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SIMULATING
CIRCUITS

Circuit modeling programs have re-
placed "breadboards’ as the build-
ing blocks of circuit design and de-
velopment. With these programs,
engineers can simulate a circuit, sub-
stitute components, vary parameters
such as voltage and current in dis-
crete time increments, and observe
the changes at every point in the cir-
cuit. This capability represents an
enormous savings in development

time and effort.

The articles that follow present two
approaches to the modeling of elec-
trical circuits. The first, "Computer
Circuit Simulation” by Wolfram
Blume, is an introduction to the prob-
lems inherent in circuit modeling,
such as linearizing nonlinear ele-
ments like diodes and transistors and
solving the large simultaneous equa-
tions involved in circuit computa-

tions. The second article, "Analog
Circuit Analysis” by David McNeill,
describes the author’s efforts in
developing a set of circuit simulation
programs for the Commodore 64,
based on algorithms used in the
SPICE simulation program of Dr.
Laurence Nagel of the University of
California.
—Charles Weston
Technical Editor

COMPUTER CIRCUIT
SIMULATION

Circuit modeling programs make

breadboards obsolete

BY WOLFRAM BLUME

COMPUTER SIMULATION is an im-
portant tool for circuit design engi-
neers. The means for testing out ideas
and checking a design has traditional-
ly been the “"breadboard” (a test cir-
cuit built on the workbench).
Computer simulation does the

Wolfram Blume is president of MicroSim Cor-
poration, which manufactures and markets the
PSPICE analog simulation program. He can
be contacted at MicroSim Corp., 23175 La
Cadena Dr., Laguna Hills, CA 92653.

same job. It lets designers check out
ideas while designing the circuit.
Simulation programs also check the
final design before it is released for
production.

ANALOG CIRCUITS

The goal of a simulation program is
to calculate the voltage at each node
and the current through each device
of the circuit. We will first want to
calculate these values at the circuit’s
steady state (bias point). Using the

steady-state data, we are then able to
calculate the circuit voltages and cur-
rents as functions of time and fre-
quency.

Most analog circuit simulators in
use today are based on the program
SPICE (Simulation Program for Inte-
grated Circuit Engineering), which was
developed at the University of Califor-
nia at Berkeley in the early 1970s.
SPICE included several advances over
earlier simulators, such as a “sparse
matrix” data structure.

DATA STRUCTURE

Suppose we want to analyze the cir-
cuit shown in figure 1. Including
ground, it has three nodes: 0. 1, and
2. The goal is to find the voltage at
each node and the current through
each device. For now, we will try to
find the steady-state, or bias point,
solution.

To analyze this circuit using a pro-
gram we need a somewhat different
approach than we would take in

(continued)
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As a rule, any non-

linear circuit has a

linear equivalent, but

only for one set of

node voltages.

analyzing it by hand. Our approach is
known as the nodal analysis method.
- We will set up a vector that lists the
total current being pumped into each
node by current sources. For all nodes
that are not attached to a current
source (such as node 2) this sum will
be O (since electrical charge cannot be
created or destroyed). For node 1 this
will be —0.1, since the current source
I, is driving 0.1 amp into node 1.
For node 0 this will be +0.1, since
I, is pulling 0.1 amp out of node O.
This vector, 1 in figure 2, describes the
input to the circuit. The current
sources are the stimuli that drive the
circuit. Note that the vector [ has the
same number of elements as the
number of nodes in the circuit.
Next we need a vector that de-
scribes the response of the circuit to
l. This vector, V in figure 2, is a list of
the voltages at each node. V is the

vector we want to find. |
Finally, we need a description of

how V relates to 1. This is provided by
the conductance matrix, G (figure 2).
G describes how current flows in
elements that are not current sources.
In our example, the currents through
resistors R1 and R2 are proportional
to the voltages across them. The term
of G at row i and column j specifies
how much current will flow away from

R1

R2

Figure 1: A simple three-node circuit
consisting of two resistors and a current
Source.
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node i if the voltage at node j were
increased by 1 volt and the voltages
at all the other nodes were held con-
stant. This may seem like a peculiar
way of thinking about the circuit, but
it has the great advantage that

| =G X V

Note that each term in G is the sum
of the contributions of the relevant
circuit. elements. So, knowing which
devices in the circuit are connected
to which nodes, our program can
build G in a straightforward way. G has
the same number of rows and the
same number of columns as there are
nodes in the circuit. Now that | is
known and G is known, we can solve
for V and get the set of node voltages

we are after.

Even in this small example, it is ob-
vious that most of the terms of G will
be 0. This becomes even more true
as the circuit gets larger. In typical cir-
cuits of 30 or 40 transistors, over 90
percent of the terms in G will be 0.
G is therefore referred to as a "sparse
matrix.’

Circuits of this size also typically
have 100 to 150 nodes. Since the
number of elements in G is n* (n =
number of nodes) it becomes clear
that we must take advantage of all
those O terms in G or its size will get
out of hand. We do this by storing
only the nonzero terms of G and a list
of pointers to those terms. This pro-
cess complicates the algorithms, but
it is necessary in order to simulate
realistic circuits.

SOLVING THE CIRCUIT
EQUATIONS

Now that we have established a data
structure, we can proceed to analyze
the circuit. There are three levels of
analysis:

1. Solving a linear circuit by Gaussian
elimination or LU factorization. |
2. Solving a nonlinear circuit by re-
peatedly linearizing the circuit and
using (1).

3. Solving a time-varying circuit by re-
peatedly converting the circuit to a
nonlinear, non-time-varying circuit and
using (2).

Calculating the circuit’s response with
respect to frequency is a special case
of (1).

SOLVING A LINEAR CIRCUIT

Our example circuit (figure 1) is linear
and does not vary with time. A linear
circuit is composed of linear elements
(those elements whose currents are
proportional to the voltages within
the circuit). For example, resistors are
linear because the current through
them is proportional to the voltage
across their terminals. Ideal amplifiers
are also linear because their output
is proportional to their input.

Since our system is described by the
matrix equation | = G X V, we can use
the standard methods for solving sys-
tems of linear equations. The two
most common methods are Gaussian
elimination and LU factorization. Both
methods take about the same amount
of computer time given one G and
one |, but LU factorization has the ad-
vantage of being much faster given
one G and several different I's. SPICE

uses LU factorization.

Here is a brief overview of LU fac-
torization: The idea is to split G into
two matrices, L and U, which multi-
plied will give G.

G=LxU
Therefore,
e L D ¥

(continued)

1)

+ 1
]

B,

|

Figure 2: The conductance matrix for the circuit shown in figure 1.
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L is lower triangular and U is upper
triangular, as shown in figure 3.

An important feature of LU factori-
zation is that for any G there is only
one pair of L and U that have this
structure. It is also true that the pro-
cess of splitting G into L and U uses
the major part of the computation
time in this method.

Once L and U are found, their tri-
angular structure (all Os above or
below the diagonal) allows the pro-
gram to quickly calculate V from 1.
Since most of the time is spent finding
L and U, we can find the solutions for
several I's almost as quickly as for one.

SOLVING A NONLINEAR CIRCUIT
Now that we have a method to solve
linear circuits, we can use it to find the
solution for nonlinear circuits. The
idea here is to use our last guess at
V to linearize the circuit. Then, using
our method for solving linear circuits,
we can calculate a new guess for V.
Hopefully, after a few iterations, suc-
cessive guesses of V will converge to
the correct answer.

How can we convert a nonlinear cir-
cuit into a linear one? By converting
each nonlinear element into its linear
equivalent. For instance, we can re-
place the diode in the circuit shown
in figure 4 with a current source and
a conductor.

The current through a diode is given
by

- |, X (e€¥'VT - 1)

At a given voltage V across the diode
we can replace the diode with a cur-
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Figure 3: A typical LU-factorization
matrix. Note that L has 1s on the
diagonal and Os above the diagonal, and
U has Os below the diagonal.
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rent source whose current is
Ifq=ld—VXGeq

in parallel with a conductor whose
conductance is

d(l)/dV = 1/V,

Note that the equivalent current and
conductance change with the voltage
V across the diode. This is true of
diodes and of nonlinear elements in
general. As a rule, any nonlinear cir-

‘cuit has a linear equivalent, but only

for one set of node voltages. As soon
as the node voltages change, we must
“linearize” the circuit again.

Our algorithm for solving nonlinear
circuits now looks like this:

l. Pick an initial guess for the node
voltages V. Set Vs = V.
2. Using the node voltages V, calculate
the linear equivalent circuit and fill in
the terms for the circuit matrix G and
the current vector I.
3. Using the LU method, solve the cir-
cuit for a new set of node voltages V.
4. If V is close enough to V,.:
4a. Stop. We are done.

Else:
4b Set vﬂ.;d — V

Go gack to step 2.

SOLVING TIME-VARYING

CIRCUITS

So far the circuits we have considered
have not varied with time. That is,
neither the sources nor the other
elements change with time. Capaci-
tors have been treated as open cir-
cuits, and inductors have been treated

SZ—-- leg % Geq

Figure 4: A diode and its linear
equivalent circuit, a current source and a
conductor.

as short circuits. This means that the
solution, V, does not vary with time
either. So far, we have been solving
for the steady-state, or bias point,
solution.

To accommodate time, we need to
add time-varying sources and we
need to handle capacitors and induc-
tors. The first objective is easily done.
We just allow the value of a source to
be a function of time, such as a sine
wave, pulse, square wave, etc.

The second objective is done in a
way similar to the technique for solv-
ing a nonlinear circuit using the
method for solving a linear one. We
will replace each capacitor and induc-
tor by equivalent circuit elements. Our
algorithm for simulating the circuit
now looks like this:

. Use the nonlinear circuit method
above to calculate the bias point of
the circuit.

2. Set Time = 0. Set TimeStep to a
small positive number.

3. Set all sources to their values at
time = Time + TimeStep.

4. Using TimeStep and the past values
of V., replace each capacitor and in-
ductor by its equivalent circuit.

5. Use the nonlinear circuit method
above to calculate V for time = Time
+ TimeStep. Use V from time = Time
as the initial guess for time = Time
+ TimeStep.

6. Set Time = Time + TimeStep. Up-
date TimeStep based on error-estima-

tion formulas.
7. If Time = > final time requested for

simulation:

3.
T

leq % Geq =C/TIME STEP

Figure 5: A capacitor and its linear
equivalent circuit, a conductance and a
current source in parallel. The size of the
time step is varied as simulation proceeds.
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7a. Stop. We are done.
Else:
7b. Go to step 3.

Replacing the capacitors and induc-
tors by equivalent circuit elements is
possible because we know the size of
the time step and the past values of
each element’s charge or current. For
example, a capacitor is converted into
a current source with a conductance
in parallel as shown in figure 5.

The size of the time step is changed
as the simulation proceeds. We could
use a fixed time step. but this would
waste computer time. We need to use
a step small enough to accurately
calculate those areas where things are
changing rapidly (such small steps
would be wasted during times when
nothing was changing). By changing
the step size based on the activity of
the circuit, we can use a fine step size
where it is needed and a coarser step
size otherwise.

CALCULATING FREQUENCY
RESPONSE

The response of the circuit to different
frequencies is calculated in a way very
similar to solving a linear circuit. The
difference is that the voltages, cur-
rents, and conductances now have
real and imaginary parts instead of
just real parts. The circuit algorithm
now looks like this:

|. Use the nonlinear circuit method
previously mentioned to calculate the
bias point.
2. Set Frequency
frequency.
3. Linearize the circuit using V calcu-
lated in step 1. Fill in terms, both real
and imaginary parts, for | and G. Fill
in the terms for capacitors and induc-
tors as well. These are implemented
as conductances, with imaginary
values dependent upon Frequency.
4. Using the LU method. solve for V.
V will have real and imaginary parts.
5. Set Frequency to the next frequen-
cy. If Frequency > ending frequency:
5a. Stop. We are done.

Else:
5b. Go to step 3.

‘beginning

DISPLAYING RESULTS
Personal computers are well suited for

displaying results. Because they are

interactive and have graphics wide-
ly available, they are a natural for
conveniently displaying the results of
a simulation. Although SPICE does
not provide for an interactive display
of the results, this can easily be
added.

The approach | followed is to store
all the node voltages and all the
device currents at each step of the
simulation (e.g.. at each time or fre-

quency). These are stored in a binary
data file. The display software is a
separate program that implements a
virtual-memory scheme to allow the
data file to be larger than the com-
puter's RAM.

Besides drawing voltages and cur-
rents it is very convenient also to be
able to draw expressions. For exam-
ple, by multiplying a voltage and a

(continued)
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Now get total power protection...for as little
as $139...with the Personal Computer Line Tamer™

Power Conditioner.

Why risk any power
trouble?

You will if you buy just
a surge protector.
Transients and spikes
cause less than half
of all power prob-
lems. Overvoltages,
brownouts and just
plain power noise
can mess up your
system just as badly- EEESSEE
and they're muchmore fre-

quent. Only Line Tamer's ferro-
resonant technology protects
you from any conceivable pow- A7 i)
er problem, short of a blackout { *:f- "

Line Tamers have protected
the big boys for years,onall
the big mainframes and minis.
Those guys would laugh at
surge suppressionalone.

.........

Inquiry 308

e

Choose from 150,
300, 450, or 600 VA
models for the Line
Tamer that’s right for
you.

Does it make sense
to you to be half safe
...especialy when
so few dollars are in-
volved?

You won't find this to-
tal power protection
from anyone else at anywhere
near the price, so contact us for
complete specifications and the
dealer nearest you.

901 DuPage Avenue, Lombard, IL 60148
Phone 1 312 620-8394TWX 910-991-2352
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current we can display instantaneous
power.

COMMENTS

Analog circuit simulation makes
heavy use of floating-point arithmetic.
For accurate results, double-precision
(64-bit) numbers must be used for the
V. I, and G terms. As a result, it is nec-
essary to have a floating-point co-
processor, such as the Intel 8087, in
the computer. It improves run time by
a factor of 15 in a typical circuit. In
other words, without a floating-point
coprocessor the simulation will be too
slow to be useful.

Another requirement is RAM. Typi-
cal analog simulations are of circuits
with 30 to 40 transistors. This requires
about 100K bytes of RAM. Paging to

and from disk would make the simula-
tion intolerably slow. The program
code itself takes up several hundred
kilobytes of space, depending on how
sophisticated the transistor models
are and how many kinds of analyses
are implemented. Therefore, to run a
reasonable simulation, a machine
with 512K bytes or more of RAM is
needed.

Both these requirements are readi-
ly met by an IBM PC XT with 640K
bytes and the 8087 coprocessor,

which can simulate circuits of up to

about 120 transistors. Calculating the
time-varying response of a 30-tran-
sistor circuit takes about 12 minutes.
Once the simulation is done, wave-
forms can be displayed almost in-
stantly. m

Editor's note: 1f you are interested in the con-
cepts and algorithms of circuit simulation, the
author strongly recommends that you read
“SPICE: A Computer Program to Simulate
Semiconductor Circuits” by Laurence W.
Nagel.

You can obtain a copy of this document
(Memorandum No. ERL-M520) by sending
a check for $20 made out to: Regents of the
University of California. Send check to Ms.
Deborah Dunster, EECS Industrial Liaison
Program, 457 Cory Hall, University of Cali-
fornia, Berkeley, CA 94720.

The document is Dr. Nagel's Ph.D. thesis
and contains an excellent discussion of the
various algorithms in SPICE. He covers the
material in this article in more detail and also
provides discussions of alternative algorithms
and the reasons for selecting those that final-
ly went into SPICE.

ANALOG

CIRCUIT ANALYSIS

An analog circuit modeling
and simulation program

for the Commodore 64

BY DAVID MCNEILL

OF THE THREE GOALS that | wanted
to accomplish with this project, the
main one was to produce a program
like the circuit analysis program SPICE
for my Commodore 64. My second

goal was to better understand how
transistor models worked and how to

incorporate these models into the
nonlinear algorithms used by SPICE
to solve electronic circuits. My third
goal was to fit the program into the
memory space of the Commodore 64
and make it run at a reasonable
speed.

My circuit analysis package is com-

David McNeill is an electronics engineer who
works for Tektronix in Beaverton, Oregon. He
can be contacted at 11739 SW Beaverton-
Hillsdale Hwy. #164, Beaverton, OR
97005.
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posed of three programs: a prepro-
cessor and editor program, the AC
analysis program, and the DC analysis
program. To perform a circuit analysis,
you first load the preprocessor and
editor program used for entering the
circuit description. Then, using a
chaining technique, you can jump be-
tween all three programs to run the
different analyses.

You can model 12 devices with the
programs: resistors, inductors, capac-
itors, independent voltage sources, in-
dependent current sources, voltage-
controlled current sources, diodes.
bipolar transistors (npn and pnp), field-
effect transistors (n-channel and p-
channel), and operational amplifiers.

The programs allow you to sweep
various parameters and print voltages,
currents, impedances. or gains as the

output variables. For example, in the
model for the bipolar transistor, you
can specify forward and reverse beta,
Early voltage, reverse saturation cur-
rent, junction capacitances, and tran-
sit times as parameters.

PROGRAM DESIGN PHILOSOPHY
When | developed these programs, |
decided to have as many model pa-
rameters as possible to better
describe the device and produce
more accurate data. Although this in-
creased the complexity of the pro-
grams and tended to reduce the size
of circuits that could be analyzed, |
preferred to have programs that could
better model actual transistors rather
than analyze larger circuits with less
accuracy. | felt that the limitation on
running large circuits would be the
speed of analysis rather than the
amount of memory available.

The heart of the analysis programs
is a routine that solves a set of linear
equations. These equations arise from
performing Kirchhoff's current equa-
tion at every node in the circuit.
(Kirchhoff's current law states that the
sum of all the instantaneous currents
flowing toward a given node is equal
to the sum of all the instantaneous
currents flowing away from that node.)

For simple circuit elements such as
resistors, voltage sources, and current
sources, the formulation of the set of

(continued)
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equations is straightforward, and
since the equations in the set are all
linear, they can be solved using stan-
dard numerical techniques such as
Gaussian elimination or LU decom-
position. The solution to this set of
equations gives the voltage at each
node in the circuit.

An element such as a diode, how-
ever, is not as easy to model because
the relationship between the current
through and the voltage across the
diode is not linear but exponential.
Because of this, we cannot directly
assemble and solve a set of equations
and arrive at the correct answer.

MODELING NONLINEAR
ELEMENTS
To solve this problem, two things must
be done. One is to somehow modify
the diode to make it appear linear. If
it were linear, then we could formulate
a set of equations that could be
solved directly. |

The second thing that must be done
IS tO create an iterative process where
we progressively change the linear
diode that we created so that it will
come closer and closer to the actual
diode that exists in the circuit. As our
model of the diode becomes better,
the solutions to the set of equations
will also get closer and closer to the

actual answer. This second process is
the program algorithm that controls
the whole sequence of solving the set
of equations, updating the linear
diode, checking for convergence to a
correct answer, and then repeating
the procedure.

There are several crucial parts to
this algorithm that can mean either
success or total disaster. Due to the
exponential nature of the diode equa-
tion, it is very easy to cause an
overflow on the computer. Because of
this, a good algorithm for clamping
and limiting the exponential function
was needed.

Figure 1 shows a simple resistor/
diode circuit with a graph showing the
load line for each element. The solu-
tion to this circuit is the point where
the two lines intersect, which is at this
time unknown. To start the analysis,
we first make a guess at the voltage
across the diode and pick this point
on the diode curve. We can then
linearize the diode by drawing a
straight line through this point that is
tangent to the diode curve, as shown
in figure 2.

Notice that we now have two
straight lines that intersect close to
the actual intersection of the resistor
and diode line. The point where the
two straight lines intersect is found by

DIODE
CURVE

CURRENT

SLOPE = - I/R

VOLTAGE

DIODE
CURVE

> LINEARIZED
2 DIODE
oc l E2E pE
= fAb i e Wy
(&)
RESISTOR
SLOPE = - I/R

- VOLTAGE
‘V] = FIRST GUESS AT VOLTAGE ACROSS DIODE

(__. R Ve

LINEARIZED
- DIODE

1

:
[ |
{
j
{
l
1
{
]
1
|
|

Figure 1: This graph shows the load
lines for the resistor and diode in the inset
circuit.
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Figure 2: This graph shows the resistor
load line, the diode curve, and the
linearized diode load line.

the solution of two simultaneous
equations. This solution then be-
comes an approximation of the actual
answer. Although I've shown this
graphically, the mathematical ap-
proach would be to perform a Taylor’s
series expansion on the diode equa-
tion (see figure 3).

Notice that in the resulting equa-
tion, shown in figure 3, we can iden-
tify two elements: a constant current
source and a conductance. This equa-
tion is simply the equation of the
straight line that was drawn through
the point that we first guessed at on
the diode curve.

The important point here is that we
have been able to model the diode
with two simple linear elements: a
resistor and a current source. We now
have a circuit that is composed entire-
ly of linear elements. We can use the
Gaussian elimination technique to
calculate the point of intersection of
the two straight lines. At this point we
have an answer that is an approxima-
tion of the actual answer.

In the next phase we repeat the pro-
cess and gradually improve the model
of the diode so that the answers that
are computed each time become
closer and closer to the actual answer.

THE LINEARIZATION ALGORITHM
Figure 4a is a flow diagram of the al-
gorithm used to perform this iterative
process for the diode. Figure 4b is a
graphic description of the iterative
process of the linearization algorithm.
The first step is to check to see if the
program has changed the tempera-
ture (such as in a temperature sweep
analysis). If the temperature has been
changed, the value of the reverse
saturation current /, must be recom-
puted, since it is temperature-depen-
dent. Next, the program calculates
and stores the value of the voltage
across the diode that resulted from
the last iteration.

The program then checks to make
sure that if this value of voltage is
used, the exponential function will not
overflow. If overflow is possible, the
program then clamps the voltage ap-
propriately. Next, the program checks
to see if this is the first iteration, and
if so, guesses at a starting point for

(continued)
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Thylor s serles expansion equation: f(x)
(ﬁrst two terms)
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m the dlode for any voltage V. |
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Figure 3: A Taylor's series expansion of the diode equation. The graph now represents

the

diode as a constant current source and a conductance.
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the voltage across the diode. (The
value used is the point on the ex-
ponential curve that has the minimum
radius of curvature.) This point is
called the critical voltage.

The next section is very important.
Here the program tries to estimate the
next voltage to use to linearize the
diode. The goal here is to progressive-
ly move closer to the actual voltage
that is across the diode. The process
of determining the next voltage must
be done carefully because it is easy
to pick a voltage that will make this
process diverge so that it can't con-
verge to an answer. |

In this algorithm there are two ways
of selecting the next voltage to use.
When we solve a set of equations with
the Gaussian elimination routine, we
have calculated a voltage value that
is an estimate of the actual voltage
across the diode. We can now use this
calculated voltage as the starting
point for the next guess. This first
method of estimating the voltage is
called “iterating on the voltage”

Another way of determining the
starting point for the next iteration is
to determine the value of current
flowing in the diode at the point that
the Gaussian routine indicated as the
solution. Then, with this value of cur-
rent, the corresponding voltage
across the diode is calculated using
the diode equation. and this voltage
is then used as the starting point for
the next guess. This method is called
“iterating on the current.”

This method of alternating between
voltage and current is illustrated in
figure 4b. The algorithm says that if
the last voltage computed across the

diode is greater than the critical
voltage, iterate on the current; if the

voltage across the diode is less than
the critical voltage, then iterate on the
voltage.

| found that using this algorithm
helped tremendously in reducing the
number of iterations it took to con-
verge to the correct answer. It also
helped prevent the iteration process
from diverging. especially when | had
a circuit where a transistor was in the
off region of operation or was
saturated.

At this point, | have determined a
voltage across the diode either
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through assigning a value to it or by
calculating a new value by iterating on
the voltage or current. | now take this
voltage and insert it into the equa-
" tions for linearizing the diode and
calculate the values for the conduc-
tance and current source for the
diode model.

Now | use Kirchhoff's current law to
create a set of linear, simultaneous
equations based on these new values.
The Gaussian elimination program is
again used to solve the equations,
and, based on the results, the entire
process is repeated to converge on
the correct answer.

MODELING TRANSISTORS
The algorithm described above is the
procedure | used to convert a diode
into linear components so that | could
solve a circuit as if it contained only
linear elements. Since diodes are in-
tegral parts of the bipolar and junc-
tion FET (field-effect transistor)
models, 1 used this same algorithm for
modeling both of these devices.
For the bipolar transistor, | started
with the nonlinear hybrid-pi model as
shown in figure 5. I chose this model
because it simulates all four regions
of transistor operation. Using this
model, | performed the same steps
that | did to linearize the diode. How-
ever, because the defining equations
have dependent values and are func-
tions of two variables, the lineariza-
tion process is a little more difficult.
Figure 6 shows the linearized
hybrid-pi model. This model results
from performing a Taylor's series ex-
pansion on the equations defining
each element of the nonlinear hybrid-
pi model. The resulting expansion
equation was then arranged so that
its parts represented a controlled cur-
rent source, a constant current source,

and/or a conductance.

Next, the nonlinear components in
the hybrid-pi model were replaced
with these linear components. The
iteration process is the same as with
the diode. Once the terminal voltages
are determined (from the last itera-
tion), those voltages are inserted into
the equations in figure 6. and the
resulting values are used to compute
(using Kirchhoff's current law) the
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Figure 4a: The flow chart of the algorithm used to find the diode operating point.
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CURRENT

. Iterate on the Voltage
Proceed vertically from point B
_to point D. This voltage, Vi, is
then the point that is used to
linearize the diode for the next
iteration. |

 VOLTAGE

After the first iteration, point B is the solution given from the
~ simultaneous equation solution routine. To compute the next
voltage to use for the next iteration, use either of two methods:

DIODE CURVE

LINEARIZED
DIODE

(FIRST
" _ITERATION)

" RESISTOR
SLOPE = - I/R

ll. Iterate on the Current
Proceed horizontally from point
B to point C. From the current
at this point, I;, compute
voltage V;, used to linearize the
diode for the next iteration.

Figure 4b: This graph shows the process of iterating alternately on the voltage and

current values from previous iterations.

solution for this circuit.

When I was troubleshooting my al-
gorithms, | found that the number of
iterations it takes to converge on a cir-
cuit with a turned-off transistor could
be drastically reduced if, on the first
iteration, that transistor was analyzed
as if it were out of the circuit. Then,
on the second iteration, the transistor
is analyzed as usual. Of course, this
requires that you know the transistor
is off, but usually that information is
already known.

The SPICE program does this in a
different way. SPICE removes the
turned-off transistor from the circuit
and computes an operating point.
Then the transistor is put back in the
circuit and another operating point is
computed for the final answer. My
technique of turning off the transistor
for only the first iteration seemed to
work fine and saved many iterations.

Trying to get all of this to work
together on the Commodore 64 was
the real challenge. When the Com-
modore 64 is powered up, only 38,911
bytes of memory are available to hold
the program and variables. It was im-
portant to keep the size of the pro-
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grams small to leave memory avail-
able to hold circuit descriptions and
arrays for solving the circuit.

Each circuit requires an approxi-
mate square matrix equal to the
number of nodes in the circuit plus
the number of independent voltage
sources. This array is by far the largest
consumer of memory:.

IMPLEMENTING THE ALGORITHMS
| decided it was best to have three
separate programs to handle the AC
analysis, DC analysis, and editing func-
tions. | felt that even though this
would be less convenient than having
one larger program, | could make up
for it by being able to analyze reason-
able-size circuits.

Each program has a chaining fea-
ture that allows you to automatically
load and run any of the other two pro-
grams. Each program can create a
disk file that can be read and used by
the other programs. For example, the
preprocessor program will create a
disk file that contains all the informa-
tion about a circuit in a form that the
AC and DC analysis routines can use.

One method | used to allow analyz-

ing larger circuits was to dynamically
allocate memory according to the size
of the circuit. After loading one of the
analysis programs, a fixed amount of
memory remains to hold a circuit de-
scription and the array used to solve
the circuit. If this memory were
divided into two areas, one to hold
the circuit description and the other
to hold the main array, it is possible
to have a circuit that would need
more memory than allocated in one
area but would use up only half of the
other memory area.

In this case, there would be physical-
ly enough.memory to work, but it is
arranged such that it won't work. To
prevent this, | dynamically allocate the
memory for the circuit description
and arrays as it is being loaded by the
analysis program. A disadvantage to
this is that I don't know the exact size
of a circuit that can be analyzed, since
it depends on the size of the circuit
description. However, an advantage is
that a wider variety of circuits can be
analyzed, and available memory is
used more efficiently.

Another technique that | used to
help conserve memory was to use a
utility program that went through the
BASIC program and removed all
remarks and would crunch up to 255
BASIC tokens on a single line. This
made the program incapable of be-
ing edited, but it saved an average of
3.3K bytes of memory for each pro-
gram and made a slight improvement
in the speed of operation.

Despite all these attempts, the pro-
gram still ran too slow. Analyzing the
741 op-amp circuit (26 nodes and 23
transistors) with the DC analysis pro-
gram was taking about an hour and
20 minutes to compute the operating
point. After doing some investigation,
| found that the two bottlenecks were
the Gaussian elimination routine and
the routine used to clear the contents
of the main array used by the Gaus-
sian elimination routine. So my next
major project was to write these rou-
tines in machine language.

Since | had the locations of the
floating-point routines used by the
operating system available, | for-
tunately did not have to create those
routines myself. Within the Gaussian
elimination routine, the subroutine
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that performed partial pivoting was
the big bottleneck. The partial-pivot-
ing routine is used during the elimina-
tion procedure to place, on the
diagonal of the matrix, the largest
number for a particular column. This
ensures maximum accuracy during
the elimination process. Placing the
largest number on the diagonal in-
volved checking the values on the col-
umn below the diagonal and then in-
terchanging the elements of two rows
when a number was found.

This interchanging procedure can
take a long time. | tried using a per-
mutation vector to act as an index for
each row. Then, instead of interchang-
ing every element, only the indexes
to the rows are interchanged. This is
a good idea, but when implemented
in BASIC there was not a very signifi-
cant improvement in speed for the
size of arrays that I was using. How-
ever, when | wrote the whole routine
in machine language, | did use a per-
mutation vector since it was simple to
implement.

| think one of the major improve-
ments | was able to make in the per-
formance of the Gaussian elimination
routine was in the speed of accessing
the elements of the array. The Com-
modore 64 operating system stores
arrays in column-major form. So to
access, for instance, the element in
column 6 and row 3, the formula used

to calculate the address of that ele-
ment would be

ADDRESS = STARTING ADDRESS +
(COLUMN# = (TOTAL # ROWS) +
ROW#) = 5

The number 5 comes from the fact
that each floating-point number uses
5 bytes. This formula indicates that
every time you want to access any ele-
ment of an array. you have to perform
two multiplications and two additions.
To get around this, | decided to set up
two tables to assist in accessing
elements. The first table consists of
the addresses of the zeroth element
of each column. The second table is
a list of constants that are multiples
of 5, starting with O.

Then, to access the element at col-
umn 6 and row 3, | would index into
the sixth entry of the first table to get
the address of the zeroth element of
column 6. Next, | would index into the
third element of the second table and
obtain 15. This would be added to the
number | obtained from the first table
to yield the final address of the ele-
ment that | was searching for. The ad-
vantage of this method is that the in-
dexing operation can be done by us-
ing the indirect-indexing commands
of the 6502 instruction set, and
beyond that only a simple 16-bit ad-
dition operation is required.

Of course to set up the first table re-

By rewriting the whole
BASIC indexing
routine in machine

language 1 was able to

increase its speed by a
factor of 50.

quires a loop of multiplications to be
performed. To get around this, | made
the following improvement. The first
time an array is solved using the
Gaussian elimination routine, | find
the starting address for the array and
save its value. Then, the first table
described above is created and the
actual elimination process begins.

The next time the array is to be
solved (as on the second iteration), |
find the starting address of the array
and compare it with the previous
starting address. If they are the same,
[ skip the construction of the first
table and proceed directly with the
elimination process.

The routine that replaces the con-
tents of the main array with Os in
preparation for the next iteration can

(continued)
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Figure 5: The nonlinear hybrid-pi model of the transistor.
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Linearized Hybrid-Pi Model
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Figure 6: The linearized hybrid-pi model of the transistor resulting from performing a Taylor's series expansion on the nonlinear

hybrid-pi model shown in figure 5.

be very time-consuming since each
element of the array is being ad-
dressed in BASIC. The equivalent
routine written in machine language
proved to be well worth the effort, as
it was about 50 times faster than the
BASIC routine.

Early in the project | became con-
cerned with accuracy and whether or
not the single-precision BASIC that |
was using would do the job. In the
Gaussian elimination routine, the
roundoff error could reduce the
number of significant digits by 1 +
2 X log N, where N is the number of
equations. However, in practice, |
found on the many circuits | tested
that the answers were well within the
accuracy | needed.

On one circuit, however, the trans-
conductance value calculated for a
particular transistor was way off. This
was because the computation for the
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transconductance of the transistor in-
volved subtracting two numbers, and
since that transistor was saturated,
those two numbers happened to be
very close in value to each other. The
31-bit mantissas of the floating-point
variables did not provide enough ac-
curacy for this case. | did not consider
this a problem since the transconduc-
tance of a saturated transistor is not
a very useful quantity anyway.

One benchmark test that I used was
to perform a DC operating point
analysis of the internal circuitry of a
741 operational amplifier with 26
nodes and 23 transistors. My program
was able to perform this analysis in
about 12 minutes and give results to
within 1 percent of the results given
by SPICE.

Although major simulation needs
obviously cannot be met with a pro-
gram like this, | find that, for small cir-

cuits, it has been very useful in pro-
viding analysis information without
unduly compromising accuracy or
computing-time requirements. i

Editor's note; David McNeill's Commodore
64 program library “Circuits” is available in
a variety of formats. See pages 459—-461 for
full details. You can obtain a copy of “Elec-
tronic Circuit Analysis,’ the 80-page user's
manual for these programs, by sending S18
to the author.
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