return v.getX();}
   float getY() {return v.getY();}

   void setX(float nx) {v.setX(nx);}
   void setY(float ny) {v.setY(ny);}
}

Here we have a simple example where we wish to
change the underlying representation of a co-ordinate
(x,y) from raw primitives to a custom Vector2D object.
We can do this without changing the public interface
to the class and hence without having to update any
piece of code that uses the Location class.

You may hear people talking about coupling and cohe-
sion. Coupling refers to how much one class depends
on another. High coupling is bad since it means chang-
ing one class will require you to fix up lots of others.
Cohesion is a qualitative measure of how strongly re-
lated everything in the class is—we strive for high co-
hesion. Encapsulation helps to minimise coupling and
maximise cohesion.

1See workbook 3
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Access Modifiers

Everyone Subclass
Same 

package 
(Java)

Same 
Class

private X

package (Java) X X

protected X X X

public X X X X

OOP languages feature some set of access modifiers
that allow us to do various levels of data hiding. C++
has the set {public, protected, private}, to which Java
has added package. Don’t worry if you don’t yet know
what a “Subclass” is—that’s in the next lecture.

3.3 Immutability

The discussion of access modifiers leads us naturally
to talk about immutability. You should recall from
FoCS that every value in ML is immutable: once it’s
set, it can’t be changed. From a low-level perspective,
writing val x=7; allocates a chunk of memory and
sets it to the value 7. Thereafter you can’t change
that chunk of memory. You could reassign the label by
writing val x=8; but this sets a new chunk of memory
to the value 8, rather than changing the original chunk
(which sticks around, but can’t be addressed diretcly
now since x points elsewhere).

It turns out that immutability has some serious ad-
vantages when concurrency is involved—knowing that
nothing can change a particular chunk of memory
means we can happily share it between threads with-
out worry of contention issues. It also has a tendency
to make code less ambiguous and more readable. It is,
however, more efficient to manipulate allocated mem-
ory rather than constantly allocate new chunks. In
OOP, we can have the best of both worlds.

Immutability

 Everything in ML was immutable (ignoring the 
reference stuff). Immutability has a number of 
advantages:
 Easier to construct, test and use
 Can be used in concurrent contexts
 Allows lazy instantiation

 We can use our access modifiers to create 
immutable classes

To make a class immutable:

• Make sure all state is private.

• Consider making state final (this just tells the
compiler that the value never changes once con-
structed).

• Make sure no method tries to change any internal
state.

To quote Effective Java by Joshua Bloch:

“Classes should be immutable unless there’s
a very good reason to make them mutable...
If a class cannot be made immutable, limit
its mutability as much as possible.”

3.4 Creating Parameterised
Types

Creating Parameterised Types

 These just require a placeholder  type 

class Vector3D<T> {
   private T x;
   private T y;
   
   T getX() {return x;}
   T getY() {return y;}

   void setX(T nx) {x=nx;}
   void setY(T ny) {y=ny;}
}

We already saw how to use Generics types in Java (e.g.
LinkedList<Integer>). Declaring them is not much
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harder than a ‘normal’ class. The T is just a place-
holder (and I could have used any letter or word—T

is just the de-facto choice). Once declared we can cre-
ate Vector3D objects with different underlying storage
types, just like with LinkedList:

Vector3D<Integer> vi = new Vector3D<Integer>(); // Vector of integers

Vector3D<Float> vi = new Vector3D<Float>(); // Vector of single precision reals

Vector3D<Double> vi = new Vector3D<Double>(); // Vector of double precision reals

There is no problem having parame-
terised types as parameters—for example
LinkedList< Vector3D<Integer> > declares a
list of integer vector objects. And we can have
multiple parameters in our definitions:

public class Pair<U,V> {

private U mFirst;

private V mSecond;

...

}

You see this most commonly with Maps in Java,
which represent dictionaries, mapping keys of some
type to values of (potentially) some other type. e.g.
a TreeMap<String,Integer> could be used to map
names to ages).

3.5 Static Data

3.6 Class-Level Data

Class­Level Data and Functionality I

 A static field is created only once in the program's execution, 
despite being declared as part of a class

public class ShopItem {
   private float mVATRate;
   private static float sVATRate;
   ....
}

One of these created 
every time a new 
ShopItem is 
instantiated. Nothing 
keeps them all in 
sync.

Only one of these created 
ever. Every ShopItem object 
references it.

You don’t even need to instantiate a class to access a
static member. Just writing ShopItem.sVATRate would
give you access. You see examples of this in the Math

class provided by Java: you can just call Math.PI to
get the value of pi, rather than creating a Math object
first.

Class­Level Data and Functionality II

 Auto synchronised 
across instances

 Space efficient
17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {
   public static void main(String[] args) {
      ...
   }
}

 Also static methods:

In order for a method to be static, it must not make
use of anything other than local or static variables.
So it can’t use anything that is instance-specific (i.e.
non-static member variables are out).

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

 The compiler can produce more efficient code since no 
specific object is involved

public class Math {
   public float sqrt(float x) {…}
   public double sin(float x) {…}
   public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
   public static float sqrt(float x) {…}
   public static float sin(float x) {…}
   public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

In your first few practicals you were encouraged to
write static methods to avoid having to instantiate ob-
jects all over the place.
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Lecture 4

Inheritance

Inheritance I

class Student {
   public int age;
   public String name;
   public int grade;   
}

class Lecturer {
   public int age;
   public String name;
   public int salary;    
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that 

we're not really representing
 Both Lecturers and Students are people 

(no, really).
 We can view each as a kind of 

specialisation of a general person
 They have all the properties of a 

person
 But they also have some extra stuff 

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II

class Person {
   public int age;
   Public String name;
}

class Student extends Person {
   public int grade;   
}

class Lecturer extends Person {
   public int salary;    
}

 We create a base class (Person) 
and add a new notion: classes 
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of 

Lecturer and Student
 Lecturer and Student subclass 

Person

Java uses the keyword extends to indicate inheritance
of classes. In C++ it’s a more opaque colon:

class Parent {...};

class Student : public Parent {...};

class Lecturer : public Parent {...};

Representing Inheritance Graphically

exam_score

Student

salary

Lecturer

name
age

Person Also known as an “is-a” 
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

name and age
inherited if not
private

Inheritance1 is an extremely powerful concept that is
used extensively in good OOP. We discussed the “has-
a” relation amongst classes; inheritance adds an “is-a”
concept. E.g. A car is a vehicle that has a steering
wheel.

We speak of an inheritance tree where moving down
the tree makes things more specific and up the tree
more general. Unfortunately, we tend to use an array
of different names for things in an inheritance tree.
For B extends A, you might hear any of:

• A is the superclass of B

• A is the parent of B

• A is the base class of B

• B is the child of A

• B derives from A

• B extends A

• B inherits from A

• B subclasses A

Many students confuse “is-a” and “has-a” arrows in
their UML class diagrams: please make sure you don’t!
Inheritance has an empty triangle for the arrowhead,
whilst association has two ‘wings’.

1See workbook 5
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4.1 Casting

Casting

 Many languages support type casting 
between numeric types

 With inheritance it is reasonable to type 
cast an object to any of the types 
above it in the inheritance tree...

int i = 7;
float f = (float) i;   // f==7.0
double d = 3.2;
int i2 = (int) d;     // i2==3

Widening

 Student is­a Person
 Hence we can use a Student 

object anywhere we want a 
Person object

 Can perform widening 
conversions (up the tree)

Person

Student

Student s = new Student()

Person p = (Person) s;

“Casting”

public void print(Person p) {...}

Student s = new Student();
print(s);

Implicit cast

Narrowing

 Narrowing conversions move 
down the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS. Not enough info
In the real object to represent
a Student

Student s = new Student();
Person p = (Person) s;
Students s2 = (Student) p;

OK because underlying object
really is a Student

When we create an object, a specific chunk of memory
is allocated with all the necessary info and a reference
to it returned (in Java). Casting just creates a new
reference with a different type and points it to the
same memory chunk. Everything we need will be in
the chunk if we cast to a parent class (plus some extra
stuff).

If we try to cast to a child class, there won’t be all
the necessary info in the memory so it will fail. But
beware—you don’t get a compiler error in the failed
example above! The compiler is fine with the cast and
instead the program chokes when we try to run that
piece of code—a runtime error.

Note the example of casting primitive numeric types
in the slide is a bit different, since a new variable of
the primitive type is created and assigned the relvant
value.

4.2 Shadowing

Fields and Inheritance

class Person {
   public String mName;
   protected int mAge;
   private double mHeight;
}

class Student extends Person {

  public void do_something() {
    mName=”Bob”;
    mAge=70;
    mHeight=1.70;
  }

}

Student inherits this as a 
public variable and so 
can access it

Student inherits this as a 
protected variable and so 
can access it

Student inherits this but 
as a private variable and 
so cannot access it 
directly

You will see that the protected access modifier can now
be explained. A protected variable is exposed for read
and write within a class, and within all subclasses of
that class. Code outside the class or its subclasses
can’t touch it directly2.

Fields and Inheritance: Shadowing
class A {   public int x; }

class B extends A {
   public int x;
}

class C extends B {
  public int x;

  public void action() {
      // Ways to set the x in C
      x = 10;
      this.x = 10;

      // Ways to set the x in B
      super.x = 10;
      ((B)this).x = 10;

      // Ways to set the x in A
      ((A)this.x = 10;
  }
}

2At least, that’s how it is in most languages. Java actually
allows any class in the same Java package to access protected
variables as discussed previously.
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What happens here?? There is an inheritance tree (A
is the parent of B is the parent of C). Each of these
declares an integer field with the name x. In memory,
you will find three allocated integers for every object
of type C. We say that variables in parent classes with
the same name as those in child classes are shadowed.

Note that the variables are genuinely being shadowed
and nothing is being replaced. This is in contrast to
the behaviour with methods...

NB: A common novice error is to assume that we have
to redeclare a field in its subclasses for it to be inher-
ited: not so. Every non-private field is inherited by a
subclass.

There are two new keywords that have appeared here:
super and this. The this keyword can be used in any
class method3 and provides us with a reference to the
current object. In fact, the this keyword is what you
need to access anything within a class, but because
we’d end up writing this all over the place, it is taken
as implicit. So, for example:

public class A {

private int x;

public void go() {

this.x=20;

}

}

becomes:

public class A {

private int x;

public void go() {

x=20;

}

}

The super keyword gives us access to the direct parent
(one step up in the tree). You’ve met both keywords
in your Java practicals.

4.3 Overloading

We have already discussed function overloading, where
we had multiple functions with the same name, but a
diffeent prototype (i.e. set of arguments). The same
is possible within classes.

3By this I mean it cannot be used outside of a class, such as
within a static method: see later for an explanation of these.

4.4 Overriding

The remaining question is what happens to methods
when they are inherited and rewritten in the child
class. The obvious possibility is that they are treated
the same as fields, and shadowed. When this occurs
we say that the method is overridden. As it happens,
we can’t do this in Java, but it is the default in C++
so we can use that to demonstrate:

Methods and Inheritance: Overriding

 We might want to require that every Person can dance.  But 
the way a Lecturer dances is not likely to be the same as the 
way a Student dances...

class Person {
   public void dance() {
      jiggle_a_bit();
   }
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
}

Person defines a 
'default' 
implementation of 
dance()

Lecturer just 
inherits the default 
implementation and 
jiggles

Student overrides 
the default

Every object that has Person for a parent must have a
dance() method since it is defined in the Person class
and is inherited. If we override it in Child then Child
objects will behave differently. There are some sub-
tleties to this that we’ll return to next lecture.

A useful habit to get into is to annotate every function
you override using @Override. This serves two pur-
poses: firstly it tells anyone reading the code that it’s
an overridden method; secondly it allows the compiler
to check it really does override something. It’s surpris-
ingly easy to make a typo and think you’ve overridden
but actually not. We’ll see this later when we discuss
object comparison.
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4.5 Abstract Methods and
Classes

Abstract Methods

 Sometimes we want to force a class to implement a 
method but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this
 It has no implementation whatsoever

class abstract Person {
   public abstract void dance();
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
   public void dance() {
      jiggle_a_bit();
   }
}

An abstract method can be thought of as a contractual
obligation: any non-abstract class that inherits from
this class will have that method implemented.

Abstract Classes

 Note that I had to declare the class abstract too. 
This is because it has a method without an 
implementation so we can't directly instantiate a 
Person.

 All state and non­abstract methods are inherited as 
normal by children of our abstract class

 Interestingly, Java allows a class to be declared 
abstract even if it contains no abstract methods!

public abstract class Person {
   public abstract void dance();
}

class Person {
   public:
      virtual void dance()=0;
}Java C++

Abstract classes allow us to partially define a type.
Because it’s not fully defined, you can’t make an ob-
ject from an abstract class (try it). Only once all of
the ‘blanks’ have been filled in can we create an ob-
ject from it. This is particularly useful when we want
to represent high level concepts that do not exist in
isolation.

Depending on who you’re talking to, you’ll find differ-
ent terminology for the initial declaration of the ab-
stract function (e.g. the public abstract void dance()
bit). Common terms include method prototype and
method stub.

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the 
class or method is 
abstract

You have to look at UML diagrams carefully since
the italics that represent abstract methods or classes
aren’t always obvious on a quick glance.
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Lecture 5

Polymorphism

You should be comfortable with the polymorphism1

that you met in FoCS, where you wrote functions that
could operate on multiple types. It turns out that is
just one type of polymorphism in programming, and
it isn’t the form that most programmers mean when
they use the word. To understand that, we should look
back at our overridden methods:

Polymorphic Methods

 Assuming Person has a 
default dance() method, 
what should happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 General problem: when we refer to an object via a 
parent type and both types implement a particular 
method: which method should it run? 

Polymorphic Concepts I

 Static polymorphism
 Decide at compile­time
 Since we don't know what the true type of the 

object will be, we just run the parent method
 Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler says “p is of type 
Person”

 So p.dance() should do the 
default dance() action in 
Person

If we can get different method implementations by
casting the same object to different types, we have

1The etymology of the word polymorphism is from the an-
cient Greek: poly (many)–morph (form)–ism

static polymorphism. In general static polymor-
phism refers to anything where decisions are made at
compile-time (so-called early binding). You may re-
alise that all the polymorphism you saw in ML was
static polymorphism. The shadowing of fields also fits
this description.

Polymorphic Concepts II

 Dynamic polymorphism
 Run the method in the child
 Must be done at run­time since that's when we 

know the child's type
 Type errors cause run­time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler looks in memory 
and finds that the object is 
really a Student

 So p.dance() runs the 
dance() action in Student

Here we get the same method implementation regard-
less of what we cast the object to. In order to be
sure that it gets this right, we can’t figure out which
method to run when we are compiling. Instead, the
system has to run the program and, when a decision
needs to be made about which method to run, it must
look at the actual object in memory (regardless of the
type of the reference, which may be a cast) and act
appropriately.

This form of polymorphism is OOP-specific and is
sometimes called sub-type or ad-hoc polymorphism.
It’s crucial to good, clean OOP code. Because it must
check types at run-time (so-called late binding) there
is a performance overhead associated with dynamic
polymorphism. However, as we’ll see, it gives us much
more flexibility and can make our code more legible.

Beware: Most programmers use the word ‘polymor-
phism’ to refer to dynamic polymorphism.
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The Canonical Example I

 A drawing program that can draw 
circles, squares, ovals and stars

 It would presumably keep a list of all 
the drawing objects

 Option 1
 Keep a list of Circle objects, a list of 

Square objects,...
 Iterate over each list drawing each 

object in turn
 What has to change if we want to 

add a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape references
 Figure out what each object really is, 

narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
   if (s is really a Circle) 
      Circle c = (Circle)s;
      c.draw();
   else if (s is really a Square) 
      Square sq = (Square)s;
      sq.draw();
   else if...

The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape 

references
 Let the compiler figure out what to 

do with each Shape reference

 What if we want to add a new 
shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
   s.draw();

Implementations

 Java
 All methods are dynamic polymorphic.

 Python
 All methods are dynamic polymorphic.

 C++
 Only functions marked virtual are dynamic 

polymorphic

 Polymorphism in OOP is an extremely important 
concept that you need to make sure you understand...

C++ allows you to choose whether methods are in-
herited statically (default) or dynamically (explicitly
labelled with the keyword virtual). This can be good
for performance (you only incur the dynamic overhead
when you need to) but gets complicated, especially if
the base method isn’t dynamic but a derived method
is...

The Java designers avoided the problem by enforcing
dynamic polymorphism. You may find reference to
final methods being Java’s static polymorphism since
this gives a compile error if you try to override it
in subclasses. To me, this isn’t quite the same: it’s
not making a choice between multiple implementations
but rather enforcing that there can only be one imple-
mentation!

5.1 Multiple Inheritance and
Interfaces

Harder Problems

 Given a class Fish and a class DrawableEntity, how do 
we make a BlobFish class that is a drawable fish?

Fish

DrawableEntity

BlobFish

FishDrawableEntity BlobFish

X Dependency
between two
independent

concepts

X Conceptually wrong
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Multiple Inheritance

 If we multiple inherit, we 
capture the concept we want

 BlobFish inherits from both and 
is­a Fish and is­a 
DrawableEntity

 C++:

 But... 

Fish DrawableEntity

BlobFish

+ swim() + draw()

+ swim()
+ draw()

class Fish {…}
class DrawableEntity {…}

class BlobFish : public Fish, 
                         public DrawableEntity {...}

This is the obvious and (perhaps) sensible option that
manages to capture the concept nicely.

Multiple Inheritance Problems

 What happens here? Which of 
the move() methods is 
inherited?

 Have to add some grammar 
to make it explicit

 C++:

 Yuk.

Fish DrawableEntity

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();
bf->Fish::move();
bf->DrawableEntity::move();

Many texts speak of the “dreaded diamond”. This
occurs when a base class has two children who are the
parents of another class through multiple inheritance
(thereby forming a diamond in the UML diagram). If
the two classes in the middle independently override
a method from the top class, the bottom class suffers
from the problem in this slide.

Fixing with Abstraction

 Actually, this problem 
goes away if one or 
more of the conflicting 
methods is abstract

Fish DrawableEntity

BlobFish

+ move() + move()

+ move()

The problem goes away here because the methods are
abstract and hence have no implementation that can
conflict.

Java's Take on it: Interfaces
 Classes can have at most one parent. Period.
 But special 'classes' that are totally abstract can 

do multiple inheritance – call these interfaces

<<interface>>
       Drivable

+ turn()
+ brake()

Car

<<interface>>
    Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
   public void turn();
   public void brake();
}

Interface Identifiable {
   public void getIdentifier();
}

class Bicycle implements Drivable {
   public void turn() {...}
   public void brake() {… }
}

class Car implements Drivable, Identifiable {
   public void turn() {...}
   public void brake() {… }
   public void getIdentifier() {...}
}

So Java allows you to inherit from one class only
(which may itself inherit from one other, which may
itself...). Many programmers coming from C++ find
this limiting, but it just means you have to think of
another way to represent your classes (often a better
way, although not always!).

A Java interface2 is essentially just a class that has:

• No state whatsoever; and

• All methods abstract.

This is a greatly simplified concept that allows for mul-
tiple inheritance without any chance of conflict. Inter-
faces are represented in our UML class diagram with
a preceding <<interface>> label and inheritance oc-
curs via the implements keyword rather than through
extends.

2See workbook 5

28



Interfaces are so important in Java they are considered
to be the third reference type (the other two being
classes and arrays). Using interfaces encourages high
abstraction level in code, which is generally a good
thing since it makes the code more flexible/portable.
However, it is possible to overdo it, ending up with 20
files where one would do...
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Lecture 6

Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a 
function call, and that's exactly what it is.

 It's a method that gets called when the object is 
constructed, and it goes by the name of a constructor 
(it's not rocket science). It maps to the datatype 
constructors you saw in ML.

 We use constructors to initialise the state of the class in a 
convenient way
 A constructor has the same name as the class
 A constructor has no return type

MyObject m = new MyObject();

You can’t specify a return type for a constructor be-
cause it is always called using the special new keyword,
which must return a reference to the newly constructed
object. You can, however, specify arguments for a con-
structor in the usual way for a method.

Constructor Examples

public class Person {
   private String mName;

   // Constructor
   public Person(String name) {
       mName=name;
   }

   public static void main(
String[] args) {

     Person p = 
          new Person(“Bob”);
   }

}

class Person {
   private:
      std::string mName;

   public:
      Person(std::string &name){
          mName=name;
      }
};

int main (int argc, 
               char ** argv) {
   Person p (“Bob”);
}

Java C++

As with many OOP features, not all languages sup-
port it. Python, for example, doesn’t have construc-
tors. It does have a single init method in each class
that acts a bit like a constructor but technically isn’t
(python fully constructs the object, and returns a ref-

erence that gets passed to init if it exists—similar,
but not quite the same thing.

Default Constructor

public class Person {
   private String mName;

   public static void main(String[] args) {
     Person p = new Person();
   }

}

 If you specify no constructor at all, Java 
fills in an empty one for you

 Here it creates Person() for us
 The default constructor takes no 

arguments (since it wouldn't know what 
to do with them!)

In languages such as Java and C++ every class has
a constructor. The only question is whether it’s been
specified manually by the programmer or whether the
compiler has filled in a default (empty) constructor.

Multiple Constructors

public class Student {
    private String mName;
    private int mScore;

    public Student(String s) {
       mName=s;
       mScore=0;
    }

    public Student(String s, int sc) {
        mName=s; 
        mScore=sc;
    }

    public static void main(String[] args) {
      Student s1 = new Student("Bob");
      Student s2 = new Student("Bob",55);
    }
  }

 You can specify as many 
constructors as you like.

 Each constructor must 
have a different 
signature (argument list)

Again, not all languages support this. Python doesn’t
support multiple overloaded init methods, and this
can be a bit frustrating,
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Beware: As soon as you specify any constructor
whatsoever (regardless of the arguments), no default
constructor will be generated. The default constructor
only applies when the compiler notices that there is no
way to construct an object of this type, which can’t
be intentional or what’s the point of writing the class?

Constructor Chaining

 When you construct an object of a type with 
parent classes, we call the constructors of all of 
the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

In reality, Java asserts that the first line of a construc-
tor always starts with super(), which is a call to the
parent constructor (which itself starts with super(),
etc.). If it does not, the compiler adds one for you:

public class Person {

public Person() {

}

}

becomes:

public class Person {

public Person() {

super();

}

}

In other languages that support multiple inheritance,
this becomes more complex since there may be more
than one parent and a simple keyword like super isn’t
enough. Instead they support manually specifying the
constructor parameters for the parents. E.g. for C++:

class Child : public Parent1, Parent2 {

public:

Child() : Parent1("Alice"), Parent2("Bob") {...}

}

Chaining without Default Constructors

 What if your classes have explicit constructors that take 
arguments? You need to explicitly chain 

 Use super in Java:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
     mName=name;
}

public Student () {
    super(“Bob”);
}

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or 
memory that we might have created especially for the 
object

class FileReader {
   public:
   
      // Constructor
      FileReader() {
         f = fopen(“myfile”,”r”);
      }

      // Destructor
      ~FileReader() {
         fclose(f);
      }

   private :
      FILE *file;
}

int main(int argc, char ** argv) {

  // Construct a FileReader Object
  FileReader *f = new FileReader();

  // Use object here
  ...

  // Destruct the object
  delete f;

}

C++

It will shortly become apparent why I used C++ and
not Java for this example.

Cleaning Up

 A typical program creates lots of objects, not all of which need to 
stick around all the time

 Approach 1:
 Allow the programmer to specify when objects should be 

deleted from memory
 Lots of control, but what if they forget to delete an object?

 A “memory leak”

 Approach 2:
 Delete the objects automatically (Garbage collection)
 But how do you know when an object will never be used again 

and can be deleted??
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Cleaning Up (Java) I

 Java reference counts. i.e. it keeps track of how many 
references point to a given object.  If there are none, 
the programmer can't access that object ever again so 
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Note that reference counting has an associated cost
- every object needs more memory (to store the ref-
erence count) and we have to monitor changes to all
references to keep the counts up to date.

Cleaning Up (Java) II

 Actual deletion occurs through a garbage collector
 A separate process that periodically scans the 

objects in memory for any with a reference count of 
zero, which it then deletes.

 Running the garbage collector is obviously not free. If 
your program creates a lot of short­term objects, you 
will soon notice the collector running
 Gives noticeable pauses to your application while 

it runs.
 But minimises memory leaks (it does not prevent 

them...)

Cleaning Up (Java) III

 One problem with GC is we have no idea when an 
object will actually be deleted. The GC may even 
decide to defer the deletion until a future run.

 This causes issues for destructors – it might be ages 
before a resource is closed and available again!

 Therefore Java doesn't have destructors

 It does have finalizers that gets run when the GC 
deletes an object
 BUT there's no guarantee an object will ever get 

garbage collected in Java...
 Garbage Collection != Destruction

Because you can’t tell when finalizer methods will get
called in Java, their value is greatly reduced. It’s ac-
tually quite rare to see them in Java in my experience.
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Lecture 7

Error Handling

One of the more difficult problems in programming is
how and when to deal with things going wrong.

7.1 Return Codes

Return Codes

 The traditional imperative way to handle errors is to 
return a value that indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the return values are 

meant to signify, etc.
 The actual result often can't be returned in the same 

way

public int divide(double a, double b) {
   if (b==0.0) return -1; // error
   double result = a/b;
   return 0; // success
}

…

if ( divide(x,y)<0) System.out.println(“Failure!!”);

Originally there was no explicit mechanism for error
handling, The trick that was used was to return the
error state via the normal return type. For this to
work, the range of potential results from a procedure
must smaller than the range of the return type. For
example, we might have a function for square root with
the prototype float sqrt(float a). The convention
is to return the positive root, and so we can return
-1.0 to signify an error:

float sqrt(float a) {

if (a<0.0) return -1.0;

else {

...

}

}

If the return type isn’t something we can repurpose
(e.g. a custom class) then we can instead pass the
output by reference and have the function return an
integer to indicate the error state. E.g,

SomeCustomClass sqrt(float a) {

return new SomeCustomClass(...);

}

becomes

int func(float a, SomeCustomClass result ) {

if (a<0.0) return -1.0;

else result.set(...);

return 0;

}

You might see functions that return null if they have
an error. This is a very bad practice since it relies on
the programmer using the function to check for null.
If they don’t, they’ll likely try to dereference null and
their program will die...

In fact, this is a larger problem with the general ap-
proach. We are dependent on the programmer test-
ing the return value. Two problems arise: firstly, they
could neglect to check (really common); secondly, they
end up with really nasty looking code such as:

int retval = somefunc();

if (retval==-1) {

// handle error type 1

}

else if (retval==-2) {

// handle error type 2

}

else if (retval==-3) {

// handle error type 3

}

Here, just writing one line to call one function results
in a screen-worth of error handling code. This constant
mixing of code and error handling makes the code all
but unreadable.
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7.2 Deferred Error Handling

Deferred Error Handling

 A similar idea (with the same issues) is to set some state 
in the system that needs to be checked for errors.

 C++ does this for streams:

ifstream file( "test.txt" );
if ( file.good() )
{
        cout << "An error occurred opening the file" << endl;
}

7.3 Exceptions

Exceptions

 An exception is an object that can be thrown or raised by 
a method when an error occurs and caught or handled 
by the calling code

 Example usage:

try {
   double z = divide(x,y);
}
catch(DivideByZeroException d) {
   // Handle error here
}

Of course, you met exceptions in ML and there isn’t
much difference here. There is a tendency to use the
terminology throw/catch rather than raise/handle in
OOP languages—I don’t know why. xs

Flow Control During Exceptions

 When an exception is thrown, any code left to run in the 
try block is skipped

double z=0.0;
boolean failed=false;
try {
   z = divide(5,0);
   z = 1.0;
}
catch(DivideByZeroException d) {
   failed=true;
}
z=3.0; 
System.out.println(z+” “+failed);

Creating Exceptions

 Just extend Exception (or RuntimeException if you need it to be 
unchecked). Good form to add a detail message in the 
constructor but not required.

 You can also add more data to the exception class to provide 
more info on what happened (e.g. store the numerator and 
denominator of a failed division)

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
    public ComputationFailed(String msg) {
        super(msg);
    }
}

Throwing Exceptions

 An exception is an object that has Exception as 
an ancestor

 So you need to create it (with new) before 
throwing

double divide(double x, double y) throws DivideByZeroException {
   if (y==0.0) throw new DivideByZeroException();
   else return x/y;
}
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Multiple Handlers

 A try block can result in a range of different exceptions. 
We test them in sequence

try {
   FileReader fr = new FileReader(“somefile”);
   Int r = fr.read();
}
catch(FileNoteFound fnf) {
   // handle file not found with FileReader
}
catch(IOException d) {
   // handle read() failed
}

Note: once a catch block is matched, the remaining
catch blocks are skipped.

Exception Hierarchies

 You can use inheritance hierarchies

 And catch parent classes

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {…}
public class DivByZero extends MathException {…}

try {
   …
}
catch(InfiniteResult ir) {
   // handle an infinite result
}
catch(MathException me) {
  // handle any MathException or DivByZero
}

Checked vs Unchecked Exceptions
 Checked: must be handled or passed up. 

 Used for recoverable errors
 Java requires you to declare checked exceptions that 

your method throws
 Java requires you to catch the exception when you call 

the function

 

 Unchecked: not expected to be handled. Used for 
programming errors
 Extends RuntimeException
 Good example is NullPointerException 

double somefunc() throws SomeException {}

There is an ongoing debate about the value of checked
exceptions and they feature in some OOP languages
but not others. Most of the time you’ll be writing
and dealing with checked exceptions in Java. You’ll
encounter unchecked exceptions only when you mess
up in your code.

Aside: It turns out with Java they decided
that \RuntimeException should inherit from
Exception. This means that if you ever write
catch(Exception e) {...} then you will also catch
the unchecked exceptions. So don’t ever write that!

finally

 With resources we often want to ensure 
that they are closed whatever happens

try {
   fr,read();
   fr.close();
}
catch(IOException ioe) {
   // read() failed but we must still close the FileReader
   fr.close();
}

finally II

 The finally block is added and will always 
run (after any handler)

try {
   fr,read();
}
catch(IOException ioe) {
   // read() failed
}
finally {
   fr.close();
}

Evil I: Exceptions for Flow Control

 At some level, throwing an exception is like a GOTO

 Tempting to exploit this

 This is not good. Exceptions are for exceptional 
circumstances only
 Harder to read
 May prevent optimisations

try {
   for (int i=0; ; i++) {
      System.out.println(myarray[i]);
   }
}
catch (ArrayOutOfBoundsException ae) {
   // This is expected
}

The code readability argument should be obvious but
the second argumant warrants more discussion. If you
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google the notion of flow control with exceptions, you
will probably find many comments that suggest excep-
tion throwing is very slow compared to ‘normal’ code
execution. This is attributed variously to the need to
create an Exception object; the need to create a stack
trace; or even just the need to create a message string.
Some people report Exception handling was 50 times
slower on the first JVMs!

Now, you could write a JVM that handled exception
throwing efficiently, such that code like that in the
slide would carry little performance penalty. But the
crucial point is that there is no guarantee that a JVM
will do so (and many still don’t). Exceptions are in-
tended to be rare occurrences and it is perfectly rea-
sonable (if not natural) for a JVM creator to assume
this and therefore not need to worry about optimising
exception handling. Bottom line: this smells bad.

Evil II: Blank Handlers

 Checked exceptions must be handled

 Constantly having to use try...catch blocks to do this can be 
annoying and the temptation is to just gaffer­tape it for now

 ...but we never remember to fix it and we could easily be 
missing serious errors that manifest as bugs later on that are 
extremely hard to track down

try {
   FileReader fr = new FileReader(filename);
}
catch (FileNotFound fnf) {
}

This is a bad habit that novices tend to adopt—
try not to develop it yourself. Eclipse at least
discourages blank handlers, automatically filling in
e.printStackTrace() so there’s some record of the
problem printed to the screen. However, in large pro-
grams, wehre there’s often lots of debug output flow-
ing to the console, these messages are easily missed...
Better to fill in your handlers!

Advantages of Exceptions

 Advantages:
 Class name can be  descriptive (no need to look up error 

codes)
 Doesn't interrupt the natural flow of the code by requiring 

constant tests
 The exception object itself can contain state that gives 

lots of detail on the error that caused the exception
 Can't be ignored, only handled

http://java.sun.com/docs/books/tutorial/

essential/exceptions/
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Lecture 8

Copying Objects

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning
 We need special support for it

Person object
(name = 
“Bob”)

r

Person object
(name = 
“Bob”)

r

Person object
(name = 
“Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the 
Object class
 This class contains a clone() method so we just 

call this to clone an object, right?
 This can go horribly wrong if our object contains 

reference types (objects, arrays, etc)

Java is unusual in that it really, really wants you to
use OOP. In your practicals you must have noticed
that, even to do simple procedural stuff, you had to
encase everything in a class—even the main() method.
A further decision they made is that ultimately all
classes will inherit from a special Object class. i.e. the
top of all inheritance trees is Object even though we
never explicitly say so in code...

Shallow and Deep Copies

public class MyClass {
   private MyOtherClass moc;
}

MyClass 
object Shallo

w

MyOtherClass 
object MyClass 

object

MyOtherClass 
object

MyClass 
object

MyOtherClass 
object

MyClass 
object

MyClass 
object

MyOtherClass 
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a shallow 

copy

 But Java developers were worried that this might not be 
appropriate: they decided they wanted to know for sure 
that we'd thought about whether this was appropriate

 Java has a Cloneable interface

 If you call clone on anything that doesn't extend this 
interface, it fails
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Clone Example I

 public class Velocity {
    public float vx;
    public float vy;
    public Velocity(float x, float y) {
        vx=x;
        vy=y;
    }
  };
  
  public class Vehicle {
    private int age;
    private Velocity vel;
    public Vehicle(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }
  };

Clone Example II

 

  public class Vehicle implements Cloneable {
    private int age;
    private Velocity vel;
    public Vehicle(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }

    public Object clone() {
        return super.clone();
    }

  };

Here we fill in the clone() method using super.clone().
You can think of this as doing a byte-for-byte copy of
an object in memory. Any primitive types (such as
age) will therefore be copied. And references will also
be copied, but not the objects they point to. Hence
this much gets us a shallow copy.

Clone Example III
  public class Velocity implement Cloneable {
        ....
       public Object clone() {
           return super.clone();
       }
  };  
 
  public class Vehicle implements Cloneable {
    private int age;
    private Velocity v;
    public Student(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }

    public Object clone() {
        Vehicle cloned = (Vehicle) super.clone();
        cloned.vel = (Velocity)vel.clone();
        return cloned;
    }
  };

A deep clone requires that we clone the objects that
are referenced (and they, in turn clone any objects

they reference, and so on). Here we make Velocity
cloneable and make sure to clone the member variable
that Vehicle has.

Cloning Arrays

 Arrays have build in cloning but the 
contents are only cloned shallowly

 

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

...

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

Covariant Return Types

 The need to cast the clone return is annoying

 Recent versions of Java allow you to override a 
method in a subclass and change its return type to 
a subclass of the original's class

public Object clone() {
        Vehicle cloned = (Vehicle) super.clone();
        cloned.vel = (Velocity)vel.clone();
        return cloned;
    }

class A {}

class B extends A {}

class C {
     A mymethod() {}
}

class D extends C {
    B mymethod() {}
}

Marker Interfaces

 If you look at what's in the Cloneable interface, you'll find it's 
empty!!  What's going on?

 Well, the clone() method is already inherited from Object so it 
doesn't need to specify it

 This is an example of a Marker Interface
 A marker interface is an empty interface that is used to 

label classes
 This approach is found occasionally in the Java libraries

You might also see these marker interfaces referred to
as tag interfaces. They are simply a way to label or tag
a class. They can be very useful, but equally they can
be a pain (you can’t dynamically tag a class, nor can
you prevent a tag being inherited by all subclasses).
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Lecture 9

Java Collections

Java Class Library

 Java the platform contains around 4,000 
classes/interfaces
 Data Structures

 Networking, Files

 Graphical User Interfaces

 Security and Encryption

 Image Processing

 Multimedia authoring/playback

 And more...

 All neatly(ish) arranged into packages (see API docs)

Remember Java is a platform, not just a programming
language. It ships with a huge class library : that is to
say that Java itself contains a big set of built-in classes
for doing all sorts of useful things like:

• Complex data structures and algorithms

• I/O (input/output: reading and writing files, etc)

• Networking

• Graphical interfaces

Of course, most programming languages have built-
in classes, but Java has a big advantage. Because
Java code runs on a virtual machine, the underlying
platform is abstracted away. For C++, for example,
the compiler ships with a fair few data structures, but
things like I/O and graphical interfaces are completely
different for each platform (Windows, OSX, Linux,
whatever). This means you usually end up using lots
of third-party libraries to get such extras—not so in
Java.

There is, then, good reason to take a look at the Java
class library to see how it is structured.

9.0.1 Collections and Generics

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of 

things (objects)
 Usually when we have some grouping we 

want to go through it (“iterate over it”)

 The Collections framework has two main 
interfaces: Iterable and Collections. They 
define a set of operations that all classes in 
the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

The Java Collections framework is a set of interfaces
and classes that handles groupings of objects and al-
lows us to implement various algorithms invisibly to
the user (you’ll learn about the algorithms themselves
next term).

Sets

<<interface>> Set
 A collection of elements with no duplicates 

that represents the mathematical notion of 
a set

 TreeSet: objects stored in order

 HashSet: objects in unpredictable order but 
fast to operate on (see Algorithms course)

A
B

C

TreeSet<Integer> ts = new TreeSet<Integer>();
ts.add(15);
ts.add(12);
ts.contains(7);  // false
ts.contains(12); // true
ts.first(); // 12 (sorted)
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Lists

<<interface>> List
 An ordered collection of elements that may 

contain duplicates

 LinkedLIst: linked list of elements

 ArrayList: array of elements (efficient access)

 Vector: Legacy, as ArrayList but threadsafe

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.add(1.0);
ll.add(0.5);
ll.add(3.7);
ll.add(0.5);
ll.get(1);  // get element 2 (==3.7)

Queues

<<interface>> Queue
 An ordered collection of elements that may contain 

duplicates and supports removal of elements from the 
head of the queue

 offer() to add to the back and poll() to take from the 
front

 LinkedList: supports the necessary functionality

 PriorityQueue: adds a notion of priority to the queue so 
more important stuff bubbles to the top

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.offer(1.0);
ll.offer(0.5);
ll.poll(); // 1.0
ll.poll(); // 0.5

Maps

<<interface>> Map

 Like dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and 
(sometimes) null.

 TreeMap: keys kept in order

 HashMap: Keys not in order, efficient 
(see Algorithms)

K1
A

B

B

K3 K2

TreeMap<String, Integer> tm =  new TreeMap<String,Integer>();
tm.put(“A”,1);
tm.put(“B”,2);
tm.get(“A”);   // returns 1
tm.get(“C”); // returns null
tm.contains(“G”);  // false

There are other interfaces in the Collections class, and
you may want to poke around in the API documenta-
tion. In day-to-day programming, however, these are
likely to be the interfaces you use.

Now, don’t worry about too much what’s going on be-
hind the scenes (that comes in the Algorithms course),
just recognise that there are a series of implementa-
tions in the class library that you can use, and that

each has different properties. You should get into the
habit of reading the API descriptions to know which
is the right choice for your problem.

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList<Integer> list = new LinkedList<Integer>();
...
for (int i=0; i<list.size(); i++) {
    Integer next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Integer i : list) {
   ...
}

The foreach notation works for arrays too and it’s par-
ticularly neat when we have nested iteration. E.g. it-
eration over all students and their subjects:

for (Student stu : studentlist)

for (Subject sub : subjectlist)

getMarks(stu, sub);

versus:

for (int i=0; i<studentlist.size(); i++) {

Student stu = studentlist.get(i);

for (int j=0; i<subjectlist.size(); i++) {

Subject sub = subjectlist.get(j);

getMarks(stu, sub);

}

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {
    If (i==3) list.remove(i);
}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext(); ) {Integer i = it.next();}

while(it.hasNext()) {
    it.remove();
}
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Note that the foreach structure isn’t useful with
Iterators. So we sacrifice some code readability for the
ability to adjust the Collection’s structure as we go.

The Origins of Generics

 The original Collections framework 
just dealt with collections of 
Objects
 Everything in Java “is-a” 

Object so that way our 
collections framework will 
apply to any class 

 But this leads to:
 Constant casting of the 

result (ugly)
 The need to know what the 

return type is
 Accidental mixing of types 

in the collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
      Object o = it.next();
      Integer i = (Integer)o;
}

The Origins of Generics II

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
      Object o = it.next();
      Integer i = (Integer)o;
}

Going to fail for the 
second element! 
(But it will compile: 
the error will be at 
runtime)

This is pretty nasty. The OOP paradigm has let us
write a flexible data structure that can handle us wrap-
ping around various types, but it can’t apply the re-
striction that all the types in one object should be
the same. Additionally, all this casting makes for ugly
code. This is what convinced the Java designers that
parameterised types (Generics0 were needed. But it
was already a bit late: there was tons of established
code using Collections (and still is). The Java designers
were faced with the problem of updating the language
to support parameterised types without breaking ev-
erything that went before.

The Generics Solution

 Java implements type erasure
 Compiler checks through your code to make sure you 

only used a single type with a given Generics object
 Then it deletes all knowledge of the parameter, 

converting it to the old code invisibly

LinkedList<Integer> ll = 
    new LinkedList<Integer>();

…

for (Integer i : ll) {
    do_sthing(i);
}

LinkedList ll = 
    new LinkedList();

…

for (Object i : ll) {
    do_sthing( (Integer)i );
}

So now we see why we can’t use primitives as pa-
rameters: whatever we put there must be castable to
Object, which primitives simply aren’t.

The C++ Templates Solution

 Compiler first generates the class definitions from 
the template

class MyClass<T> {
   T membervar;
};

class MyClass_float {
   float membervar;
};

class MyClass_int {
   int membervar;
};
class MyClass_double {
   double membervar;
};
...

class MyClass_float {
   float membervar;
};

C++ doesn’t suffer fromt the same problem since it
just generates a special class for each instance you re-
quest.

Generics and SubTyping

// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;

<<interface>>
Collection

Person

<<interface>>
Collection

So a list of Persons is a list of Animals, yes?

Animal
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Lecture 10

Object Comparison

Comparing Primitives

>    Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (ref1==ref2) do??

 Test whether they point to the same object?
 Test whether the objects they point to have the 

same state?

The problem is that we deal with references to objects,
not objects. So when we compare two things, do we
compare the references of the objects they point to?
As it turns out, both can be useful so we want to
support both.

10.1 Object Equality

Reference Equality

 r1==r2, r1!=r2
 These test reference equality
 i.e. do the two references point ot the same chunk 

of memory?
Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Value Equality

 Use the equals() method in Object
 Default implementation just uses reference equality 

(==) so we have to override the method

public EqualsTest {
    public int x = 8;

    @Override
    public boolean equals(Object o) {
        EqualsTest e = (EqualsTest)o;
        return (this.x==e.x);
    }
    
    public static void main(String args[]) {
        EqualsTest t1 = new EqualsTest();
        EqualsTest t2 = new EqualsTest();
        System.out.println(t1==t2);
        System.out.println(t1.equals(t2));
    }
}

I find this mildly irritating: every class you use will
support equals() but you’ll have to check whether or
not it has been overridden to do something other than
==. Personally, I try to limit my use of equals() on
objects from core Java classes, where I trust it to have
been done properly.

Aside: Use The Override Annotation

 It's so easy to mistakenly write:

public EqualsTest {
    public int x = 8;

    public boolean equals(EqualsTest e) {
        return (this.x==e.x);
    }
    
    public static void main(String args[]) {
        EqualsTest t1 = new EqualsTest();
        EqualsTest t2 = new EqualsTest();
        Object o1 = (Object) t1;
        Object o2 = (Object) t2;
        System.out.println(t1.equals(t2));
        System.out.println(o1.equals(o2));
    }
}
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Aside: Use The Override Annotation II

 Annotation would have picked up the mistake:

public EqualsTest {
    public int x = 8;

    @Override
    public boolean equals(EqualsTest e) {
        return (this.x==e.x);
    }
    
    public static void main(String args[]) {
        EqualsTest t1 = new EqualsTest();
        EqualsTest t2 = new EqualsTest();
        Object o1 = (Object) t1;
        Object o2 = (Object) t2;
        System.out.println(t1.equals(t2));
        System.out.println(o1.equals(o2));
    }
}

What’s happening here is that the signature of our
overriding method doesn’t match the one in Object.
So, Java actually overloads it, keeping both methods.
By using @Override when we mean to override not over-
load, the compiler will spot our error.

For the geeks out there (i.e. non-examinable), we
could write a compiler that spots that EqualsTest is a
subclass of Object and therefore do overriding. This is
called covariant parameter types and is not supported
by Java. this matches back to where we introduced
covariant return types, where Java spotted that the
return type was a subclass and allowed it. So if we
have:

public class A {

Object void work(Object o) {...}

}

then this is not allowed (covariant parameter types):

public class B extends A {

@Override

public Object work(Person p) {...}

}

but this is (covariant return types):

public class C extends A {

@Override

public Person work(Object o) {...}

}

Java Quirk: hashCode()

 Object also gives classes hashCode()
 Code assumes that if equals(a,b) 

returns true, then a.hashCode() is the 
same as b.hashCode()

 So you should override hashCode() at 
the same time as equals()  

I don’t want to go into this in too much detail since you
haven’t yet met hashes (it’s in the Algorithms course
next term). For now, just accept that a hash is a func-
tion that takes in chunks of informatoin (e.g. all the
fields in an object) and spits out a number. Java uses
this in its HashMap implementation and other places
as a shortcut to having to sequentially compare each
field. I mention it here really for completeness so that
if any of you override equals() in production code then
you know you should also override hashCode(). Details
of doing so are easily found on the web and in books
(because it’s a very common mistake to make!).

10.2 Less Than and Greater
Than

In order to sort your classes using the built in classes,
you need to write something that allows two objects to
be ordered. Often our classes have a natural ordering
e.g. people are usually sorted first by surname and
then by forename. We can build-in natural ordering
to our classes using the Comparable interface:

Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework
 Doesn't just tell us true or false, but smaller, same, or 

larger: useful for sorting.
 Returns an integer, r:

 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj
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Comparable<T> Interface II
public class Point  implements Comparable<Point> {
     private final int mX;
     private final int mY;
     public Point (int, int y) { mX=x; mY=y; }

     // sort by y, then x
     public int compareTo(Point p) {
         if ( mY>p.mY) return 1;
         else if (mY<p.mY) return -1;
         else {
             if (mX>p.mX) return 1;
             else if (mX<p.mX) return -1;
             else return 0.
         }
     }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>(); 

This is all very well, but sometimes we might want to
sort with a different ordering (e.g. sort just by fore-
name). Java Collections lets us do this by supplying a
custom piece of code for the ordering: a Comparator :

Comparator<T> Interface I

int compare(T obj1, T obj2)

 Also part of the Collections framework and 
allows us to specify a specific ordering for a 
particular job

 E.g. a Person might have natural ordering that 
sorts by surname.  A Comparator could be 
written to sort by age instead... 

Comparator<T> Interface II
public class Person  implements Comparable<Person> {
     private String mSurname;
     private int mAge;
     public int compareTo(Person p) {
          return mSurname.compareTo(p.mSurname);
     }
}

public class AgeComparator implements Comparator<Person> {
   public int compare(Person p1, Person p2) {
       return (p1.mAge-p2.mAge);
   }
}

…
ArrayList<Person> plist = …;
…
Collections.sort(plist);   // sorts by surname
Collections.sort(plist, new AgeComparator());   // sorts by age

Note that a natural ordering uses compareTo() whilst
a comparator uses compare().

10.3 Operator Overloading

Operator Overloading

 Some languages have a neat feature that 
allows you to overload the comparison 
operators. e.g. in C++ 

class Person {
  public:
    Int mAge
    bool operator==(Person &p) {
        return (p.mAge==mAge);
    };
  }
  

Person a, b;
b == a;   // Test value equality

Java doesn’t have this, but it’s good to know what it
is at this stage.
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Lecture 11

Design Patterns

Design Patterns

 A Design Pattern is a general reusable solution to a 
commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis
 Originally 23 patterns, now many more. Useful to 

look at because they illustrate some of the power of 
OOP (and also some of the pitfalls)

 We will only consider a subset

Coding anything more complicated than a toy pro-
gram usually benefits from forethought. After you’ve
coded a few medium-sized pieces of object-oriented
software, you’ll start to notice the same general prob-
lems coming up over and over. And you’ll start to au-
tomatically use the same solutions to them. We need
to make sure that set of default solutions is a good
one!

In his 1991 PhD thesis, Erich Gamma compared this to
the field of architecture, where recurrent problems are
tackled by using known good solutions. The follow-on
book (Design Patterns: Elements of Reusable
Object-Oriented Software, 1994) identified a se-
ries of commonly encountered problems in object-
oriented software design and 23 solutions that were
deemed elegant or good in some way. Each solution is
known as a Design Pattern:

A Design Pattern is a general reusable solution
to a commonly occurring problem in software
design.

The modern list of design patterns is ever-expanding
and there is no shortage of literature on them. In this
course we will look at a few key patterns and how they
are used.

11.0.1 So Design Patterns are like cod-
ing recipes?

No. Creating software by stitching together a series
of Design Patterns is like painting by numbers — it’s
easy and it probably works, but it doesn’t produce a
Picasso! Design Patterns are about intelligent solu-
tions to a series of generalised problems that you may
be able to identify in your software. You might find
they don’t apply to your problem, or that they need
adaptation. You simply can’t afford to disengage your
brain (sorry!).

11.0.2 Why Bother Studying Them?

Design patterns are useful for a number of things, not
least:

1. They encourage us to identify the fundamental
aims of given pieces of code

2. They save us time and give us confidence that our
solution is sensible

3. They demonstrate the power of object-oriented
programming

4. They demonstrate that näıve solutions are bad

5. They give us a common vocabulary to describe
our code

The last one is important: when you work in a team,
you quickly realise the value of being able to succinctly
describe what your code is trying to do. If you can re-
place twenty lines of comments1 with a single word, the
code becomes more readable and maintainable. Fur-
thermore, you can insert the word into the class name
itself, making the class self-describing.

1You are commenting your code liberally, aren’t you?
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11.0.3 The Open-Closed Principle

The Open-Closed Principle

Classes should be open for extension but 
closed for modification

 i.e. we would like to be able to modify the 
behaviour without touching its source code

 This rule-of-thumb leads to more reliable 
large software and will help us to evaluate 
the various design patterns

To help understand why this is helpful, it’s useful to
think about multiple developers using a software li-
brary. If they want to alter one of the classes in the
library, they could edit its source code. But this would
mean they had a customised version of the library
that they wouldn’t be able to update when new (bug-
reduced) versions appeared. A better solution is to
use the library class as a base class and implement the
minor changes that are desired in the custom child.
So, if you’re writing code that others will use (and you
should always assume you are in OOP) you should
make it easy for them to extend your classes and dis-
courage direct editing of them.
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11.0.4 The Decorator Pattern

Decorator

Abstract problem:  How can we add 
state or methods at runtime?

Example problem: How can we 
efficiently support gift-wrapped books 
in an online bookstore?

Solution 1: Add variables to the established Book
class that describe whether or not the product is to be
gift wrapped.

Solution 2: Extend Book to create WrappedBook.

Solution 3: (Decorator) Extend Book to create
WrappedBook and also add a member reference to a
Book object. Just pass through any method calls to
the internal reference, intercepting any that are to do
with shipping or price to account for the extra wrap-
ping behaviour.

Decorator in General

 The decorator pattern 
adds state and/or 
functionality to an object  
dynamically  

So we take an object and effectively give it extra state
or functionality. I say ‘effectively’ because the actual
object in memory is untouched. Rather, we create a
new, small object that ‘wraps around’ the original. To
remove the wrapper we simply discard the wrapping
object. Real world example: humans can be ‘deco-
rated’ with contact lenses to improve their vision.

Note that we can use the pattern to add state
(variables) or functionality (methods), or both if we

want. In the diagram above, I have explicitly al-
lowed for both options by deriving StateDecorator and
FunctionDecorator. This is usually unnecessary — in
our book seller example we only want to decorate
one thing so we might as well just put the code into
Decorator.
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11.0.5 The Singleton Pattern

Singleton

Abstract problem:  How can we ensure 
only one instance of an object is 
created by developers using our code?

Example problem: You have a class that 
encapsulates accessing a database 
over a network. When instantiated, the 
object will create a connection and 
send the query. Unfortunately you are 
only allowed one connection at a time.

A valid solution to this is to make sure you close the
database connection after using it, so you can just
create Database objects every time you have a query.
However, what if you forgot to close it? And what if
making the connection was slow (they always are in
computer time...).

Instead we exploit our access modifiers and create a
private constructor (to ensure no-one can create ob-
jects at will) and add in a static member (the only in-
stance we will ever have). Finally, we include a static
getter for this member.

Ideally the instantiation of the Database should be
lazy—i.e. only done on the first call to the getter.

Singleton in General

 The singleton pattern 
ensures a class has only one 
instance and provides 
global access to it

There is a caveat with Java. If you choose to make
the constructor protected (this would be useful if you
wanted a singleton base class for multiple applications
of the singleton pattern, and is actually the ‘official’
solution) you have to be careful.

Protected members are accessible to the class, any sub-
classes, and all classes in the same package. Therefore,
any class in the same package as your base class will
be able to instantiate Singleton objects at will, using
the new keyword!

Additionally, we don’t want a crafty user to subclass
our singleton and implement Cloneable on their ver-
sion. How could you ensure this doesn’t happen?
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11.0.6 The State Pattern

State

Abstract problem:  How can we let an 
object alter its behaviour when its 
internal state changes?

Example problem:  Representing 
academics as they progress through the 
rank

Solution 1: Have an abstract Academic class which
acts as a base class for Lecturer, Professor, etc.

Solution 2: Make Academic a concrete class with
a member variable that indicates rank. To get rank-
specific behaviour, check this variable within the rele-
vant methods.

Solution 3: (State) Make Academic a concrete
class that has-a AcademicRank as a member. Use
AcademicRank as a base for Lecturer, Professor, etc.,
implementing the rank-specific behaviour in each..

State in General

 The state pattern allows 
an object to cleanly alter 
its behaviour when 
internal state changes
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11.0.7 The Strategy Pattern

Strategy

Abstract problem:  How can we select 
an algorithm implementation at runtime?

Example problem: We have many 
possible change-making 
implementations. How do we cleanly 
change between them?

Solution 1: Use a lot of if...else statements in the
getChange(...) method.

Solution 2: (Strategy) Create an abstract
ChangeFinder class. Derive a new class for each of our
algorithms.

Strategy in General

 The strategy pattern allows us to cleanly interchange 
between algorithm implementations

Note that this is essentially the same UML as the State
pattern! The intent of each of the two patterns is quite
different however:

• State is about encapsulating behaviour that is
linked to specific internal state within a class.

• Different states produce different outputs (exter-
nally the class behaves differently).

• State assumes that the state will continually
change at run-time.

• The usage of the State pattern is normally in-
visible to external classes. i.e. there is no set-
State(State s) function.

• Strategy is about encapsulating behaviour in a
class. This behaviour does not depend on internal
variables.

• Different concrete Strategys may produce exactly
the same output, but do so in a different way.
For example, we might have a new algorithm to
compute the standard deviation of some variables.
Both the old algorithm and the new one will pro-
duce the same output (hopefully), but one may be
faster than the other. The Strategy pattern lets
us compare them cleanly.

• Strategy in the strict definition usually assumes
the class is selected at compile time and not
changed during runtime.

• The usage of the Strategy pattern is normally vis-
ible to external classes. i.e. there will be a set-
Strategy(Strategy s) function or it will be set in
the constructor.

However, the similarities do cause much debate and
you will find people who do not differentiate between
the two patterns as strongly as I tend to.
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11.0.8 The Composite Pattern

Composite

Abstract problem:  How can we treat a 
group of objects as a single object?

Example problem: Representing a DVD 
box-set as well as the individual films 
without duplicating info and with a 10% 
discount

The solution is fairly straightforward. We want to be
able to treat a group of DVDs to just like a single DVD,
so BoxSet inherits from DVD. To avoid repeating the
description information and to keep pricing in sync,
BoxSet must also have access to the constituent DVD
objects.

Composite in General

 The composite pattern 
lets us treat objects and 
groups of objects 
uniformly

If you’re still awake, you may be thinking this looks
like the Decorator pattern, except that the new class
supports associations with multiple DVDs (note the *
by the arrowhead). Plus the intent is different—we
are not adding new functionality to objects but rather
supporting the same functionality for groups of those
objects.

If you try to make a graphical representation of com-
posites, you’ll end up with some form of tree with each
composite a node and each single entity a leaf. Many
texts use this terminology when discussing the com-
posite pattern.
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11.0.9 The Observer Pattern

Observer

Abstract problem:  When an object 
changes state, how can any 
interested parties know?

Example problem: How can we write 
phone apps that react to accelerator 
events?

This pattern is used regularly, but is particularly useful
for event-based programs. The process is analogous to
a magazine subscription: you subscribe with the pub-
lisher in order to receive publish events (magazines)
as soon as they are available. In design patterns par-
lance, you are an observer of the publisher, who is the
subject. It should be clear that this is also a very im-
portant pattern for the various proxy implementations
if the source information might change during use.

In an Android smartphone, the system provides a sub-
ject in the form of a SensorManager object, which is
actually a singleton (only one manager at any time).
So we get it by calling:

SensorManager sManager = (SensorManager)

getSystemService(SENSOR_SERVICE);

We then register with it with a line like:

sManager.registerListener(this,

sManager.getDefaultSensor(

Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);

Our class must implement SensorEventListener, which
forces us to specify a onSensorEvent() method. When-
ever the system gets a new accelerometer reading, it
cycles over all the objects that have registered with it,
feeding them the new reading.

Observer in General

 The observer pattern allows an object to have multiple 
dependents and propagates updates to the dependents 
automatically.

11.0.10 Classifying Patterns

Often patterns are classified according to what their
intent is or what they achieve. The original book de-
fined three classes:

Creational Patterns . Patterns concerned with
the creation of objects (e.g. Singleton,
Abstract Factory).

Structural Patterns . Patterns concerned with the
composition of classes or objects (e.g. Composite,
Decorator, Proxy).

Behavioural Patterns . Patterns concerned with
how classes or objects interact and distribute re-
sponsibility (e.g. Observer, State, Strategy).

11.0.11 Other Patterns

You’ve now met a few Design Patterns. There are
plenty more (23 in the original book and many, many
more identified since), but this course will not cover
them. What has been presented here should be suffi-
cient to:

• Demonstrate that object-oriented programming is
powerful.

• Provide you with (the beginnings of) a vocabulary
to describe your solutions.

• Make you look critically at your code and your
software architectures.

• Entice you to read further to improve your pro-
gramming.

Of course, you probably won’t get it right first time (if
there even is a ‘right’). You’ll probably end up refac-
toring your code as new situations arise. However, if
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a Design Pattern is appropriate, you should probably
use it.

11.0.12 Performance

Note that all of the examples here have concentrated
on structuring code to be more readable and maintain-
able, and to incorporate constraints structurally where
possible. At no point have we discussed whether the
solutions perform better. Many of the solutions exploit
runtime polymorphic behaviour, for example, and that
carries with it certain overheads.

This is another reason why you can’t apply Design Pat-
terns blindly. [This is a good thing since, if it wasn’t
true, programming wouldn’t be interesting, and you
wouldn’t get jobs!].
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