
UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY

First-Year Computer Science (Part IA)

ML Exercise Sheets

Here are the exercises for the ML Practical Classes. These classes complement the Foundations
of Computer Science Lectures given by Prof. L.C. Paulson.

Exercises 1–4 are compulsory for all candidates and each is worth one tick. Exercise 5 is
compulsory for CST candidates but not for candidates who borrow Paper 1. Exercises 1*, 2*, 3*
and 4* are optional. Satisfactory solutions to starred exercises will be recorded on the Tick List
but will not count as extra ticks. Each exercise is assessed on the basis of printouts of sessions and
programs which are submitted to a demonstrator who will comment on them.

You must keep marked exercises after they are returned to you, because every
Part IA student is required to submit “a portfolio of assessed laboratory work”
(ML, Java, and Hardware if applicable) in Easter Term.

Each exercise is pass/fail, and in the case of failure, can be resubmitted. Everybody should be
able to pass every exercise eventually. Your code does not need to be complicated. Efficiency is
unimportant unless the wording of the problem suggests otherwise. Please ensure that your sub-
mitted work includes your name, ID, and legible, neatly formatted ML code, along with examples
of your code being tested. Please note how much time you spent, as this will help us ensure that
the problems are of reasonable difficulty.

No exercise requires elaborate written answers. Questions like ‘What is the purpose of . . .?’
require a one- or two-line ML comment. Before awarding a tick, the demonstrator will go over the
printout of the session with you, to see whether you understand what is going on and can explain
ML’s responses.

On the basis of past experience, as many students will find the exercises too easy as find them
too hard. Likewise, as many students will find that the exercises take a very short time as find they
take too much time. The average time spent on each weekly exercise is approximately three hours,
but times wildly different from this average may be expected!

Our assessment schedule is flexible. It is not essential to solve each exercise on the day that is
given out. You can do problems early if you prefer, and to some extent, we can also cope if you
fall behind by a week or two. The final deadline for handing in exercises is in Lent term, and it
will be announced to all students.

Other (non-assessable) exercises are presented in the course notes. These should be attempted,
especially by those who find the exercises in this document too easy.

Note: please report any errors in these problems to lp15@cam.ac.uk.

L.C. Paulson, Course Lecturer

Robert Harle, Part IA Coordinator

October 2013

Exercise 1: Recursive Functions

You may wish to limber up for this exercise by performing numerical calculations using ML. If
you write numerical constants that include decimal points, and use the familiar arithmetic operators
(+ - * /), then ML will perform floating point arithmetic resembling that done by calculators.
If you write integer constants (no decimal points), then ML will perform exact integer arithmetic;
the operators div and mod yield integer quotient and remainder, respectively.

1. A mathematical formula is often expressed in the form of a function. For example, the formula
for the area of a triangle, xy/2, can be written as the function definition

area(x, y) = xy/2.

We can declare the analogous function in ML by typing

fun area (x,y) = x*y/2.0;

Enter this function definition and demonstrate it by calculating some areas of triangles. Re-
member to include decimal points! Write area(3.0, 4.0), not area(3, 4).

2. Everybody who writes computer programs should be aware of floating-point rounding errors.
Ask ML to evaluate the following expression, and report its response.

1.0 - 0.9 - 0.1;

3. The two solutions to the equation ax2
+ bx + c = 0 are given by the quadratic formula,

−b ±
√

b2 − 4ac
2a

.

The following ML code computes one of these roots. (Note that Math.sqrt refers to a function
named sqrt in a library called Math.)

fun rootplus (a, b, c) = (~b + Math.sqrt (b*b-4.0*a*c)) / (2.0*a);

Write an ML function to compute the value of ax2
+ bx + c given the four arguments a, b,

c and x . (Hint: you are likely to need a type constraint to ensure that it returns a value of type
real.) Use it to check the accuracy of the roots computed by the function rootplus, in the
following cases: (a = 1, b = 121, c = 11); (a = 1.22, b = 3.34, c = 2.28).

Mathematical function definitions are often recursive. The well-known factorial function, n!,
is defined by 0! = 1 and (for n > 0)

n! = n × (n − 1)!

4. Write an ML function facr(n) to compute n! by recursion, and also a function faci(n)
to compute n! by iteration (in the sense described in Lecture 2). How do your functions behave
when applied to a negative argument?

Exercise 1*: Recursive Functions Continued

Note that although the following problems will not count towards a ‘tick’, it is a good idea to
attempt them before next week’s exercise.

Remark: The function real converts an integer to a real number. The function floor con-
verts a real number x to the largest integer i such that i 6 x . These functions will be useful in the
examples below, which involve both integer and real calculations.

1. Write an ML function sumt(n) to sum the n terms

1+
1
2
+

1
4
+ · · · +

1
2n−1

for n > 0. When n = 2 the sum is 1
20 +

1
21 , namely 1.5.

Observe that each term can be cheaply computed from its predecessor. A fancy treatment of
this is to consider the slightly more general function

f (x, n) = x +
x
2
+

x
4
+ · · · +

x
2n−1

This function satisfies the recursive definition (for n > 0)

f (x, n) = x + f (x/2, n − 1).

2. Write an ML function eapprox(n) to sum the n terms in the approximation

e ≈ 1+
1
1!
+

1
2!
+ · · · +

1
(n − 1)!

Again, each term can be cheaply computed.

3. Write an ML function exp(z,n) to compute exponentials:

ez
≈ 1+

z
1!
+

z2

2!
+ · · · +

zn−1

(n − 1)!

Exercise 2: Structured Data: Pairs and Lists

Before working the questions, try some simple experiments with structured data. Start ML and
define the following selector functions:

fun fst (x,y) = x;
fun snd (x,y) = y;

To experiment with them, type declarations like

val p = ("red",3);
val q = (p, "blue");
val r = (q, p);
val s = ((23,"grey"), r);

and then type things like

fst (fst q); fst (fst p); fst(snd s);

Note: Triples are not pairs! Compare ML’s response to each of the following:

fst((1,2),3); fst(1,2,3);

Recall that, although lists can contain structured data, all elements in a list must have the same
type. Observe ML’s response to each of the following. Remember that 1.0 is a real and 2 is an
int.

["orange",1,2]; 1.0::[2]; [3, (3,3)];

Do the following tasks to complete this Exercise:

1. The function hd returns the first element of a list. Getting at the last element is harder. Write
a recursive function last to return the last element of a list. For example, on input [1,2,3],
your function last should return 3.

2. Now do the same thing for tl: write a recursive function butLast to remove the last
element of a list. For example, butLast[1,2,3,4] should return [1,2,3]. Note that
butLast(xs) must be equivalent to rev(tl(rev xs)), so butLast[1] should return
[]. Compare the time and space complexity of butLast with rev(tl(rev xs)).

3. Write a function nth such that nth(xs,n) returns the nth element of list xs, counting the
head of the list as element zero.

Exercise 2*: Lists of Lists

Write a function choose(k,xs) that returns all k-element lists that can be drawn from xs,
ignoring the order of list elements. If n is the length of xs, then (provided k 6 n) the result should
be an

(n
k

)
-element list. Here are some sample inputs and outputs:

- choose (3, [1,2]);
> [] : (int list) list

- choose (3, [1,2,3]);
> [[1,2,3]] : (int list) list

- choose (3, [1,2,3,4,5]);
> [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],

[2,3,5],[2,4,5],[3,4,5]] : (int list) list

Note: It might be useful to first define two auxiliary functions: a function which adds a specific
element to every list in a list of lists:

- allcons (6, [[1,2,3],[2],[]]);
> [[6,1,2,3],[6,2],[6]] : (int list) list

and a function which concatenates two lists (of lists) together:

- concat ([[1],[2,3]],[[],[4,5,6]]);
> [[1],[2,3],[],[4,5,6]] : int list

But this is not essential.

Exercise 3: Functions as Arguments and Results; Integer Streams

Note: the second part of this exercise assumes knowledge of Lecture 9: Sequences.

In ML, functions can be given as input and can be returned as results from functions. As coded
below, the function twice takes the argument f and returns an anonymous function that applies
f twice to its argument.

fun twice f = (fn x => f (f x));

Can you see why the following expression evaluates to 11?

twice (twice (twice (fn i=>i+1))) 3;

Do the following tasks to complete this Exercise:

1. If f is a function and n > 0 is an integer then the function f n is defined as follows:

f n(x) = f (f (· · · f (︸ ︷︷ ︸
n times

x) · · ·))

In particular, f 0(x) = x .
Given that s is the function such that s(x) = x + 1 (which adds 1 to its argument), we can

express the sum of two non-negative integers m and n as m + n = sn(m) (i.e. 1 is added to m but
n times over).

Express the product m × n and power mn similarly. Hint: Consider what has to repeated n
times over to obtain m × n or mn . Note that the functions that are analogous to s(x) may have to
depend upon m.

2. Write an ML function nfold such that nfold(f,n) returns the function f n . Use nfold
to write functions to compute sums, products and powers.

Here is a definition of streams (infinite lists) that cannot terminate. Note that the function from
(which creates the stream of integers starting from a specified value) can be declared exactly the
same as with the type ’a seq presented in the lectures.

datatype ’a stream = Cons of ’a * (unit -> ’a stream);
fun from k = Cons(k, fn()=> from(k+1));

3. Write a function nth(s,n) to return the nth element of s. For example, nth(from 1,
100) should return 100.

4. Make the stream of positive squares (1, 4, 9, . . .) and find its 49th element.

5. Write a function map2 f xs ys, similar to mapq, to take x1, x2, x3, . . . and y1, y2, y3, . . .

and return the stream f (x1)(y1), f (x2)(y2), f (x3)(y3), . . .

Exercise 3*: Integer Streams Continued

1. The Fibonacci Numbers are defined as follows: F1 = 1, F2 = 1, and Fn+2 = Fn + Fn+1.
So new elements of the sequence are defined in terms of two previous elements. If ML lists were
streams then we could define the steam of Fibonacci Numbers (in pseudo-ML) as follows:

val fibs = 1 :: 1 :: (map2 plus fibs (tail fibs));

Here plus m n = m+n, and two copies of fibs recursively appear in the definition of this
stream. But this code is not legal; we have to use Cons. We also have to force fibs into a
function, since in ML only functions can be recursive. So the following is legal:

fun fibs() =
Cons(1, fn()=>

Cons(1, fn()=> map2 plus (fibs()) (tail(fibs()))));

Use this code to compute the fifteenth Fibonacci Number.

2. Write a function merge(xs,ys) that takes two increasing streams, x0 < x1 < x2 < . . .

and y0 < y1 < y2 < . . ., and returns the increasing stream containing all the x’s and y’s. Since the
input streams are increasing, you need to compare their heads, take the smaller one, and recursively
merge whatever remains. Make certain there are no repeated elements in the output stream.

3. Construct in ML the increasing stream containing all numbers of the form 2i
× 3 j for integers

i , j > 0. Hint: The first element is 1, and each new element can be obtained by multiplying some
previous element by 2 or 3. The code is similar to fibs, and calls merge.

4. Construct the increasing stream of all numbers of the form 2i
×3 j
×5k for integers i , j , k > 0.

What is the sixtieth element of this stream?

Exercise 4: A Tiny Graphics Package

Portable pixmap format (PPM) is an extremely simple image file format, where an image of
a specified width w and height h is given by a text file containing h lines, each w pixels across.1

Each pixel is specified by three integers according to the RGB colour model. Each integer ranges
from 0 to 255. Here are a few representative examples:2

0 0 0 black 255 0 0 red 0 255 0 green
255 255 0 yellow 0 0 255 blue 0 255 255 cyan
255 0 255 magenta 128 128 128 grey 255 255 255 white

The task is to represent such images using ML arrays and to implement some operations on
them. You must provide the following types (and the first two are given to you):

type color = int * int * int (* RGB colour components, 0..255 *)
type xy = int * int (* points (x, y) and sizes (w, h) *)
type image

1. Implement the following functions:

val image : xy -> color -> image
val size : image -> xy
val drawPixel : image -> color -> xy -> unit

The function image, given a dimension w×h, should create an ML array consisting of h elements
to represent the rows, where each row is itself an ML array consisting out of w elements of type
color. Each pixel should be given the supplied colour. Remember that arrays are mutable
objects, so each row needs to be a distinct array; you may find the function Array.tabulate
useful for this.3

The function size should return the dimensions of the given image as a pair (w, h).
The function drawPixel, given a specified image, sets the pixel at the given (x, y) position

to the specified color.

2. Implement a function to write an image to a file. Base it on the following skeleton, which
opens the file and writes two lines that must appear before the lines of pixels.

fun toPPM image filename =
let val oc = TextIO.openOut filename

val (w,h) = size image
in

TextIO.output(oc, "P3\n" ^ Int.toString w ^ " " ^ Int.toString h ^
"\n255\n");

. . . code to output image rows, one per line . . .
TextIO.closeOut oc

end;

You may find Array.app helpful; it applies a given function to every element of an array. Also,
here is a function to format integers. Each line of pixels should consist of integers separated by
spaces and no other characters.

fun format4 i = StringCvt.padLeft #" " 4 (Int.toString i);

3. Code a function to draw horizontal or vertical lines of a given colour. Create a simple image.
You can view your image, or convert it to another format, using these UNIX commands:

display example.PPM
convert example.PPM example.png

1http://en.wikipedia.org/wiki/Netpbm_format
2http://en.wikipedia.org/wiki/Web_colors
3http://www.standardml.org/Basis/array.html

Exercise 4*: Line Drawing

Implement a function to draw a line from one pixel position to another.

val drawLine : image -> color -> xy -> xy -> unit

Use Bresenham’s line algorithm,4 which can be expressed by the following pseudo-code:

function line(x0, y0, x1, y1)
dx := abs(x1-x0)
dy := abs(y1-y0)
if x0 < x1 then sx := 1 else sx := -1
if y0 < y1 then sy := 1 else sy := -1
err := dx-dy
loop

setPixel(x0,y0)
if x0 = x1 and y0 = y1 exit loop
e2 := 2*err
if e2 > -dy then

err := err - dy
x0 := x0 + sx

end if
if e2 < dx then

err := err + dx
y0 := y0 + sy

end if
end loop

You may be tempted to translate this into ML making heavy use of reference types. It’s actually
simpler to implement the loop as a recursive function taking three arguments x, y and err. The
integer absolute value is available as the function Int.abs.

4http://en.wikipedia.org/wiki/Bresenham’s_line_algorithm

Exercise 5: Mandelbrot Set (Vacation Task)

This exercise is compulsory for CST candidates. If you expect to be taking CST Paper 2 in
June, then you must complete it.

The aim of this exercise is to draw images containing sections of the Mandelbrot set. It builds
upon the previous exercise, in which you implemented a simple library for drawing PPM images.

The submission deadline is 5pm on the first Wednesday of Lent Term. All students will have
their ticking session on the following day during the first Java practical of term. The Java practicals
will run on every Thursday afternoon from 2pm to 4pm or from 4pm to 6pm; full details will be
sent out at the beginning of next term.

Your submission should be placed in the Blue Rack appropriate for your usual Ticker exactly
as for earlier ML ticks. Any outstanding ML submissions should be handed in at the same time.

1 Background Information

The Wikipedia article on the Mandelbrot set5 is a useful guide, although it goes into more depth
than is required for this exercise.

You can use Poly/ML, Moscow ML or SML/NJ for this exercise. To use Moscow ML, you
must include the following line at the top of your program:

load "Math";

The function load (of type string -> unit) takes the name of an external library and makes
it available to the Moscow ML runtime.

Various ML systems are already installed on the PWF machines, and you can easily install ML
on a personal machine.6

2 Exercise

The instructions below will guide you through to the completion of this exercise. You should
implement your program in a single source file to which you will add as you progress through the
exercise.

1. Write a function drawAll, which applies a function to every pixel in an image.

val drawAll : (xy -> color) -> image -> unit

The function passed to drawAll will be referred to as the colouring function and should have the
type xy -> color.

This function should take a pair of integers (the coordinates of the current pixel) and return a
triple of integers (the RGB value to colour this pixel). Your function drawAll should thus take
a colouring function and colour each pixel of the image according to the output of the colouring
function. Why does the drawAll function return unit rather than a new image?

2. Add the following function to your program:

fun gradient (x,y) =
(((x div 30) * 30) mod 256, 0, ((y div 30) * 30) mod 256);

5http://en.wikipedia.org/wiki/Mandelbrot_set
6http://www.cl.cam.ac.uk/teaching/current/FoundsCS/usingml.html

Write a function gradImage: unit->unit which uses drawAll and creates an image
on disk (gradient.ppm) of dimensions 640x480 pixels with each pixel value set according to
the gradient function.

3. Add the following function to your source code. This function checks to see if the point (x, y)

lies within the Mandelbrot set. The argument maxIter indicates how many attempts should be
made before assuming that the point is in the set.

fun mandelbrot maxIter (x,y) =
let fun solve (a,b) c =

if c = maxIter then 1.0
else

if (a*a + b*b <= 4.0) then
solve (a*a - b*b + x,2.0*a*b + y) (c+1)

else (real c)/(real maxIter)
in

solve (x,y) 0
end;

The mandelbrot function returns the amount of work done as the fraction c/max I ter , so 0.0
represents zero iterations and 1.0 represents the maximum number of iterations.

4. Add the following function to your source code. This function selects an RGB colour based
on the number of iterations returned by the mandelbrot function.

fun chooseColour n =
let

val r = round ((Math.cos n) * 255.0)
val g = round ((Math.cos n) * 255.0)
val b = round ((Math.sin n) * 255.0)

in
(r,g,b)

end;

The implementations of sin and cos are provided by the Math library.

5. The mandelbrot function does not operate on pixel values. Instead it operates on the
number plane. Our image will cover only a portion of the mandelbrot set and so we will need to
convert between pixel values and real numbers. Write a function rescale to do this:

val rescale : xy -> real*real*real -> xy -> real*real

The call rescale (w,h) (cx,cy,s) (x,y) should return a tuple (p, q) which is the
real number position on the number plane which corresponds to the pixel value (x, y). The tuple
(w, h) gives the size of the image in pixels, and the tuple (cx, cy, s) specifies the central point of
the image and the size of the window of interest (Figure 1).

The point p is given as follows (you should derive an equation for q yourself)

p = s
(

x
w
−

1
2

)
+ cx

6. Write a function compute which combines your rescale function with mandelbrot
and chooseColour in order to compute the Mandelbrot set of a particular region and save the
result to a file on disk.

val compute : real*real*real -> unit

Figure 1: The function rescale converts a pixel value to a point on the number plane.

Here compute (cx,cy,s) will write an image to disk (mandelbrot.ppm) containing
the Mandelbrot set for the chosen region (experiment to find a sensible value for maxIter).

7. Draw the Mandelbrot set for (cx, cy, s) = (−0.74364990, 0.13188204, 0.00073801).

Your submission should contain

• the printed source code as outlined above, including a comment with your name and college
in the same manner as the previous exercises, and comments answering the questions as
requested in the outline above;

• printouts of the gradient fill test and the selected portion of the Mandelbrot set;

• the amount of time you spent on the exercise.

