
1

Notes for Numerical Analysis

Math 4445

by

S. Adjerid

Virginia Polytechnic Institute

and State University

(A Rough Draft)



2



Contents

1 Solving Linear Systems 5
1.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Direct methods for solving linear systems . . . . . . . . . . . . 9

1.2.1 Naive Gaussian elimination . . . . . . . . . . . . . . . 11
1.2.2 Stability of Gaussian elimination and pivoting strategies 14
1.2.3 Solving systems with multiple right-hand sides . . . . . 20

1.3 Matrix factorization . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 LU Factorization . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 LU factorization with row interchanges . . . . . . . . . 32
1.3.3 LU factorization of special matrices . . . . . . . . . . . 34
1.3.4 Conditioning and stability . . . . . . . . . . . . . . . . 39

3



4 CONTENTS



Chapter 1

Solving Linear Systems

1.1 Review

We start with a review of vectors and matrices and matrix-matrix and matrix-
vector multiplication and other matrix and vector operations. Vectors op-
erations and norms:

Let x = [x1, x2, · · · , xn]t and y = [y1, y2, · · · , yn]t

Then

x + y = [x1 + y1, x2 + y2, · · · , xn + yn]

λx = [λx1, λx2, · · · , λxn]t

>>x = [1,2,3,-5];

>>y = [3,5,2,1];

>> x+y

[4 7 5 -4]

>> 2*x

[2,4,6,-10]

Norms of vectors

5



6 CHAPTER 1. SOLVING LINEAR SYSTEMS

||x||1 = |x1|+ |x2|+ · · ·+ |xn|

||x||∞ = max(|x1|, |x2|, · · · , |xn|)

||x||2 =
√

x2
1 + x2

2 + · · ·+ x2
n

||x||p = (xp
1 + xp

2 + · · ·+ xp
n)1/p

Properties of norms

(i) ||x|| ≥ 0

(ii) ||x|| = 0 ⇔ x = 0

(iii) ||x + y|| ≤ ||x||+ ||y||

(iv) ||λx|| = |λ|||x||

Matrix operations and norms

Let us consider two matrices

A =




a11 · · · a1m
...

...
...

an1 · · · anm


 B =




b11 · · · b1m
...

...
...

bn1 · · · bnm


 .

The matrices A and B have n rows and m columns. If n = m, A and B are
square matrices, otherwise they are rectangular matrices.

We define the following matrix operations

C = A + B, cij = aij + bij

C = λA, cij = λaij



1.1. REVIEW 7

C = AB , cij =
n∑

k=1

aikbkj

AB 6= BA in general
C = At , cij = aji

A 6= At in general

Determinant of square matrices

for n = 1, det(A) = a11

for n = 2, det(A) = a11a22 − a21a12

for n > 2, det(A) =
n∑

j=1

aij(−1)i+jMij

where Mij is the determinant of the matrix obtained by deleting the ith row
and jth column

det(AB) = det(A)det(B)

det(At) = det(A)
det(λA) = λndet(A)
det(A) = 0 if and only if A is singular, i.e., A does not have an inverse matrix

A has an inverse A−1 if and only if AA−1 = A−1A = I
where I is the n× n identity matrix.

Theorem 1.1.1. If A is an n×n matrix, the following statements are equiv-
alent

• A is nonsingular

• The inverse A−1 exists

• Ax = 0 has the unique solution x = 0

• Ax = b has a unique solution

• det(A) 6= 0

• λ = 0 is not an eigenvalue for A



8 CHAPTER 1. SOLVING LINEAR SYSTEMS

Matrix norms:

Definition 1. Given a vector norm ||.||p, p = 1, 2,∞, we define the subor-
dinate matrix norm as

||A||p = max
x6=0

||Ax||p
||x||p .

Theorem 1.1.2. Let A be an n× n matrix then

||A||∞ = max
i=1,··· ,n

n∑
j=1

|ai,j|

||A||1 = max
j=1,··· ,n

n∑
i=1

|ai,j|

||A||2 =
√

ρ(AtA) = max i = 1, · · · , n|σi|

Proof. let Ax = y , where yi =
n∑

i=1

ai,jxj.

|yi| ≤ (
n∑

i=1

|ai,j|)||x||∞

||y||∞ = ||Ax||∞ ≤ ( max
i=1,··· ,n

n∑
j=1

|ai,j|)||x||∞

thus

||A||∞ ≤ max
i=1,··· ,n

n∑
j=1

|ai,j|

Let k such that |yk| = ||y||∞ and select a vector x̂ such that x̂j =
sign(ak,j). Then

||A||∞ ≥ ||Ax̂||∞
||x̂||∞ ≥

n∑
j=1

|ai,j|.

The assertion (ii) can be established following the same line of reasoning.
The l2 norm is established by looking at

||A||2 = max
x6=0

√
|(Ax,Ax)|
|(x, x)|



1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 9

Noting that (Ax,Ax) = xtAtAx where AtA is symmetric positive which
can be factored as

AtA = QtDQ, QtQ = I, D = diag(σ2
1, · · · , σ2

n)

Thus

||A||2 = max
x 6=0

√
ytDy

yty
≤ max

i=1,n
|σi| = |σk|

Selecting x̂ = vk the eigenvector associated with σk we show that ||A||2 ≥
|σk|. This concludes the proof.

1.2 Direct methods for solving linear systems

We start with an example

2x1 + 3x2 − 5x3 = 1
2x1 − x2 + 6x3 + x4 = -1
x1 + 5x2 − 16x3 − 8x4 = 13
x1 + x2 + x4 = 13

The matrix formulation can be written as




2 4 −5 0
2 −1 6 1
1 5 −16 −8
1 1 0 1







x1

x2

x3

x4


 =




1
−1
13
3




An upper-triangular system:




3 1 1 0
0 −2 0 1
0 0 3 2
0 0 0 3







x1

x2

x3

x4


 =




4
0
4
8






10 CHAPTER 1. SOLVING LINEAR SYSTEMS

Use the backward substitution to solve the system starting from the last
equation

1. Equation 4, 4x4 = 8 yields x4 = 2

2. Equation 3, 3x3 + 2x4 = 4 with x4 = 2 yields x3 = 0

3. Equation 2, −2x2 + x4 = 0, yields x2 = 1

4. Equation 1, 3x1 + x2 + x3 = 4 yields x1 = 1 .

A lower-triangular system




5 0 0 0
2 1 0 0
−1 0 1 0
−2 3 0 −4







x1

x2

x3

x4


 =




−5
−4
1
−4




Use forward substitution to solve the system

1. Equation 1, 5x− 1 = −5 yields x1 = −1

2. Equation 2, 2x1 + x2 = −4 yields x− 2 = −1

3. Equation 3, −x1 + x3 = 1 yields x3 = 0

4. Equation 4, −2x1 + 3x2 − 4x4 = −4, yields x4 = 0

Matlab program for backward substitution

function [x]=backward(U,b)

%Input: U an upper triangular nxn matrix

% b a vector of length n

%Ouput: x a vector of length n solution to Ux = b

%

[n,m] = size(b);

x(n,:) = b(n,:)/U(n,n);

for i = n-1:-1:1

x(i,:) = (b(i,:) - U(i,i+1:n)*x(i+1:n,:)’)/U(i,i);

end

Matlab program for forward substitution



1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 11

function [x]=forward(L,b)

%input: L a lower triangular n x n matrix

% b a nxm matrix

%output: x a n x m matrix solution of Lx=b

%

[n,m] = size(b);

x(1,:) = b(1,:)/L(1,1);

for i = 2:n

x(i,:) = (b(i,:) - L(i,1:i-1)*x(1:i-1,:))/L(i,i);

end

1.2.1 Naive Gaussian elimination

Gaussian elimination helps transform a general system Ax = b into an equiv-
alent, i.e., have the same solution as Ax = b, upper-triangular system Ux = b̃.
using the operations

(i) Ej ↔ Ej − λjEi, λj 6= 0
(ii)Ej ↔ Ei (row interchanges)

General form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
an1x1 + an2x2 + · · ·+ annxn = bn

into an upper triangular system

u11x1+ u12x2 + · · · + u1nxn = b̃1

u22x2 + · · · + u2nxn = b̃2

. . .

unnxn = b̃n

Let us start with an example:



12 CHAPTER 1. SOLVING LINEAR SYSTEMS




1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1







x1

x2

x3

x4


 =




4
1
−3
4




Step 1 in Gaussian elimination:

E1

E2 − 2E1 → E2

E3 − 3E1 → E3

E4 + E1 → E4




1 1 0 3
0 −1 −1 −5
0 −4 −1 −7
0 3 3 2







x1

x2

x3

x4


 =




4
−7
−15
8




Step 2 in Gaussian elimination:

E1

E2

E3 − 4E2 → E3

E4 + 3E2 → E4




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13







x1

x2

x3

x4


 =




4
−7
13
−13




Step 3 : will make the a43 = 0 which is already the case. In practice we just
do it to avoid checking for zero entries.

Solve the resulting system using backward substitution

1. Equation 4, −13x4 = −13 yields x4 = 1

2. Equation 3, 3x3 + 13x4 = 13 yields x3 = 0

3. Equation 2, −x2 − x3 − 5x4 = −7 yields x2 = 2

4. Equation 1, x1 + x2 + 3x4 = 4 yields x1 = −1 .

Matlab program for Gaussian elimination with no pivoting

function [x]=gausselim(A,b)

%Input: A is a nxn matrix

% B is a nxm matrix



1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 13

%Output: x is nxm matrix solution of Ax=b

%

[n,m] = size(b);

for i = 1:n

for j = i+1:n

c = A(j,i)/A(i,i);

A(j,i:n) = A(j,i:n) - c*A(i,i:n);

b(j,1:m) = b(j,1:m) - c*b(i,1:m);

end

end

x = backward(A,b);

Breakdown of Gaussian elimination:

Consider the following example:




1 −3 0
1 −3 5
2 1 −1







x1

x2

x3


 =



−1
4
4




We write the system using an augmented matrix formulation and perform
Gaussian elimination



1 −3 0
... −1

1 −3 5
... 4

2 1 −1
... 4




Step 1:

E1

E2 − E1 → E2

E3 − 2E1 → E3




1 −3 0
... −1

0 0 5
... 5

0 7 −1
... 6




Step 2: Cannot use E2 to eliminate x2 from equation E3. E3 − λE2 → E3

will not eliminate x2 from E3. Instead we interchange the rows E2 ↔ E3 to
obtain



14 CHAPTER 1. SOLVING LINEAR SYSTEMS

E1

E3 → E2

E2 → E3




1 −3 0
... −1

0 7 −1
... 6

0 0 5
... 5




Now we use the backward substitution algorithm to compute the solution

x1 = 2 , x2 = 1 , x3 = 1

1.2.2 Stability of Gaussian elimination and pivoting
strategies

Let us consider the example:

[
ε 1

... 1 + ε

2 3
... 5

]

with exact solution x1 = 1, x2 = 1.

Set ε = 10−8 and apply Gaussian elimination with four significant digits in
the decimal system to obtain

E1 1
E2 − E1/ε → E2

[
ε 1

... 1 + ε

0 3− 2108 ... 5− 2108

]

Rounding-off leads to the system

[
ε 1

... 1

0 −2108 ... −2108

]

Solving leads to the incorrect answer x1 = 0 and x2 = 1.

Now if we interchange E1 and E2 prior to applying Gaussian elimination we
obtain

E2 → E1

E1 → E2

[
2 3

... 5

ε 1
... 1 + ε

]



1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 15

Gaussian elimination leads to the system

[
2 3

... 5

0 1− ε/2
... 1− 5ε/2

]

Rounding-off yields

[
2 3

... 5

0 1
... 1

]

Finally, we obtain the correct solution x1 = 1, x2 = 1.

In the first system the problem was caused by the division by a small
number. The row interchange strategy that uses the largest possible pivot
will help reduce of effect of round-off errors. Next we will discuss several
pivoting strategies.

Partial pivoting

We consider the general system in augmented form



a11 a12 · · · a1n
... b1

a11 a12 · · · a1n
... b2

...
...

...
...

... bn

a11 a12 · · · a1n
... b1




Step1:

(i)Select smallest p such that |ap,1| = n
max
i=1

|ai,1|
(ii) Interchange rows p and 1
(iii) Perform Gaussian elimination Ej − λjE1 → Ej, λj = aj1/a11 j =

2, · · ·n.

Step 2:

(i) Select p such that |ap,2| = n
max
j=2

|aj2|, where ai,j are the updated entries.

(ii) Interchange rows p and 2.



16 CHAPTER 1. SOLVING LINEAR SYSTEMS

(iii) Perform elimination Ej − λjE2 → Ej, λj = aj2/a22 j = 3, 4, · · ·n.

Step i:

(i) Select p such that |ap,i| = n
max
j=i

|aji|
(ii) Interchange rows p and i.
(iii) Perform elimination Ej − λjEi → Ej, λj = aji/aii j = i + 1, · · ·n.

Let us apply Gaussian with partial pivoting to the following system




2 1 0
... 3

1 −1 4
... −4

3 −1 −2
... 4




Step 1:

since |a31| > |a11|, |a21|, interchange rows three and one to obtain




3 −1 −2
... 4

1 −1 4
... −4

2 1 0
... 3




Applying Gaussian elimination leads to

E1 → E1

E2 − E1/3 → E2

E3 − 2E1/3 → E3




3 −1 −2
... 4

0 −2/3 14/3
... −16/3

0 5/3 4/3
... 1/3




Step 2:

Since |a32| > |a22|, interchange rows two and three to obtain




3 −1 −2
... 4

0 5/3 4/3
... 1/3

0 −2/3 14/3
... −16/3






1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 17

Using Gaussian elimination to obtain

E1 → E1

E2 → E2

E3 + 2E2/5 → E3




3 −1 −2
... 4

0 5/3 4/3
... 1/3

0 0 26/5
... −26/5




Now apply the backward substitution algorithm to compute the solution

x1 = 1, x2 = 1, x3 = −1 and IP = [3, 1, 2].

Remark: Partial pivoting can be fooled by a wrong scaling of the equations.

For instance, if we multiply the first equation in the system (??) by 104/ε
we obtain a new system

[
104 104/ε

... (1 + ε)104/ε

2 3
... 5

]

Partial pivoting results in using the first equation to perform Gaussian elim-
ination. This will lead again to incorrect results for small values of ε.

[
104 104/ε

... (1 + ε)104/ε

0 3− 2/ε
... 5− 2(1 + ε)/ε

]

We may remedy this problem using scaled-column pivoting where we

(i) compute the weights si =
n

max
j=1

|ai,j| from the original matrix

At ith Gaussian step we (ii) compute the smallest integer p such that |ap,i|/si =
n

max
j=i

|aj,i|/sj

(iii) interchange rows p and i
(iii) Apply Gaussian elimination



18 CHAPTER 1. SOLVING LINEAR SYSTEMS

Example: 


2 1 0 : 3
1 −1 4 : −4
3 −1 −2 : 4




Computes the scales s1 = 2, s2 = 4 and s3 = 3.
Step 1: max(2/2, 1/4, 3/3) = 1, thus, p = 1 no row interchanges are required
Gaussian elimination:




2 1 0 : 3
0 −3/2 4 : −11/2
0 −5/2 −2 : −1/2




Step 2:
max((3/2)/s2, (5/2)/s3) leads to p = 3, interchange E2 and E3




2 1 0 : 3
0 −5/2 −2 : −1/2
0 −3/2 4 : −11/2




Gaussian Elimination:




2 1 0 : 3
0 −5/2 −2 : −1/2
0 0 26/5 : −26/5




Applying the backward substitution we get the solution is: x3 = −1, x2 = 1
and x1 = 1.

Number of operations for Gaussian elimination solving Ax = b




a1,1 · · · a1,n
... a1,n+1

...
. . .

...
...

...

an,1 · · · an,n
... an,n+1




Number of operations in step i:

∗/ : (n− i) + (n− i) ∗ (n− i + 1) = (n− i) ∗ (n− i + 2)
± : (n− i) ∗ (n− i + 1)



1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 19

In order to compute the total number of operations we will need the following
identities:

m∑
j=1

1 = m

m∑
j=1

j = m(m + 1)/2

m∑
j=1

j2 = m ∗ (m + 1) ∗ (2m + 1)/6 (the proof is obtained using induction)

Therefore the total number of ∗ and / is

n−1∑
i=1

(n− i)(n− i + 2) = (n2 + 2n)
n−1∑
i=1

1 − 2(n + 1)
n−1∑
i=1

i + +
n−1∑
i=1

i2

= (2n3 + 3n2 − 5n)/6 ≈ n3/3, for n >> 1.

The total number of + and −
n−1∑
i=1

(n− i)(n− i + 1) = (n3 − n)/3 ≈ n3/3, n >> 1

The number of operation for backward substitution is as follows

∗/ :
n∑

j=1

j = (n2 + n)/2

± :
n−1∑
j=1

j = (n2 − n)/2

The total solution cost:

∗/ : n3/3 + n2 − n/3

+− : n3/3 + n2/2− 5n/6

Additional cost for partial pivoting:



20 CHAPTER 1. SOLVING LINEAR SYSTEMS

n−1∑
j=1

j = (n− 1)n/2

Remarks:

(i) Cost of a comparison is comparable to cost of an addition
(ii) Cost of a multiplication and division is greater that that of an addition(
not true in matlab)
(iii) Gaussian elimination is the most expensive part of the computation
(iv) Backward substitution cost ≈ n2/2 ∗ / and ≈ n2/2 ±.

1.2.3 Solving systems with multiple right-hand sides

Consider m systems with same matrix and multiple right-hand sides. If all
the right-hand sides are available at once we may use an augmented matrix
formulation and apply Gaussian elimination at once and solve m upper-
triangular systems as described below




a1,1 · · · a1,n
... b1,1 · · · b1,m

...
. . .

...
...

...
. . .

...

an,1 · · · an,n
... bn,1 · · · bn,m




We illustrate the procedure with partial pivoting on the example




1 1 0 3
... 4 0

2 1 −1 1
... 1 1

3 −1 −1 2
... −3 0

−1 2 3 −1
... 4 0




Step 1 : interchange rows 1 and 3 and apply Gaussian elimination



1.2. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS 21




3 −1 −1 2
... −3 0

0 5/3 −1/3 −1/3
... 3 1

0 4/3 1/3 7/3
... 5 0

0 5/3 8/3 −1/3
... 3 0




Step 2: Apply Gaussian elimination with no row interchanges




3 −1 −1 2
... −3 0

0 5/3 −1/3 −1/3
... 3 1

0 0 3 0
... 0 −1

0 0 3/5 13/5
... 13/5 −4/5




Step 3: no row interchanges




3 −1 −1 2
... −3 0

0 5/3 −1/3 −1/3
... 3 1

0 0 3 0
... 0 −1

0 0 0 13/5
... 13/5 −3/5




Using backward substitution we obtain

X1 = [−1, 2, 0, 1] and X2 = [8/39, 19/39,−1/3,−3/13]

Inverse of matrix A

To compute the inverse of a matrix A we need to solve the n systems AX = I
, where I is the n× n identity matrix.

Now let us consider the augmented matrix [A : I] for the following exam-
ple




2 1 0
... 1 0 0

1 −1 4
... 0 1 0

3 −1 −2
... 0 0 1






22 CHAPTER 1. SOLVING LINEAR SYSTEMS

Step 1: interchange row 1 and 3 and apply Gaussian elimination




3 −1 −2
... 0 0 1

0 −2/3 14/3
... 0 1 −1/3

0 5/3 4/3
... 1 0 −2/3




Step 2: interchange row 2 and 3




3 −1 −2
... 0 0 1

0 5/3 4/3
... 1 0 −2/3

0 0 26/5
... 2/5 1 −3/5




We use backward substitution to solve the system and obtain

A−1 =




3/13 1/13 2/13
7/13 −2/13 −4/13
1/13 5/26 −3/26




Computational Cost:

Gaussian elimination and backward substitution:

∗ : 4n3/3− n/3

+− 4n3/3− 3n2/2 + n/6

1.3 Matrix factorization

In this section will study several matrix factorization techniques where a
matrix is write a product of two simpler matrices. The most popular is the
LU factoization where L and U are lower and upper triangular matrices,
respectively. Our goal in this section is to factor a matrix A into a prod-
uct of simpler matrices such as lower triangular L and upper triangular U
matrices A = LU or PA = LU where P is permutation matrix obtained by
interchanging the rows of the identity.



1.3. MATRIX FACTORIZATION 23

1.3.1 LU Factorization

Theorem 1.3.1. If Gaussian elimination can applied to a matrix A without
row interchanges, then there exist a lower triangular matrix L and an upper
triangular matrix U such that A = LU .

Proof. We define Gaussian transformation corresponding to kth step of Gaus-
sian elimination by

Mk = I − τ (k)et
k

where τ (k) = (τ
(k)
1 , · · · , τ

(k)
i , · · · , τ

(k)
n )t

with τ
(k)
j = 0, j = 1, · · · , k and τ

(k)
j = a

(k−1)
j,k /a

(k−1)
k,k , j = k + 1, · · · , n

and ek is the kth canonical vector in Rn. The Gauss transformation
matrix is

Mk =




1 0 0 0 0 · · · 0

0
. . . 0 0 0 · · · 0

...
. . . 0 1 0 0 · · · 0

...
... 0 −a

(k−1)
k+1,k

a
(k−1)
kk

1 0 · · · 0

...
... 0

... 0 1 · · · 0

0 · · · 0 −a
(k−1)
n,k

a
(k−1)
kk

0 · · · 0 1




Setting A(0) = A
Applying the kth step of Gaussian elimination as

A(k) = MkA
(k−1), k = 1, 2, ..., n− 1

To obtain
U = Mn−1 · · ·M2M1A

Which can be written as

A = M−1
1 M−1

2 · · ·M (−1)
n−1 U

We note that

M−1
k = I + τ (k)et

k

one can verify that

Mk ∗M−1
k = I − τ (k)et

kτ
(k)et

k



24 CHAPTER 1. SOLVING LINEAR SYSTEMS

using the fact that et
kτ

(k) = 0 establishes MkM
−1
k = I.

A straight forward computation shows that

M−1
k−1M

−1
k = I + τ (k)et

k + τ (k−1)et
k−1

Thus

L = I +
n−1∑

k=1

τ (k)et
k

which contains the elimination coefficients used in the Gaussian elimination.

L =




1 0 0 0 · · · 0
a21/a11 1 0 0 · · · 0

a31/a11 a1
32/a

(1)
22 1 0 · · · 0

...
...

an1/a11 a
(1)
n2 /a

(1)
22 a

(2)
n3 /a

(2)
33 a

(3)
n4 /a

(3)
44 · · · 1




In order to prove uniqueness of A = LU factorization, we assume that
A = L1U1 and A = L2U2 and write

L1U1 = L2U2

this leads to

L−1
2 L1 = U2U

−1
1

Since L−1
2 L1 is a lower triangular matrix and U2U

−1
1 is an upper triangu-

lar matrix we conclude that the two matrices are diagonal matrices. The
diagonal elements of L−1

2 L1 are ones, thus

L−1
2 L1 = U2U

−1
1 = I

Thus, L1 = L2 and U1 = U2.

Next, let us illustrate the procedure by the example:


2 1 2 0
4 1 6 2
−6 −1 −7 −3
8 3 16 10




Step 1: no row interchanging



1.3. MATRIX FACTORIZATION 25




2 1 2 0
0 −1 2 2
0 2 −1 −3
0 −1 8 10







0 0 0 0
2 0 0 0
−3 0 0 0
4 0 0 0




Step 2:




2 1 2 0
0 −1 2 2
0 0 3 1
0 0 6 8







0 0 0 0
2 0 0 0
−3 −2 0 0
4 1 0 0




Step 3:

U =




2 1 2 0
0 −1 2 2
0 0 3 1
0 0 0 6







0 0 0 0
2 0 0 0
−3 −2 0 0
4 1 2 0




Thus,

L =




1 0 0 0
2 1 0 0
−3 −2 1 0
4 1 2 1




The reader may check that LU = A.

Applications

Solving Ax = b is equivalent to solving LUx = b by setting Ux = z and

(i) first solve Lz = b

(ii) then solve Ux = z

A general algorithm for LU factorization

Doolittle’s factorization where li,i = 1, i = 1, · · · , n



26 CHAPTER 1. SOLVING LINEAR SYSTEMS

u1,j = a1,j, j = 1, · · · , n
for k = 1 · · ·n− 1

uk,k = (ak,k −
k−1∑
j=1

lk,juj,k)/lk,k

lj,k = (aj,k −
k−1∑
i=1

lj,iui,k)/uk,k, j = k + 1, · · ·n

uk,j = (ak,j −
k−1∑
i=1

lk,iui,j)/lk,k, j = k + 1, · · ·n

Crout’s factorization

Set ui,i = 1, i = 1, · · ·n
for k = 1, · · ·n
lk,k = (ak,k −

k−1∑
j=1

lk,juj,k)/uk,k

lj,k = (aj,k −
k−1∑
i=1

lj,iui,k)/uk,k, j = k + 1, · · ·n

uk,j = (ak,j −
k−1∑
i=1

lk,iui,j)/lk,k, j = k + 1, · · ·n

Program for LU factorization with no row interchanges

function [L,U]=mylu(A)

%function computes the lu factorization of A with no pivoting

%input: A

%output: L a lower triangular matrix

% U an upper triangular matrix

%

[n,m] = size(A);

U(1,:) = A(1,:);

d = zeros(1,n);

L = diag(d+1,0);

for i = 1:n-1

L(i+1:n,i) = A(i+1:n,i)/U(i,i);

for j = i+1:n

A(j,i:n) = A(j,i:n) - L(j,i)*U(i,i:n);



1.3. MATRIX FACTORIZATION 27

end

U(i+1,i+1:n) = A(i+1,i+1:n);

end

Definition: The leading principal minors of a square matrix A are

Ak =




a11 · · · a1k
...

...
...

ak1 · · · akk


 , k = 1, 2, · · ·n.

For instance,

A1 = a11, A2 =

[
a11 a12

a21 a22

]

Theorem 1.3.2. Let A be an n by n matrix such that all leading principal
minors are invertible, i.e., det(Ak) 6= 0, k = 1, 2, · · · , n then there exists a
unique factorization A = LU , where lii = 1.

Proof. We use induction to prove the theorem: Since a11 6= 0 one can apply
the first step in Gaussian elimination and obtain

A2 = L2U2 =

[
1 0

a21/a11 1

] [
a11 a22

0 −det(A2)/a11

]

Assume Ai = LiUi, i = 1, 2, · · · , k − 1

Next we show that Ak = LkUk

[
Ak−1 c
dt akk

]
=

[
Lk−1 0

l̃t 1

] [
Uk−1 ũ

0 ukk

]

where c = (a1k, · · · , ak−1,k)
t, d = (ak1, · · · , ak,k−1), l̃ = (lk1, · · · , lk,k−1) and

ũ = (u1k, · · · , uk−1k)
t.

Since Ak−1 is nonsingular, Lk−1 and Uk−1 are also nonsingular. Using the
LU factorization algorithm we find the next column in Uk, usk, s = 1, · · · , k
by solving the system



28 CHAPTER 1. SOLVING LINEAR SYSTEMS

k−1∑
s=1

lisusk = aik, 1 ≤ i ≤ k − 1.

Since Lk−1 is nonsingular we have a unique solution.

Since Uk−1 is nonsingular, the kth row of Lk can be computed by solving the
system:

k−1∑
s=1

lksusj = akj, 1 ≤ j ≤ k − 1

Finally,

akk =
k∑

s=1

lskusk =
k−1∑
s=1

lskusk + ukk

Thus,

ukk = akk −
k−1∑
s=1

lskusk,

When k = n we obtain A = LU .

To prove uniqueness, we assume there are two factorizations A = L1U1 =
L2U2. This can be written as

L−1
1 L2 = U1U

−1
2 .

Since L−1
1 L2 is lower triangular and U1U

−1
2 is upper triangular, both matrices

are diagonal. Noting that diag(L−1
1 L2) = I leads to L1 = L2 and U1 = U2.

Definition 2. A matrix A is strictly diagonally dominant (SDD) if and only
if

|aii| >
n∑

j=1,j 6=i

|aij|, i = 1, 2, · · · , n.



1.3. MATRIX FACTORIZATION 29

Theorem 1.3.3. Let A be a strictly diagonally dominant matrix then all
leading principal minors are nonsingular. Thus A has a unique Doolittle
factorization A = LU .

Proof. Using Gershgorin Theorem from Chapter 4 on eigenvalues we show
that all disks

Di = {λ such that |λ− aii| ≤ ri =
n∑

j=1,j 6=i

|aij|}, i = 1, · · · , n,

do not contain the origin. Thus, λ = 0 is not an eigenvalue

Theorem 1.3.4. If At is strictly diagonally dominant matrix, then, the
Gaussian elimination with partial pivoting will not perform any row inter-
changes and leads to an A = LU factorization.

Proof. Let

A =

[
a11 wt

v C

]

where v = (a21, · · · , an1)
t and w = (a12, · · · , a1n)t are two n− 1 vectors and

C is an (n− 1)× (n− 1) matrix.
The first step of Gaussian elimination yields:

L =

[
1 0
v

a11
C − vwt

a11

]

We need to show that if At is SDD then the transpose of

B = C − vwt

a11

is also SDD. Now, let us write

Bt = Ct − wvt

a11

, bij = cij − viwj

a11

n−1∑

i=1,i 6=j

|bij| =
∑

i=1,i6=j

|cij − viwj

a11

|



30 CHAPTER 1. SOLVING LINEAR SYSTEMS

≤
∑

i=1,i 6=j

|cij|+ |wj|
|a11|

∑

i=1,i6=j

|vi|

< (|cjj| − |wj|+ |wj|
|a11|(|a11| − |vj|) = |cjj| − |wj||vj|

|a11| < |bjj|

We have used the fact that At is SDD which leads to

n−1∑

i=1,i6=j

|vi| < |a11| − |vj|

and
n−1∑

i=1,i 6=j

|cij| < |cjj| − |wj|

which can be derived easily from

At =

[
a11 vt

wct

]
.

This completes the proof that Bt is strictly diagonally dominant.

Theorem 1.3.5. If A is SDD then the Gaussian elimination preserves the
SDD property of the matrix. Furthermore, Gaussian elimination with scaled
column partial pivoting, with scales recomputed at each step, will not require
row interchanges. Thus, A can be factored as A = LU .

Proof. Apply the first Gaussian elimination step to obtain

A(1) =




a11 a12 · · · a1n

0 a
(1)
22 · · · a

(1)
2n

...
...

...
...

0 a
(1)
n2 · · · a

(1)
nn




Then the matrix A(1) is SDD, i.e., we want to show that for i = 2, · · ·n,

|a(1)
ii | >

n∑

j=2,j 6=i

|a(1)
ij |

This means that



1.3. MATRIX FACTORIZATION 31

|aii − ai1

a11

a1i| >
n∑

j=2,j 6=i

|aij − ai1

a11

a1j|

since A is SDD we have

∑
j=2

|a1j|
|a11| < 1

multiplying by |ai1| we obtain
n∑

j=2

|ai1aij|
|a11| ≤ |ai1|

From the diagonal dominance of A we have

|ai1| < |aii| −
n∑

j=2,j 6=i

|aij|

This leads to

n∑
j=2

|ai1a1j|
|a11| ≤ |aii| −

n∑

j=2,j 6=i

|aij|

which is equivalent to :
n∑

j=2,j 6=i

|ai1a1j|
|a11| +

n∑

j=2,j 6=i

|aij|

< |aii| − |ai1a1i|
|a11| < |aii − ai1a1i

a11

|
Finally using

n∑

j=2,j 6=i

|aij − ai1a1j

a11

| ≤
n∑

j=2,j 6=i

|ai1a1j|
|a11| +

n∑

j=2,j 6=i

|aij|

we complete the proof that A(1) is SDD . By induction A(k) is SDD.

To show that no row interchanges are required we note that in step 1,
|a11/s1| = 1, |ak1/sk| < 1, for k = 2, · · · , n.

Corollary 1. Every SDD matrix can be factored as A = LU .

Proof. Use the fact that all the pivots are nonzero by SDD property.



32 CHAPTER 1. SOLVING LINEAR SYSTEMS

1.3.2 LU factorization with row interchanges

Theorem 1.3.6. If A is a non singular matrix then there exist a lower
triangular matrix L, an upper triangular matrix U and a permutation matrix
P (obtained by interchanging rows of the identity) such that LU = PA .

We illustrate the procedure on an example using partial pivoting

U =




0 2 3
1 1 0
2 1 3


 L =




0 0 0
0 0 0
0 0 0


 P =




1 0 0
0 1 0
0 0 1




Step 1: interchange row 1 and 3 and apply Gaussian elimination to obtain

U =




2 1 3
0 1/2 −3/2
0 2 3


 L =




0 0 0
1/2 0 0
0 0 0


 P =




0 0 1
0 1 0
1 0 0




Step 2: interchange rows 2 and 3 and apply Gaussian elimination

U =




2 1 3
0 2 3
0 0 −9/4


 L̃ =




0 0 0
0 0 0

1/2 1/4 0


 P =




0 0 1
1 0 0
0 1 0




L = L̃ + I =




1 0 0
0 1 0

1/2 1/4 1




where LU = PA. In order to solve Ax = b we multiply the system by P to
obtain PAx = Pb which leads to LUx = Pb.

We solve the system by solving

(i) Lz = Pb

(ii) Ux = z

For instance, we solve Ax = [5, 0, 2]′ = b by computing

(i) Pb = [2, 5, 0]
(ii) Lz = Pb yields z = [2, 5,−9/4]′

(iii) Ux = z leads to x = [−1, 1, 1]′ .



1.3. MATRIX FACTORIZATION 33

Matlab program for Lu factorization with partial pivoting

function [L,U,P,mperm]=mylupiv(A)

%PA=LU factorization with partial pivoting

%input: matrix A

%output: L lower triangular matrix

% U upper triangular

% P permutation matrix

% mperm number of row interchanges

%

[n,m] = size(A);

P = eye(n);

U(1,:) = A(1,:);

d = ones(1,n);

L = zeros(n);

mperm = 0;

for i = 1:n-1

[mx,p]=max(abs(A(i:n,i)));

p = p-1+i;

if (p ~= i)

mperm = mperm + 1;

% rows interchanges in A

tmp=A(p,i:n);

A(p,i:n)=A(i,i:n);

A(i,i:n)=tmp;

% rows interchanges in L

tmp= L(i,1:i-1);

L(i,1:i-1)=L(p,1:i-1);

L(p,1:i-1) = tmp;

% rows interchanges in P

tmp=P(p,:);

P(p,:)=P(i,:);

P(i,:)=tmp;

end

U(i,i:n) = A(i,i:n);

%

% compute l factors



34 CHAPTER 1. SOLVING LINEAR SYSTEMS

L(i+1:n,i) = A(i+1:n,i)/U(i,i);

%Gaussian elimination

for j = i+1:n

A(j,i:n) = A(j,i:n) - L(j,i)*U(i,i:n);

end

end

U(n,n) = A(n,n);

L = L+diag(d);

I. Determinant of A

The method of co-factors requires n! operations, for instance, for n = 100,
we need 10158operations. Thus, on a machine with 1012 flops it will take
10138 years to compute the determinant of A. On the other-hand, using LU
factorization it will take less than a second to compute the determinant as

det(A) = det(L) ∗ det(U) = (Πn
i=1li,i)(Π

n
i=1ui,i) = Πn

i=1ui,i

In general when PA = LU

det(A) = (−1)m(Πn
i=1li,i)(Π

n
i=1ui,i) = (−1)m(Πn

i=1ui,i), m is the number of
row interchanges during Gaussian elimination.

II. Solving Ax = b.

The LU factorization is useful for solving Ax = b if all right-hand sides are
not known at the beginning of the computation.

1.3.3 LU factorization of special matrices

Symmetric positive matrices

Definition A matrix A is a symmetric positive definite (SPD) matrix if and
only if

• (i) At = A

• (ii) xtAx > 0, ∀ x 6= 0



1.3. MATRIX FACTORIZATION 35

Theorem 1.3.7. If A is symmetric matrix then

• (i) A has only real eigenvalues

• (ii) the associated eigenvectors form an orthogonal basis.

Proof. Consult book on linear algebra by Johnson, Riess and Arnold.

Theorem 1.3.8. A symmetric matrix A is positive definite matrix if and
only if det(Ak) > 0 for k = 1, 2, · · ·n, where

Ak =




a1,1 · · · a1,k
...

. . .
...

ak,1 · · · ak,k




Proof. Use Ak = QtΛQ, det(Ak) = Πk
i=1λ

(k)
i and the fact that xtAkx > 0,

∀x 6= 0, x ∈ Rk

Theorem 1.3.9. If A is a symmetric positive matrix, then there exist a lower
triangular matrix L̃ such that

A = L̃ ∗ L̃t

where lii > 0, i = 1, · · ·n

Proof. Using vectors of the form x = (x1, x2, · · · , xk, 0, · · · , 0)t we show that
Since Ak are also SPD, thus they are nonsingular. From the LU factorization
there exist a unique factorization

A = LU = U tLt = At

which can be written as
U(Lt)−1 = L−1U t

Since U(Lt)−1 is an upper triangular matrix while L−1U t is a lower triangular
matrix, both matrices are diagonal matrices and equal to D.

U(Lt)(−1) = D

This leads to U = DLt Now we can write:



36 CHAPTER 1. SOLVING LINEAR SYSTEMS

A = LDLt

Since A is symmetric positive definite matrix, dii > 0.

0 < xtAx = ytDy, where y = xtL.

Thus, we can write
D =

√
D
√

D

where √
D = diag(

√
d11, · · · ,

√
dnn)

Finally, we define L̃ = L
√

D.

Cholesky Factorization algorithm

for i = 1, 2, · · ·n

li,i =

√
ai,i −

i−1∑
k=1

l2i,k

lj,i = (aj,i −
i−1∑
k=1

lj,kli,k)/li,i, j = i + 1, · · ·n

Applications

In order to solve Ax = LLtx = b we solve
(i) Lz = b
(ii) Ltx = z

Remarks

(i) Cholesky factorization costs ≈ n3/6 operations, i.e., half the cost of the
regular LU factorization.

(ii) It is stable with respect to round-off errors.

(iii) Square root is expensive use A = LDLt, li,i = 1.

Let us consider an example



1.3. MATRIX FACTORIZATION 37

>[L,p] = chol(A)

A =




4 −2 8
−2 2 1
8 1 141




One may check that

det(A1) = 4 > 0
det(A2) = 8− 4 = 4 > 0
det(A) = 400 > 0

and A′ = A. Then A is a positive definite matrix with

L =




2 0 0
−1 1 0
4 5 10




Matlab program for Cholesky factorization

function U = mychol(A)

%function computes Cholesky factorization

%input: matrix A positive definite

%

%output: U an upper matrix such as U’U=A

%

[n,m]=size(A);

L(:,1) = A(:,1)/sqrt(A(1,1));

for i=2:n

nz = max([i-1,0]);

nz

L(i,i) =sqrt(A(i,i) - norm(L(i,1:nz),2)^2);

for j=i+1:n

L(j,i) = (A(j,i) - L(j,1:i-1)*L(i,1:i-1)’)/L(i,i);

end

end

U = L’;



38 CHAPTER 1. SOLVING LINEAR SYSTEMS

Note: One can also factor A as A = LDM t, where L and M are lower
triangular matrices such that lii = mii = 1, i = 1, · · · , n and D is a diagonal
matrix.

Tridiagonal matrices

We consider the tridiagonal matrix where ai,j = 0 if |i− j| > 1.




a11 a1,2 0 · · · 0

a21 a22 a23
. . . 0

0 a32 a33 · · · 0
...

. . . . . . . . . an−1,n

0 · · · 0 an,n−1 ann




Gaussian elimination can be applied to factor this matrix as A = LU very
efficiently using only O(n) operations where

L =




1 0 0 · · · 0

l21 1 0
. . . 0

0 l32 1 · · · 0
...

. . . . . .
... 0

0 · · · 0 ln,n−1 1




U =




u11 u1,2 0 · · · 0

0 u22 u23
. . . 0

0 0 u33 · · · 0
...

. . . . . .
... un−1,n

0 · · · 0 0 unn




Algorithm:

u11 = a11, u12 = a12

l21 = a21/a11

fori = 2, 3, · · ·n
ui,i = aii − li,i−1 ∗ ui−1,i, ui,i+1 = ai,i+1

li+1,i = ai+1,i/ui,i

un,n = an,n − ln,n−1 ∗ un−1,n

Banded matrices

Matlab program for banded matrices



1.3. MATRIX FACTORIZATION 39

function [L,U]=mylu(A,nl,nu)

%Lu factorization with no pivoting

%input: A matrix

% nl number of lower diagonals

% nu number of upper diagonals

%output: L lower triangular matrix

% U upper triangular matrix

%

[n,m] = size(A);

U = zeros(n);

U(1,1:min(n,1+nu)) = A(1,1:min(1+nu,n));

d = zeros(1,n);

L = diag(d+1,0);

for i = 1:n-1

L(i+1:min(i+nl,n),i) = A(i+1:min(i+nl,n),i)/U(i,i);

for j = i+1:min(i+nl,n)

A(j,i:min(i+nu,n)) = A(j,i:min(i+nu,n)) - L(j,i)*U(i,i:min(i+nu,n));

end

U(i+1,i+1:min(i+1+nu,n)) = A(i+1,i+1:min(i+1+nu,n));

end

1.3.4 Conditioning and stability

Conditioning

If we start with an error in the data for instance in A or b what is the error
in x, where Ax = b.

Let the exact problem be Ax = b.

Let an approximate problem be Ax̃ = b + b̃ and subtract the approximate
problem from the exact problem to obtain

A(x− x̃) = b̃

which can be written as
(x− x̃) = A−1b̃



40 CHAPTER 1. SOLVING LINEAR SYSTEMS

Taking the norm of both sides we obtain

||(x− x̃)|| = ||A−1b̃||

The relative error leads to

||(x− x̃)||
||x|| =

||b||||A−1b̃||
||x||||b|| ≤ ||b||||A−1||||b̃||

||x||||b||
Using

||A−1b̃|| ≤ ||A−1||||b̃||.
and

||b|| = ||Ax|| ≤ ||A||||x||
leads to

||(x− x̃)||
||x|| = ||A−1||A|| ||b̃|||||b|| = κ(A)

||b̃||
||b|| ,

where κ(A) = ||A−1||A|| is the condition number.

Noting that b̃ = b− Ax̃ = r we can write

||(x− x̃)||
||x|| ≤ κ(A)

||r||
|||b||

which gives a relationship between the residual and the relative error in the
solution.

Remarks

1. κ(A) ≥ 1

2. if κ(A) >> 1 the system is ill-conditioned

3. if κ(A) = O(1) the system is well conditioned

5. Small errors in b for ill-conditioned systems result in large errors in x

Example: Consider the following matrix



1.3. MATRIX FACTORIZATION 41

A =




10−6 1 1
−10−10 15 −5

0 11 2




||A||∞ = 20 + 10−10, ||A−1||∞ = 1.34 106 leads to

κ(A) = ||A||∞||A−1||∞ = 2.68 107

For instance if ||b̃||∞/||b||∞ = 10−7, then ||x−x̃||∞
||x||∞ ≈ 2.68.

Now, if we assume the approximate problem to be

(A + Ã)x̃ = b + b̃,

then we can prove that

||(x− x̃)||
||x|| = κ(A)

(
||Ã||
||A|| +

||b̃||
|||b||

)
+ O(||Ã||2) .

If Ã is small enough, we can prove the result by writing

x̃ = (A + Ã)−1(b + b̃) = [A(I + A−1Ã)]−1(b + b̃)

x̃ = (I − A−1Ã + O(Ã2))(A−1b + A−1b̃)

Replacing x = A−1b we have

x̃ = x− A−1Ãx + A−1b̃ + O(Ã62)

Now, passing x to the left, taking the norm and applying the triangle in-
equality we can write

||x̃− x||
||x|| ≤ ||A−1||||b̃||

||x|| + ||A−1||||Ã||

which can be written using ||b|| ≤ ||A||||x|| as

||x̃− x||
||x|| ≤ κ(A)(

||b̃||
||b|| +

||Ã||
||A||).

Example in matlab



42 CHAPTER 1. SOLVING LINEAR SYSTEMS

>A = [ 2+10^(-13) 1;2 1];

>b = [ 3 + 10^(-13); 3];

>A\b

0.9977777777777

1.004444444444

Iterative refinement Algorithm

This algorithm is useful for ill-conditioned systems (κ(A) >> 1).

1. Perform LU = PA with t digits

2. Solve LUx0 = Pb

3. Compute r0 = b− Ax0 using 2t digits (double precision)

4. Solve LUxc = Pr0

5. update x0 as x0 = x0 + xc

6. if ||xc|| < ε stop

else go to 3

Remarks:

(i) If machine zero is Eps = 10−d and κ∞(A) = 10q and using double precision
to compute b− Ax

x0 has approximately min(d, k ∗ (d− q)) correct digits

where k is the iteration number in the refinement algorithm

Thus for instance

when k = 1, x has min(d, d− q) correct digits

when k = 2, x has min(d, 2(d− q)) correct digits



1.3. MATRIX FACTORIZATION 43

(ii) each iteration costs O(n2) operations not including the LU factorization.

Example:

Using the decimal system with t = 3 significant digits we solve
[
0.986 0.579
0.409 0.237

] [
x1

x2

]
=

[
0.235
0.107

]

The Exact solution is (2, 3) and κ∞(A) = 52.73.

Using the LU factorization we obtain

X0 =

[
2.11
−3.17

]
X1 =

[
1.99
−2.99

]
X1 =

[
2.00
−3.00

]

Stability

Let us consider the LU factorization of the matrix

A =

[
ε 1
1 1

]
, where |ε| << 1

A−1 =
1

1− ε

[−1 +1
1 −ε

]
,

Condition number of A in the ∞ norm is

κ(A) = ||A||∞||A−1||∞

||A||∞ = 2

||A−1||∞ = 2/(1− ε)

Thus κ(A) = 4/(1 − ε) ≈ 4 when |ε| << 1. The matrix A is well
conditioned.

Now let us apply Gaussian elimination to perform A = LU factorization
to find that

A =

[
ε 1
1 1

]
=

[
1 0

1/ε 1

] [
ε 1
0 1− 1/ε

]



44 CHAPTER 1. SOLVING LINEAR SYSTEMS

In order to eliminate the effect of conditioning of the problem, we assume
that the input A and b are exact. When |ε| << 1, round-off error cause
a O(1) relative error in the solution x. We explain that by performing a
backward error analysis that starts with

A = LU → Ã = L̃Ũ

In order to perform an error analysis we consider

φ(A) = LU and φ̃(A) = L̃Ũ

If ε = 2−m, with m small enough we have

L̃ =

[
1 0

1/ε 1

]
Ũ =

[
ε 1
0 −1/ε

]

Thus

L = L̃ and Ũ = U +

[
0 1
0 1

]

||U − Ũ ||
||U || ≈ ε

Now we have
A + Ã = L̃Ũ

where

Ã =

[
0 0
0 1

]

Finally,
||φ(A)− φ̃A||
||φ(A)|| =

||Ã||
||A|| = O(1).

Therefore, using the previous sensitivity result we show that Gaussian elim-
ination for this problem is unstable.

Apply the LU factorization with partial pivoting we obtain

φ(A) = PA =

[
1 1
ε 1

]
=

[
1 0
ε 1

] [
1 1
0 1− ε

]



1.3. MATRIX FACTORIZATION 45

If ε is small enough we have

φ̃(A) = PA + Ã =

[
1 0
ε 1

] [
1 1
0 1

]
= φ(PA + Ã)

where

Ã =

[
0 0
0 ε

]
.

Finally, we have
||φ(A)− φ̃(A)||

||φ(A)|| =
||Ã||
||A|| = O(ε).

Thus Gaussian elimination with partial pivoting is backward stable for this
problem.

Analysis of round-off error analysis: section 4.8 of the text book by
Kincaid and Cheney.

Theorem 1.3.10. Let A be an n× n matrix with all entries being machine
numbers. Then Gaussian elimination with row pivoting produces L̃ and Ũ
such that

A + Ã = L̃Ũ

where
|ãij| ≤ 2nEps max

i,j,k
|a(k)

ij |

Theorem 1.3.11. Let L be a lower triangular matrix and b a vector such that
all entries are machine numbers. If ỹ is the the computed solution of Ly = b,
then it is the exact solution of (L + L̃)ỹ = b where l̃ij ≤ 6(n + 1)Epslij/5

Theorem 1.3.12. Let U be an upper triangular matrix and b a vector such
that all entries are machine numbers. If ỹ is the the computed solution of
Uy = b, then it is the exact solution of (U + Ũ)ỹ = b where ũij ≤ 6(n +
1)Epsuij/5

Theorem 1.3.13. Let A be n×n matrix and b a vector such that all entries
are machine numbers and nEps < 1/3. If x̃ is the the computed solution



46 CHAPTER 1. SOLVING LINEAR SYSTEMS

of Ax = b using Gaussian elimination with row interchanges, then it is the
exact solution of

(A + Ã)ỹ = b

where
ãij ≤ 10n2Epsρ, ρ = max

i,j,k
|a(k)

ij |.

Furthermore, Wilkinson showed that

||x− x̃||
||x|| < 4n2gn(A)κ∞(A)Eps

where

gn(A) =
max
ijk

|a(k)
ij |

max
ij
|aij| .

The largest bound is gn(A) ≤ 2n−1 which is reached for the matrix A such
that

aij =





−1 i > j

1 i = j or j = n

0 otherwise

where a
(n−1)
nn = 2n−1. When n = 64 with double precison all accuracy is lost.

Thus there is stability problem of the Gaussian elimination for large n. Read
discussion in section 4.8 of Kincaid and Cheney.


